
Taylor-Mode Automatic Differentiation for
Higher-Order Derivatives in JAX

Jesse Bettencourt
University of Toronto & Vector Institute

jessebett@cs.toronto.edu

Matthew J. Johnson
Google Brain

David Duvenaud
University of Toronto & Vector Institute

Abstract

One way to achieve higher-order automatic differentiation (AD) is to implement
first-order AD and apply it repeatedly. This nested approach works, but can result
in combinatorial amounts of redundant work. This paper describes a more efficient
method, already known but with a new presentation, and its implementation in
JAX. We also study its application to neural ordinary differential equations, and in
particular discuss some additional algorithmic improvements for higher-order AD
of differential equations.

1 Introduction

0 1 2 3 4 5 6 7 8 9
Order of Differentiation

10 3

10 2

10 1

100

101

102

Ev
al

ua
tio

n
Ti

m
e

(s
ec

)

sin Nested
sin Taylor
cos Nested
cos Taylor
exp Nested
exp Taylor
neg Nested
neg Taylor

(a) Univariate primitives

0 1 2 3 4 5 6 7 8 9 10
Order of Differentiation

10 2

10 1

100

101

Ev
al

ua
tio

n
Ti

m
e

(s
ec

)

MLP Nested
MLP Taylor

(b) Two-layer MLP with exp non-linearities

Figure 1: Scaling of higher-order AD with nested
derivatives (dashed) vs Taylor-method (solid)

Automatic differentiation (AD) for Machine
Learning is primarily concerned with the eval-
uation of first order derivatives to facilitate
gradient-based optimization. The frameworks
we use are heavily optimized to support this. In
some instances, though much rarer, we are inter-
ested in the second order derivative information,
e.g. to compute natural gradients. Third and
higher order derivatives are even less common
and as such our frameworks do not support their
efficient computation. However, higher order
derivatives may be considerably valuable to fu-
ture research for neural differential equations,
so efficiently computing them is critical.

The naïve approach to higher order differenti-
ation, supported by most AD frameworks, is
to compose derivative operation until the de-
sired order is achieved. However, this nested-
derivative approach suffers from computational
blowup that is exponential in the order of differ-
entiation. This is unfortunate because more effi-
cient methods are known in the AD literature, in
particular those methods detailed in Chapter 13
of Griewank and Walther [1] and implemented
in [2] as arithmetic on Taylor polynomials.

Preprint. Under review.

jessebett@cs.toronto.edu

This Taylor-mode is a generalization of forward-mode AD to higher dimensional derivatives.

The exponential blowup can be seen in fig. 1 where dashed lines correspond to the naïve, nesting-
derivative approach. Our implementation of Taylor-mode achieves much better scaling, as can be
seen in fig. 1a where we show the higher-derivatives of some univariate primitives. The performance
gains are even more dramatic in fig. 1b showing the scaling of higher-order derivatives for a 2-layer
MLP with exp non-linearities.

In section 2 we give an overview of the problem of computing higher order derivatives. In section 3
we give an overview of our ongoing work to implement these methods in an AD framework for
machine learning, namely JAX. In section 4 we demonstrate the relationship between these methods
and solutions differential equations. In the appendix A we provide relevant mathematical background
linking these mtehods to fundemental results from calculus.

2 Higher-Order Chain Rule

First-order automatic differentiation relies on solving a composition problem: for a function f = g◦h,
given a pair of arrays (z0, z1) representing (h(x), ∂h(x)[v]), compute the pair (f(x), ∂f(x)[v]). We
solve it using f(x) = g(h(x)) = g(z0) and ∂f(x)[v] = ∂g(h(x)) [∂h(x)[v]] = ∂g(z0)[z1].

A higher-order analogue of this composition problem is: given a tuple of arrays representing

(z0, . . . , zK) =
(
h(x), ∂h(x)[v], ∂2h(x)[v, v], . . . , ∂Kh(x)[v, . . . , v]

)
, (1)

compute (
f(x), ∂f(x)[v], ∂2f(x)[v, v], . . . , ∂Kf(x)[v, . . . , v]

)
. (2)

We can solve this problem by developing a formula for each component ∂kf(x)[v, . . . , v]. The basic
issue is that there are several ways in which to form k-th order perturbations of f , routed via the
perturbations of h we are given as input.

Take k = 2 for concreteness:

∂2f(x)[v, v] = ∂g(z0)[z2] + ∂2g(z0)[z1, z1]. (3)

The first term represents how a 2nd-order perturbation in the value of f can arise from a 2nd-order
perturbation to the value of h and the 1st-order sensitivity of g. Similarly the second term represents
how 1st-order perturbations in h can lead to a 2nd-order perturbation in f via the 2nd-order sensitivity
of g. For larger k, there are many more ways to combine the perturbations of h.

More generally, let part(k) denote the integer partitions of k, i.e. the set of multisets of positive
integers that sum to k, each represented as a sorted tuple of integers. Then we have

∂kf(x)[v, . . . , v] =
∑

σ∈part(k)

sym(σ) · ∂|σ|g(z0) [zσ1
, zσ2

, . . . zσend] , (4)

sym(σ) :=
k!

σ1!σ2! · · · σend!

1∏
i∈uniq(σ) multσ(i)!

(5)

where |σ| denotes the length of the tuple σ, uniq(σ) denotes the set of unique elements of σ, and
multσ(i) denotes the multiplicity of i in σ.

An intuition for sym(σ) is that it counts the number of ways to form a perturbation of f of order k
routed via perturbations of h of orders σ1, σ2, . . . , σend as a multinomial coefficient (the first term),
then corrects for overcounting perturbations of h of equal order (the second term). For further
explanation of integer partitions, multiplicity, and intuition of sym refer to appendix B.

The problem of computing these higher derivatives, and the formula in (4) is known as the Faà
di Bruno Formula. This can equivalently be expressed as the coefficients of a truncated Taylor
polynomial approximation of f at a point x0.

f(x+ v) ≈ f(x) + ∂f(x)[v] +
1

2!
∂2f(x)[v, v] + · · ·+ 1

d!
∂df(x)[v, . . . , v]. (6)

These connections are explained in background found in appendix A.

2

3 Implementation in JAX

Given the coefficients x0, . . . , xd as in the polynomial (12) we implement the function jet which
computes the coefficients y0, . . . , yd as in the polynomial (13). The name refers to the jet operation
described in eq. (16) of appendix A.3 with the interface

y0, (y1, . . . , yd) = jet (f, x0, (x1, . . . , xd)) (7)

Supporting this user-facing API is a new JAX interpreter JetTracer which traces the forward
evaluation and overloads primitive operations. As an aside, this is analogous to implementing
forward-mode AD by overloading operations with dual number arithmetic. In fact, as noted in Rules
22 and 23 of Griewank and Walther [1], Taylor-mode with one higher derivative, corresponding to
f(x0 + x1t), is identically forward-mode. However, JetTracer generalizes the usual forward-mode
tracing to compute higher order jets.

This is achieved by overloading primitive operations to call an internal function prop that computes
the higher order derivatives for each primitive operation. In particular, prop implements the Faà
di Bruno algorithm (10). Internally it calls sym to compute the partition multiplicity for the integer
combinatorial factors appearing in the higher derivatives.

Crucially, recall that Faà di Bruno expresses the total derivatives of the composition f(g(x)) in terms
of the higher-order partial derivatives of f and g. Further, the goal of this is to share computation
of these partial derivatives across order of differentiation. To achieve this prop calls a generator
which returns previously computed partial derivative functions. Again, this generalizes forward mode
implementations which provide the first order derivative rule for each primitive.

Example The primitive sin is known to have a first order derivative cos. First-order forward-mode
implementations stop providing derivative rules here. However, it is also known that the second order
derivative is -sin, and third is -cos. So all higher derivatives of the primitive sin can be computed
by overloading the primal evaluation. We can further exploit the shared evaluation at this level, i.e.,
all higher derivatives involve cycling through {cos, -sin, -cos, sin}, and even these only involve
computing sin and cos once, and negating the result.

We implement these higher-order derivative rules for various primitives. While trigonometric primi-
tives are an extreme example of sharing work across derivative order, many other primitives also can
benefit from sharing some common sub-expressions.

There are two opportunities to share common work here. In defining the higher-order partial derivative
rules for each primitive some evaluations can be shared. In computing the total derivative of function
compositions partial derivatives of primitives should only be evaluated once for each order, then
shared. The function prop is responsible for computing or accessing these partial derivatives at
the necessary orders, computing their multiplicity with sym, and combing them according to the
higher-order composition rule (4).

3.1 Comparing Taylor-Mode to Nested Derivatives

The nested approach to higher-order derivatives would involve taking the derivative of the primitive
operations emitted by the first derivative evaluation. Consider again the above sin example, and
its derivative cos. Nested-derivatives would evaluate the derivative of the emitted cos which
would correctly return -sin. However, in addition to whatever overhead each additional derivative
introduces, this higher derivative is not able to take advantage of the common evaluation from the
lower order.

In fig. 1a we compare the computational scaling as we evaluate higher derivatives of various primitives.
There it can be seen that the naïve nesting derivatives, by not sharing common expressions across
orders, requires more computation for each subsequent derivative order. Whereas Taylor-mode enjoys
much better scaling for the higher derivatives of the primitives.

This effect is considerably more dramatic in the case of higher derivatives of functions which
compose primitives. In fig. 1b we show the scaling on a 2-layer MLP with exp non-linearities.
Here it can be seen that nested derivatives scale much worse than the blowup from the individual
primitives. Further, the nested derivatives were only able to be computed up to order 6 before memory
limitations prevented higher differentiation. Taylor-mode was able to compute up to 10th order
without experiencing memory limitations and in with significantly better scaling.

3

4 Differential Equations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Order of Differentiation

10 1

100

101

Ev
al

ua
tio

n
Ti

m
e

(s
ec

)

ODE Sol Recursive Taylor
ODE Sol Newton Doubling Taylor
ODE Sol Nested Derivatives

Figure 2: Methods for computing coeffi-
cients of an ODE Solution

Dynamical systems are defined directly in terms of their
derivatives. Consider the initial value problem (IVP)

dx

dt
= f(x(t)) where x(0) = x0 ∈ Rn

which we write in autonomous form for notational conve-
nience, see appendix D.1

The exact solution to the IVP can be approximated by
truncating the Taylor polynomial

x(t) =

d∑
i=0

xit
i +O(td) ∈ Rn

= x0 +
dx

dt
t+

1

2!

d2x

dt2
t2 + · · ·+ 1

d!

ddx

dtd
td

In defining the IVP, we already specify the first coefficient to the Taylor polynomial, x1 = f(x(t)).
Further, we see that the second, and subsequent, coefficients must be higher derivatives with respect
to t. Recall that these derivatives xi=1...d =

di

dti f(x(t)) are exactly those given by the coefficients of
the polynomial y(t) = f(x(t)) (13).

This gives us the recursive relationship for computing the coefficients of the solution:

xi+1 = yi (8)

Recall that jet, by definition (16), gives us the coefficients for yi as a function of f and the coefficients
xj≤i. We can use jet and the relationship (8) to recursively compute the coefficients of the solution
polynomial. Pseudocode for computing the coefficients of the ODE solution recursively with jet
is given in appendix D.2 algorithm 2. However, a more efficient method is known which exploits
linearity properties of higher derivatives.

4.1 Exploiting Linearity in Higher Coefficients of ODE Solution with Newton’s Method

It is proven in Griewank and Walther [1] that the coefficient for an ODE solution yk = yk(x0, . . . , xk)
is linear with respect to the upper half of its input coefficients, xj for j > k

2 . Further, the lower half
of its input coefficients, x0, . . . , xj−1, determines the linear dependence as

xk+1 = yk = yk(x0, . . . , xj−1, 0, . . . , 0) +
k!

(j − 1)!

k∑
i=j

((j − 1)− (k − i))!
i!

Ak−ixi (9)

where Am =
∂yj−1

∂x(j−1)−m
. See appendix D.3 for details.

In particular, notice that linear updates are given by a sum of Jacobian-vector products
∑k
i=j Ak−ixi.

This means that we do not need to explicitly instantiate any Jacobians, since they are immediately
contracted against vectors. Further, we also do not need to compute many Jacobian-vector products
and then sum the results. As discussed in appendix D.4, we can compute this sum by a single
Jacobian-vector product of yj−1 with respect to all its inputs x0, . . . , xj−1.

The following algorithm appears in Table 13.7 of [1], but we make it clear that Jacobians are
represented implicitly through Jacobian-vector products in algorithm 1.

Figure 2 shows that exploiting higher-coefficients’ linearity via Newton’s Doubling Method allows
for more efficient computation of coefficients except those which require full non-linear evaluation.

4

Algorithm 1 ODE Solution by Doubling Coefficients through Newton’s Method

Have : x0 , f
Want : x1 , . . . , xd

f o r s i n 0 , 1 , . . . :
j = 2∗∗ (s +1)−1

f u n c t i o n computes n o n l i n e a r dependence on lower−h a l f c o e f f i c i e n t s
f _ j e t = lambda x0 , . . . , x{ j−1} : j e t (f , (x0 ,) , ([x1 , . . . , x{ j −1} , 0 , . . . , 0])

l i n e a r i z e t h e f u n c t i o n t o g e t y _ h a t and f u n c t i o n which computes j v p s
y_ha t , j v p _ j e t = j a x . l i n e a r i z e (f _ j e t , x0 , . . . , x{ j −1})

f o r k i n j−1 . . . 2 j −1:

u p d a t e y h a t w i th sum of jvps , computed i n s i n g l e j v p
yk = y _ h a t [k] + k ! / (j −1)! ∗ j v p _ j e t (∗ [(j −1)−(k−i)) ! / i ! x i f o r i i n j . . . k])

r e c u r r e n c e r e l a t i o n s h i p from ODE dynamics
x{k+1} = yk

i f k+1==d :
b r e a k

r e t u r n x0 , [x1 , . . . , xd]

References
[1] Andreas Griewank and Andrea Walther. Evaluating derivatives. 2008.

[2] Andreas Griewank, David Juedes, and Jean Utke. Algorithm 755: Adol-c: a package for the
automatic differentiation of algorithms written in c/c++. ACM Transactions on Mathematical
Software (TOMS), 22(2):131–167, 1996.

[3] Luis Benet and David Sanders. Taylorseries.jl: Taylor expansions in one and several variables in
julia. Journal of Open Source Software, 4, 04 2019. doi: 10.21105/joss.01043.

[4] Winston C. Yang. Derivatives are essentially integer partitions. Discrete Mathematics, 222(1):
235 – 245, 2000. ISSN 0012-365X. doi: https://doi.org/10.1016/S0012-365X(99)00412-4. URL
http://www.sciencedirect.com/science/article/pii/S0012365X99004124.

[5] Michael Hardy. Combinatorics of partial derivatives. the electronic journal of combinatorics, 13,
Jan 2006. URL http://arxiv.org/abs/math/0601149v1. Electronic Journal of Combina-
torics 13 (2006) #R1.

[6] Warren Johnson. The curious history of faa di bruno’s formula. The American Mathematical
Monthly, 109:217–234, 03 2002. doi: 10.1080/00029890.2002.11919857.

[7] Ernst Hairer, Syvert Norsett, and G. Wanner. Solving Ordinary Differential Equations I: Nonstiff
Problems, volume 8. 01 1993. doi: 10.1007/978-3-540-78862-1.

5

http://www.sciencedirect.com/science/article/pii/S0012365X99004124
http://arxiv.org/abs/math/0601149v1

A Background

A.1 Faà di Bruno’s Formula

If f and g are sufficiently smooth functions then the nth derivative of their composition f(g(x))
is well-known and given by the Faà di Bruno formula which generalizes the chain rule to higher
derivatives:

dn

dxn
f(g(x)) =

∑
σ∈πn

n!

k1! · · · kn!
f (k1+···+kn)(g(x))

((
1

1!

∂g(x)

∂x

)k1
· · ·
(

1

n!

∂ng(x)

∂xn

)kn)

=
∑
σ∈πn

sym(σ)f (
∑

i ki)(g(x))
∏

i:ki 6=0∈σ

(
dig(x)

dxi
)ki (10)

where πn is the set of all n-tuples (k1, . . . , kn) of non-negative integers such that
∑
i iki = n. We

introduce the function sym(σ) which computes the multiplicity associated with the partition σ. See
appendix B for details on partition multiplicity and an example.

The Faà di Bruno algorithm (10) give the familiar expressions
d

dx
f(g(x)) = f ′(g(x))

dg(x)

dx

d2

dx2
f(g(x)) = f ′(g(x))

d2g(x)

dx2
+ f ′′(g(x))

(
d2g(x)

dx2

)2

d3

dx3
f(g(x)) = f ′(g(x))

d3g(x)

dx3
+ 3f ′′(g(x))

dg(x)

dx

d2g(x)

dx2
+ f ′′′(g(x))

(
dg(x)

dx

)3

...

(11)

Importantly, the expression for the nth order derivative of the composition f(g(x)) is given in terms
of (mostly lower order) derivatives of the constituent functions f and g. Since we are concerned
with computing all derivatives of the composition up to n, this formula allows us to share the work
of computing lower-order derivatives with all subsequent higher orders. For example, computing
the derivative d3f(g(x))

dx3 requires the value of d2g(x)
dx2 which was already computed for the previous

derivative d2f(g(x))
dx2 . The Faà di Bruno algorithm makes explicit how these intermediate quantities

can be shared across the orders of differentiation.

A.2 Taylor Polynomials

Truncated Taylor polynomials allow for natural representation and manipulation of higher order
derivatives, and the relationship between their polynomial arithmetic and AD for higher derivatives is
well-known [1].

Consider the polynomial

x(t) = x0 + x1t+
1

2!
x2t

2 +
1

3!
x3t

3 + · · ·+ 1

d!
xdt

d ∈ Rn (12)

For a sufficiently smooth vector valued function f : Rn → Rm, we are interested in the truncated
Taylor polynomial given by the resulting expansion

y(t) ≡ y0 + y1t+
1

2!
y2t

2 +
1

3!
y3t

3 + · · ·+ 1

d!
ydt

d ∈ Rm (13)

the coefficients yj of which are smooth functions of the i ≤ j coefficients xi:

y0 = y0(x0) = f(x0)

y1 = y1(x0, x1) = f ′(x0)x1

y2 = y2(x0, x1, x2) = f ′(x0)x2 + f ′′(x0)x1x1

y3 = y3(x0, x1, x2, x3) = f ′(x0)x3 + 3f ′′(x0)x1x2 + f ′′′(x0)x1x1x1

...

(14)

6

If we allow that x(t) itself is a Taylor polynomial, with the suggestive notation that its coefficients
capture higher derivatives of its dependence on the independent variable t, i.e. xi =

dix(t)
dti , then the

meaning of the coefficients of y(t) become clear:

y0 = f(x0)

y1 = f ′(x0)
dx

dt
=

d

dt
f(x(t))

y2 = f ′(x0)
d2x

dt2
+ f ′′(x0)

(
dx

dt

)2

=
d2

dt2
f(x(t))

y3 = f ′(x0)
d3x

dt3
+ 3f ′′(x0)

dx

dt

d2x

dt2
+ f ′′′(x0)

(
dx

dt

)3

=
d3

dt3
f(x(t))

...

(15)

That is, the coefficients yi are exactly the ith order derivative of the composition f(x(t)) with respect
to t. Further, their intermediate expansions exactly correspond to the expressions for the higher order
derivatives given by Faà di Bruno’s Formula, for example compare (15) to (11). We refer to the
coefficients of y(t) as derivative coefficients. Refer to appendix C.1 for a comparison to how these
are presented in [1], which equivalently incorporates the factorial terms but obfuscates their meaning
as higher derivatives and their relationship with the Faà di Bruno Formula.

Our implementation makes extensive use of the relationship between eq. (15) and Faà di Brunno’s
Formula. Previous work on higher-order automatic differentiation using Taylor series instead rely
directly on polynomial arithmetic of the truncated polynomials [1, 3]. While polynomial arithmetic
will also give equivalent coefficients as eq. (15) it does not make explicit how computation should be
shared across order of differentiation.

A.3 Jets

The introduction of the Taylor polynomials in eqs. (12) and (13) are useful for relating this to mathe-
matical foundations and to implementations which explicitly use polynomial arithmetic. However,
while elegant, representing higher derivatives by polynomials introduces the independent variable, t,
which is potentially a subtle confusion.

To clarify, we borrow the language of jets, an operation, Jdx0
, on differentiable functions f : X → Y

that produces the d-truncated Taylor polynomial of f at every point x0 in its domain. This is a useful
operation because it allows us to consider jets as abstract polynomials in x0, not as literal polynomials
in the introduced independent variable t.

This view makes it clear that the functional dependency is on, x0, where the polynomial is developed,
not t, where it is evaluated. To relate jets to polynomials x(t) (12) and y(t) (13) we write:

(Jdx0
f)(x1, . . . , xd) = y0, . . . , yd (16)

B More on Faà di Bruno’s Formula

If f and g are sufficiently smooth functions then the nth derivative of their composition f(g(x))
is well-known and given by the Faà di Bruno formula which generalizes the chain rule to higher
derivatives:

∂n

∂x1 · · · ∂xn
f(g(x)) =

∑
σ∈π{1,...,n}

f (|σ|)(g(x))
∏
b∈σ

∂|b|∏
j∈b ∂xj

g(x) (17)

where π{1,...,n} is the set of all partitions of the set {1, . . . , n}.
The Faà di Bruno formula relates the nth derivative of a function composition with the combinatorial
problem of how to combine the various lower-order partial derivatives. This is naturally described
in terms of partitions of integer sets [4, 5] on the order of the desired derivative n, though there are
other interpretations of the formula [6].

7

https://en.wikipedia.org/wiki/Jet_(mathematics)

Example Consider the third derivative of the composition f(g(x)). Faà di Bruno gives that this will
be related to the partitions of the set {1, 2, 3}, which is

π{1,...,n} ={
{{1, 2, 3}},
{{1}, {2, 3}}, {{2}, {1, 3}}, {{3}, {1, 2}},
{{1}, {2}, {3}}
}

and the forumula 17 gives:

∂3

∂x1∂x2∂x3
f(g(x)) = f (1)(g(x))

∂3g(x)

∂x1∂x2∂x3

+ f (2)(g(x))(
∂g(x)

∂x1

∂2g(x)

∂x2∂x3
+
∂g(x)

∂x2

∂2g(x)

∂x1∂x3
+
∂g(x)

∂x3

∂2g(x)

∂x1∂x2
)

+ f (3)(g(x))
∂g(x)

∂x1

∂g(x)

∂x2

∂g(x)

∂x3
(18)

However, it is often the case that the higher-order derivatives are taken with respect to the same
indistinguishable variable, so ∂n

∂x1···∂xn
becomes dn

dxn . In this case the Faà di Bruno formula 17 can
be expressed in terms of partitions of the integer n and the multiplicity of the parition elements:

dn

dxn
f(g(x)) =

∑
σ∈πn

n!

k1! · · · kn!
f (k1+···+kn)(g(x))

((
1

1!

∂g(x)

∂x

)k1
· · ·
(

1

n!

∂ng(x)

∂xn

)kn)

=
∑
σ∈πn

n!

k1! · · · kn! · 1!k1 · · ·n!kn
f (

∑
i ki)(g(x))

((
∂g(x)

∂x

)k1
· · ·
(
∂ng(x)

∂xn

)kn)

=
∑
σ∈πn

n!

k1! · · · kn! · 1!k1 · · ·n!kn
f (

∑
i ki)(g(x))

∏
i:ki 6=0∈σ

(
dig(x)

dxi
)ki

=
∑
σ∈πn

sym(σ)f (
∑

i ki)(g(x))
∏

i:ki 6=0∈σ

(
dig(x)

dxi
)ki (19)

Where πn is the set of all n-tuples (k1, . . . , kn) of non-negative integers such that
∑
i iki = n. We

introduce the function sym(σ) which computes the multiplicity associated with the partition σ, that
is, how many partitions of π{1,...,n} that σ corresponds to in πn.

Example Consider again the third derivative of the composition f(g(x)). The integer partitions of
n = 3 are

π3 = {(0, 0, 1) , (1, 1, 0) , (3, 0, 0)}

The only partition in π3 with non-trivial multiplicity is (1, 1, 0) which corresponds to the partition 3 =
1+ 2 ∗ 1+ 3 ∗ 0. (1, 1, 0) identifies the 3 set partitions {{1}, {2, 3}}, {{2}, {1, 3}}, {{3}, {1, 2}} ∈
π{1,...,3}. This number of set partitions in π{1,...,3} by σ ∈ π3 is computed by sym((1, 1, 0)) =

n!
k1!···kn!·1!k1 ···n!kn

= 3!
1!1!0!·1!12!13!0 = 3. This shows how sym(σ) relates the formula in 17 to the

formula in 19

Following the formula in 19 we have exactly the result from 18 with the variables ∂x1, . . . ∂xn
identified to dxn:

8

d3

dx3
f(g(x)) = f (1)(g(x))

d3g(x)

dx3

+ 3 ∗ f (2)(g(x))(dg(x)
dx

d2g(x)

dx2
)

+ f (3)(g(x))

(
dg(x)

dx

)3

(20)

Importantly, the Faà di Bruno Formula 19 gives an expression for the nth derivative of the composition
f(g(x)) in terms of (mostly lower order) derivatives of the constituent functions f and g. Since we
are concerned with computing all derivatives of the composition up to n, this formula allows us to
share the work of computing lower-order derivatives with all subsequent higher orders.

C More on Taylor Polynomials

C.1 Normalized Taylor Coefficients vs Derivative Coefficients

To clarify the relationship between the presentation in Griewank and Walther [1] and our results
we give the distinction between the Taylor coefficients and derivative coefficients, also known,
unhelpfully, as Tensor coefficients.

For a sufficiently smooth vector valued function f : Rn → Rm and the polynomial

x(t) = x[0] + x[1]t+ x[2]t
2 + x[3]t

3 + · · ·+ x[d]t
d ∈ Rn (21)

we are interested in the d-truncated Taylor expansion

y(t) = f(x(t)) +O(td+1) (22)

≡ y[0] + y[1]t+ y[2]t
2 + y[3]t

3 + · · ·+ y[d]t
d ∈ Rm (23)

with the notation that y[i] = 1
i!yi is the Taylor coefficient, which is the normalized derivative coefficient

yi.

The Taylor coefficients of the expansion, y[j], are smooth functions of the i ≤ j coefficients x[i],

y[0] = y[0](x[0]) = f(x[0]) (24)

y[1] = y[1](x[0], x[1]) = f ′(x[0])x[1] (25)

y[2] = y[2](x[0], x[1], x[2]) = f ′(x[0])x[2] +
1

2
f ′′(x[0])x[1]x[1] (26)

y[3] = y[3](x[0], x[1], x[2], x[3]) = f ′(x[0])x[3] + f ′′(x[0])x[1]x[2] +
1

6
f ′′′(x[0])x[1]x[1]x[1] (27)

...

These, as given in Griewank and Walther [1], are written in terms of the normalized, Taylor coeffi-
cients. This obscures their direct relationship with the derivatives, which we make explicit.

Consider the polynomial eq. (21) with Taylor coefficients expanded so their normalization is clear.
Further, let’s use suggestive notation that these coefficients correspond to the higher derivatives of of
x with respect to t, making x(t) a Taylor polynomial. That is x[i] = 1

i!xi =
1
i!
dix
dti .

x(t) = x0 + x1t+
1

2!
x2t

2 +
1

3!
x3t

3 + · · ·+ 1

d!
xdt

d ∈ Rn (28)

= x0 +
dx

dt
t+

1

2!

d2x

dt2
t2 +

1

3!
x3t

3 + · · ·+ 1

d!

ddx

dtd
td ∈ Rn (29)

(30)

Again, we are interested in the polynomial eq. (23), but with the normalization terms explicit

y(t) ≡ y0 + y1t+
1

2!
y2t

2 +
1

3!
y3t

3 + · · ·+ 1

d!
ydt

d ∈ Rm (31)

9

Now we can expand the expressions for the Taylor coefficients y[i] to expressions for derivative
coefficients yi = i!y[i]

The coefficients of the Taylor expansion, yj , are smooth functions of the i ≤ j coefficients xi,

y0 = y0(x0) = y[0](x0)

= f(x0) (32)
y1 = y1(x0, x1) = y[1](x0, x1)

= f ′(x0)x1

= f ′(x0)
dx

dt
(33)

y2 = y2(x0, x1, x2) = 2!

(
y[2](x0, x1,

1

2!
x2)

)
= 2!

(
f ′(x0)

1

2!
x2 +

1

2
f ′′(x0)x1x1

)
= f ′(x0)x2 + f ′′(x0)x1x1

= f ′(x0)
d2x

dt2
+ f ′′(x0)

(
dx

dt

)2

(34)

=
d2

dt2
f(x(t)) (35)

y3 = y3(x0, x1, x2, x3) = 3!

(
y[3](x0, x1,

1

2!
x2,

1

3!
x3)

)
= 3!

(
f ′(x0)

1

3!
x3 + f ′′(x0)x1

1

2!
x2 +

1

6
f ′′′(x0)x1x1x1

)
= f ′(x0)x3 + 3f ′′(x0)x1x2 + f ′′′(x0)x1x1x1

= f ′(x0)
d3x

dt3
+ 3f ′′(x0)

dx

dt

d2x

dt2
+ f ′′′(x0)

(
dx

dt

)3

(36)

=
d3

dt3
f(x(t)) (37)

...

Therefore, eqs. (32), (33), (35) and (37) show that the derivative coefficient yi are exactly the ith
order higher derivatives of the composition f(x(t)) with respect to t. The key insight to this exercise
is that by writing the derivative coefficients explicitly we reveal that the expressions for the terms,
eqs. (32) to (34) and (36), are given by the Faà di Bruno formula eq. (19). For example, notice the
equivalence of the expression for y3 in eq. (34) and the example in eq. (20).

10

D Differential Equations

D.1 Autonomous Form

We can transform the initial value problem

dx

dt
= f(x(t), t) where x(t0) = x0 ∈ Rn (38)

into an autonomous dynamical system by augmenting the system to include the independent variable
with trivial dynamics [7]:

d

dt

(
x
t

)
=

(
f(x(t))

1

)
where

(
x(0)
t(0)

)
=

(
x0
t0

)
∈ Rn (39)

We do this for notational convenience, as well it disambiguates that derivatives with respect to t are
meant in the "total" sense. This is aleviates the potential ambiguity of ∂

∂tf(x(t), t) which could mean
both the derivative with respect to the second argument and the derivative through x(t) by the chain
rule ∂f

∂x
∂x
∂t .

D.2 Recursive ODE Solution with jet

Recall that jet, by definition (16), gives us the coefficients for yi as a function of f and the coefficients
xj≤i. We can use jet and the relationship (8) to recursively compute the coefficients of the solution
polynomial.

Algorithm 2 ODE Solution by Recursive Jet

Have : x_0 , f
Want : x_1 , . . . , x_d

y_0 = j e t (f , x_0 , [0])
x_1 = y_0

f o r i i n r a n g e (d) :
(y_0 , [y_1 , . . . , y _ i]) = j e t (f , x0 , [x1 , . . . , x _ i])
x_ { i +1} = y _ i

r e t u r n x_0 , [x_1 , . . . , x_d]

D.3 Coefficient Doubling by Newton’s Method

From corollary 13.2 of Griewank and Walther [1] we have that the coefficients depend linearly on the
upper half of their input coefficients. Further, the linear dependence is determined by the lower half
of the input coefficients. To be clear, coefficient yk(x0, . . . , xk) depends linearly on its arguments
xj where j > k

2 . Further, this linear dependency is fully determined by non-linear arguments through
Jacobians Ai where i ≤ k

2 .

The dependence is given in Griewank and Walther [1] in terms of Taylor coefficients as for k2 < j ≤
k + 1

y[k] = ŷ[k](x0, . . . , xj−1, 0, . . . , 0) +

k∑
i=j

A[k−i]x[i] (40)

Where, for 0 ≤ m ≤ n, we have A[m] =
∂y[n]

∂x[n−m]
that are the Jacobians of the nth output Taylor

coefficient with respect to the (n−m)th input Taylor coefficient. Further, the ŷ[m] denotes that it is
an intermediate quantity which only captures the non-linear dependence on the lower half coefficients,
and will be updated with the linear dependence to produce y[m],

11

To write this in derivative coefficients we expand the factorial terms. In particular,

A[m] =
∂y[n]

∂x[n−m]
=

∂ 1
n!yn

∂ 1
n−m!xn−m

=
(n−m)!

n!

∂yn
∂xn−m

=
(n−m)!

n!
Am (41)

Where Am = ∂yn
∂xn−m

are the Jacobians of the nth output derivative coefficient with respect to the
(n−m)th input derivative coefficient. For example

∂y0
∂x0

=
∂y1
∂x1

=
∂y2
∂x2

= A0 (42)

∂y1
∂x0

=
∂y2
∂x1

= A1 (43)

∂y2
∂x0

= A2 (44)

...

We will later exploit the identification of some Jacobians, e.g. that ∂y0∂x0
= ∂y1

∂x1
for performance gains.

But for now we will use the result to simplify notation, which is that we will be interested in the
particular expression for Am that is given by the derivative of the yj−1 with respect to the xm. That
is, we write

A[m] =
∂y[j−1]

∂x[(j−1)−m]
=

((j − 1)−m)!

(j − 1)!

∂yj−1
∂x(j−1)−m

=
((j − 1)−m)!

(j − 1)!
Am (45)

Now, we can write eq. (40) in terms of derivative coefficients by expanding all factorial terms
including the expansion given in eq. (45):

1

k!
yk =

1

k!
ŷk(x0, . . . , xj−1, 0, . . . , 0) +

k∑
i=j

A[k−i]
1

i!
xi (46)

Multiplying all terms by the factorial factor 1
k!

yk = ŷk(x0, . . . , xj−1, 0, . . . , 0) + k!

k∑
i=j

A[k−i]
1

i!
xi (47)

Using the expansion derived in 45

yk = ŷk(x0, . . . , xj−1, 0, . . . , 0) + k!

k∑
i=j

((j − 1)− (k − i))!
(j − 1)!

Ak−i
1

i!
xi (48)

and simplifying

yk = ŷk(x0, . . . , xj−1, 0, . . . , 0) +
k!

(j − 1)!

k∑
i=j

((j − 1)− (k − i))!
i!

Ak−ixi (49)

We make use of two critical properties here:

Remark 1 (Identification of Coefficient Jacobians) By definition Aj = ∂yn
∂xn−j

, this identifies Ja-
cobians of certain output coefficients with respective input coefficients.

For example, as seen in (42), we can compute A0 either as a derivative of the coefficient y0 with
respect to x0 or by the derivative of coefficient y1 with respect to x1.

Remark 2 (Linear Dependence via Jacobian-vector Products) The terms that capture the linear
dependence in (46) are the sum of Jacobian-vector products with Jacobians Ak−i and vectors xi.

12

In particular, note that this means we do not explicitly instantiate the Jacobians Ak−i as they are
immediately contracted against the vector xi. We can use Forward-mode AD to compute the
Jacobian-vector product implicitly.

Griewank and Walther [1] note that we can exploit this linear dependence to more than double the
number of coefficients computed for the solution. That is, for s = 0, 1, . . . we will have j = 2s+1−1
in the expression (49). This will allow us to compute coefficients up to 2j.

We can make this method clear by example computing the fist 6 coefficients to the ODE solution.

Example 1 (Computing solution coefficients x1, . . . , x6 by Newton Doubling)

We start with s = 0 and j = 2s+1 − 1 = 1. So we can compute up to coefficient x2j = x2.

We begin by computing the first coefficient x1 = y0. There is no linear relationship we can
exploit here, so this involves computing jet at x0 as usual. However, if we also capture the linear
dependence, with jax.linearize, we can then compute the Jacobian-vector product with newly
computed coefficients which will make use of remark 2.

f _ j e t 0 = lambda x0 : j e t (g , (x0 ,) , ((ze ro_ te rm ,) ,))
(y0 , [y1h]) , f _ j v p = l i n e a r i z e (f _ j e t 0 , x0)
x1 = y0 # r e c u r r e n c e r e l a t i o n s h i p

In addition to computing y0, the y0 coefficient, we also compute y1h which corresponds to ŷ1 in
(49).

Now, we use the formula (49) with k = 1 and j = 1:

y1 = ŷ1(x0, 0) +
1!

(1− 1)!

1∑
i=1

((1− 1)− (1− i))!
1!

A1−ixi (50)

y1 = ŷ1(x0, 0) +A0x1 (51)

We used jax.linearize to capture linear dependence of the y0 coefficient with respect to its input,
x0. Now f_jvp(xi)[0] will compute the Jacobian-vector product ∂y0∂x0

xi = A0xi. This allows us
to compute the expression (51).

y1 = y1h + f _ j v p (x1)
x2 = y1 # r e c u r r e n c e r e l a t i o n s h i p

The reccurence relationship gives us x2 = y1. Now we see with a single call to jet we’ve computed
x1, x2.

Let’s consider computing the next few coefficients to note a further improvement. For this we will
have s = 1 and j = 2s+1 − 1 = 3. So we can compute up to the coefficient x2j = x6

eq. (46) tells us that coefficients up to x5 will depend non-linearly on x0, x1, x2 plus linear updates
involving A0 and A1

f _ j e t 0 1 2 = lambda x0 , x1 , : j e t (g , (x0 ,) , ([x1 , x2] + [z e r o _ t e r m] ∗ 3 ,))
(y0 , [y1 , y2 , y3h , y4h , y5h]) , f _ j v p = l i n e a r i z e (f _ j e t 0 1 , x0 , x1)
x3 = y2 # r e c u r r e n c e r e l a t i o n s h i p

Note that at this stage the function which computes the Jacobian-vector products, f_jvp, now
takes 2 arguments. Where [1][0] corresponds to indexing the y1 coefficient, if we call
f_jvp(xi, zero_term)[1][0], we compute ∂y1

∂x0
xi = A1xi. We can now make use of remark 1

to notice that A0xi =
∂y0
∂x0

xi =
∂y1
∂x1

xi. We could compute this by indexing into the y0 coefficient,
and calling f_jvp(xi, zero_term)[0]. However, we can equivalently compute this by remain-
ing indexed into the y1 coefficient and computing the derivative with respect to the other input
f_jvp(zero_term, xi)[1][0].

y3 = y3h + f _ j v p (ze ro_ te rm , x3) [1] [0]
x4 = y3 # r e c u r r e n c e r e l a t i o n s h i p

The use of remark 1 in the above coefficient is inconsequential. However, in computing the coefficient
y4 it will be offer performance improvement.

13

D.4 Linearity of Jacobian-Vector Products

In particular, notice that linear updates are given by a sum of Jacobian-vector products
∑k
i=j Ak−ixi.

Note that all Ak−i are a Jacobian of yj−1 with respect to different inputs x(j−1)−(k−i). So all
Jacobians appearing in the sum are derivatives with respect to a different input of a multivariate
function yj−1(x0, . . . , xj−1). We can use this fact, together with the linearity of Jacobian-vector
products, to compute the sum in one single Jacobian-vector product, instead of the sum of many
Jacobian-vector products.

This allows us to exploit the linearity of Jacobian-vector products, specifically, consider the Jacobian
of the multivariate input function f([x1, x2])

Specifically, the linear property we’re exploiting can be seen by considering Jacobian-vector products
of a multivariate function f([x1, x2]). The sum of Jacobian-vector products for different vectors is
equal to the Jacobian-vector product on the sum of the vectors. In particular, if those vectors only
have one non-zero element in the ith index, then they correspond to derivatives with respect to the ith
argument of f :

∂f([x1, x2])

∂[x1, x2]

[
xi
0

]
+
∂f([x1, x2])

∂[x1, x2]

[
0
xj

]
=
∂f([x1, x2])

∂[x1, x2]

[
xi
xj

]
(52)

In particular, we can exploit this fact by taking a single Jacobian-vector product with respect to all the
input coefficients at once, and the resulting value will be the sum of their individual Jacobian-vector
products, as desired.

14

	Introduction
	Higher-Order Chain Rule
	Implementation in JAX
	Comparing Taylor-Mode to Nested Derivatives

	Differential Equations
	Exploiting Linearity in Higher Coefficients of ODE Solution with Newton's Method

	Background
	Faà di Bruno's Formula
	Taylor Polynomials
	Jets

	More on Faà di Bruno's Formula
	More on Taylor Polynomials
	Normalized Taylor Coefficients vs Derivative Coefficients

	Differential Equations
	Autonomous Form
	Recursive ODE Solution with jet
	Coefficient Doubling by Newton's Method
	Linearity of Jacobian-Vector Products

