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ABSTRACT

We present a simple proof for the benefit of depth in multi-layer feedforward
network with rectifed activation (“depth separation”). Specifically we present a
sequence of classification problems fi such that (a) for any fixed depth rectified
network we can find an indexm such that problems with index> m require expo-
nential network width to fully represent the function fm; and (b) for any problem
fm in the family, we present a concrete neural network with linear depth and
bounded width that fully represents it.
While there are several previous work showing similar results, our proof uses sub-
stantially simpler tools and techniques, and should be accessible to undergraduate
students in computer science and people with similar backgrounds.

1 INTRODUCTION

We present a simple, geometric proof of the benefit of depth in deep neural networks.

We prove that there exist a set of functions indexed by m, each of which can be efficiently repre-
sented by a depth m rectified MLP network requiring O(m) parameters. However, for any bounded
depth rectified MLP network, there is a function fm in this set that representing it will require an
exponential number of parameters in m.

More formally, let Gd be the set of multi-layer perceptron (MLP) networks with rectified activation
and d hidden layers, and let gΘ be such an MLP with parameters Θ. We will prove the following
theorem:
Theorem 1 (Depth Separation). There exists a set of functions f1, f2, ..., fi : R2 7→ {−1, 1} such
that:

a For any d, there exists m > d such that if gΘ ∈ Gd satisfies gΘ(x) = fm(x) ∀x then
|Θ| = Ω(2m) parameters. (Bounded depth network is exponential in size).

b For any m, there exists a function gΘ ∈ Gm satisfying gΘ(x) = fm(x) ∀x and |Θ| =
O(m) parameters. (Utility of depth).

While this is not a novel result, a main characteristic of our proof is its simplicity. In contrast to
previous work, our proof uses only basic algebra, geometry and simple combinatorial arguments.
As such, it can be easily read and understood by newcomers and practitioners, or taught in an under-
graduate class, without requiring extensive background. Tailoring to these crowds, our presentation
style is more verbose then is usual in papers of this kind, attempting to spell out all steps explicitly.
We also opted to trade generality for proof simplicity, remaining in input space R2 rather than the
more general Rn, thus allowing us to work with lines rather than hyperplanes. Beyond being easy
to visualize, it also results in simple proofs of the different lemmas.

2 RELATED WORK

The expressive power gained by depth in multi-layer perceptron (MLP) networks is relatively well
studied, with multiple works showing that deep MLPs can represent functions that cannot be repre-
sented by similar but shallower networks, unless those have a significantly larger number of units
(Delalleau & Bengio, 2011; Pascanu et al., 2013; Bianchini & Scarselli, 2014).
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Telgarsky (2015; 2016) show that network depth facilitate fast oscillations in the network response
function. Oscillations enabled by a linear growth in depth are shown to require exponential growth
in the number of units when approximated well by a shallower network.

Eldan & Shamir (2016) study approximation to the unit sphere in a wide family of activation func-
tion. In their construction they show that a 3-layer MLP could first compute the polynomial x2

for each of the dimensions and use the last layer to threshold the sum of them to model the unit
sphere indicator. They analytically show that the same approximation with 2-layer network requires
exponentially growth in width with precision.

Yarotsky (2017); Safran & Shamir (2016) show that depth is useful for approximating polynomials
by ReLU MLPs. Specifically, that f(x) = x2 could be efficiently approximated with network depth.

While results similar to ours could be derived by a combination of the construction in Eldan &
Shamir (2016) and the polynomial approximation of Yarotsky (2017) , we present a different (and
to our taste, simpler) proof, using a geometrical interpretation and the number of response regions
of ReLU networks, without explicitly modeling the x2 polynomial.

The ReLU MLP decision space was studied by Pascanu et al. (2013). They show that the input space
is sequentially refined by the ReLU and linear operations of the network to form separated convex
polytopes in the input space. They call these regions response regions. They also establish a lower
bound on the maximal number of regions, a bound which is tightened by Montufar et al. (2014);
Raghu et al. (2017); Arora et al. (2016); Serra et al. (2017). We rely on the notion of response region
in our proof, while attempting to provide an accessible explanation of it. Some of the lemmas we
present are simplified versions of results presented in these previous works.

3 BACKGROUND

3.1 LINEARITY AND PIECEWISE LINEARITY. CONVEXITY.

A linear function is a function of the form f(x) = Ax + b. For affine spaces (like the Euclidean
space), this is also called an affine transformation of the input. In a piecewise linear function the
input space is split into regions, and each region is associated with a linear function. A composition
of linear functions is linear. A composition of piecewise linear functions is piecewise linear.

A 2d region is convex iff, for any two points in the region, all points on the line connecting the two
points is also within the region. A polygon with all internal angles < 180o is a convex region.

3.2 RELU MLP WITH L LAYERS

A ReLU MLP with L layers parameterized by Θ is a multivariate function defined as the composi-
tion:

F (X; Θ) = hout ◦ hAL ◦ σ ◦ hAL−1 ◦ σ... ◦ σ ◦ hA1 (X)

. Where hAi s are parameterized affine transformations; Θ the set of parameters in them; and σ is
the ReLU activation function: a non linear element-wise activation function defined by σ(x) =
max{0, x}. We consider ReLU MLPs where all hidden layers have the same width w.1 Without
loss of generality we define the last layer of network, hout, as a weighted sum over its inputs where
a sum strictly greater than zero is mapped to the 1 class, and otherwise to the −1 class.

The combination of linear operations and the ReLU function result in a piecewise linear function of
the input X.

3.3 RELU MLP RESPONSE REGIONS

Piecewise linear activation functions such as ReLU split the input space into convex regions of linear
activation. This is asserted formally and visualized in Hanin & Rolnick (2019). The ReLU function
has two regions (“pieces”) of linearity x > 0, x ≤ 0. Within each of these, linearity is maintained.
The sequential composition of affine transformations and the ReLU operations created by the MLP

1This subsumes networks with layers with width < w, as these are equivalent to width w layers with zeroes
in specific regions of the parameters.
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layers, divides the the input space into convex polytopes (in 2d these are convex polygons). Within
each such polytope, the function behaves linearly. We call these polytopes linear response regions.

The number of these linear response regions, and specifically the effect of MLP depth on the maxi-
mal number of regions, was studied in multiple works Montufar et al. (2014); Raghu et al. (2017);
Arora et al. (2016); Serra et al. (2017). We focus on the simpler case of 2-class classification ReLU
MLP on the Euclidean plane and denote the maximal number of response regions of a network of
d layers each with w units as r(w, d). Our presentation of the proof of lemma 4 gives more insight
into response regions.

3.4 FOLDING TRANSFORMATIONS

Montufar et al. (2014) present the concept of folding transformation and their implementation with
ReLUs. Looking at one or more layers as a function f : R2 → R2, a folding transformation
maps a part of the input space to coincide with another. Subsequent operations on the resulting
space will apply to both parts, indifferently to their origin in their initial position. As a simple
example, consider a ReLU MLP of input dimension 1. A simple folding two-layer transformation
could easily model the function f(x) = |x|, mapping the negative input values to their positive
counterparts. Then, any composed operation in subsequent layers will apply to both the negative
values and positive values. This simple mechanism of “code reuse” is key to our constructed deep
network and its unit-efficiency.

4 MAIN PROOF

P1 (0,1)

(0,0)

P2 (0,1)

(0,0)

P3 (0,1)

(0,0)

Figure 1: The problem family fm is characterized by regular polygons, where polygon Pm has
2m+1 edges.

4.1 THE PROBLEMS fm

Let Pm be a regular polygon with 2m+1 edges (Figure 1). Without loss of generality, Pm is centered
around the origin, bounded by the unit circle, and has a vertex at (0, 1).2 The set of polygons
P 1, P 2, ... approaches the unit circle as m → ∞. Let fm be the function with decision boundary
Pm:

fm(x) =

{
1 x ∈ Pm
−1 otherwise

Points within polygon Pm are of class 1, while other points are of class −1.

4.2 A BOUNDED-DEPTH NETWORK REPRESENTING fm MUST BE EXPONENTIALLY WIDE.

We begin with proving (a) of Theorem 1. We will use the following lemmas, with proofs provided
later.

2Any other regular polygon can be shifted, rotated and scaled to these conditions using affine transformation
with O(1) parameters.
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Lemma 2. A rectified MLP is a piecewise linear function.

Proof: A linear layer followed by a rectifier is piecewise-linear. A composition of piecewise linear
functions is itself piecewise linear.
Lemma 3. Modeling fm as a piecewise linear function requires at least 2m response regions.
Lemma 4. Rectified MLP with input in R2, with d hidden layers and where each layer has width of
at most w, has at most 22d log2 w = 22d · 2log2 w response regions.

From lemma 4, it is clear that in order to achieve 2m−2d = O(2m) response regions for a network
with bounded depth d, we must grow w. To accommodate for the log factor, the growth in w must
be exponential. As function fm requires 2m response regions (lemma 3), and m can be arbitrarily
large, this proves (a).

4.3 EFFICIENT DEPTH-m SOLUTION EXISTS.

We now turn to prove (b). While lemma 4 tells us a network with 2m response regions requires
depthO(m), it does not guarantee such a network exists. To prove (b), we construct such a network,
with bounded width and linear depth. The construction is based on folding transformations.

We manually construct the regular polygon decision boundary for polygon Pm through exploitation
of symmetry. Intuitively, our construction resembles children paper-cutting, where a sheet of pa-
per is folded multiple times, then cut with scissors. Unfolding the paper reveals a complex pattern
with distinctive symmetries. Tracing and cutting the same pattern without any paper folding would
require much more effort. Analogously, we’ll show how deep networks could implement “folds”
through their layers and how ReLU operations, like scissor cuts, are mirrored through the symme-
tries induced by these folds. Conversely, shallow networks, unable to “fold the paper”, must make
many more cuts — i.e. must have much more units in order to create the very same pattern.

Formally, our deep network operates as follows: first, it folds across both theX and Y axes, mapping
the input space into the first quadrant (x, y) 7→ (|x|, |y|). It now has to deal only with the positive
part of the decision boundary. It then proceeds in steps, in which it first rotates the space around the
origin until the remaining decision boundary is symmetric around the X axis, and then folds around
the X axis, resulting in half the previous decision boundary, in the first quadrant. This process
continues until the decision boundary is a single line, which can be trivially separated. The first step
cuts the number of edges in the decision boundary by a factor of four, while each subsequent rotate
+ fold sequence further cuts the number of polygon edges in half.

This process is depicted in figure 2

More formally, we require four types of transformations:

• foldXY (

[
x0

x1

]
) : R2 → R2 — initial mapping of input to the first quadrant.

• rotateΘ(

[
x0

x1

]
) : R2 → R2 — clockwise rotation around the origin by an angle of Θ.

• foldX(

[
x0

x1

]
) : R2 → R2 — folding across the X axis.

• top(
[
x0

x1

]
) : R2 → R1 — the final activation layer.

These operations are realized in the network layers, using a combination of linear matrix operations
and ReLU activations. The rotate operation is simply a rotation matrix. Rotating by an angle of Θ
is realized as:

rotateΘ(

[
x0

x1

]
) =

[
cos(Θ) −sin(Θ)
sin(Θ) cos(Θ)

] [
x0

x1

]
The initial folding across bothX and Y axes first transforms the input (x, y) to (x,−x, y,−y) using
a linear transformation. It then trims the negative values using a ReLU, and sums the first two and
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last two coordinates using another linear operation, resulting in:

foldXY (

[
x0

x1

]
) =

[
1 1 0 0
0 0 1 1

]
σ(

 −1 0
1 0
0 1
0 −1

[x0

x1

]
)

Where σ is the elementwise ReLU activation function. Folding across the X axes is similar, but as
all x values are guaranteed to be positive, we do not need to consider −x.

foldX(

[
x0

x1

]
) =

[
1 0 0
0 1 1

]
σ(

[
1 0
0 1
0 −1

] [
x0

x1

]
)

Finally, the final classification layer is:

top(

[
x0

x1

]
) = sign(a · x0 + b · x1 + c)

Composing these operations, the constructed network for problem fm has the form:

fMLP (x) = foldXY ◦ rotateπ/4 ◦ foldX ◦ rotateπ/8 ◦ foldX ◦ ...rotateπ/2m+1 ◦ foldX ◦ top

Note that the angle of rotation is decreased by a factor of 2 in every subsequent rotate. The rotate
and foldX transformations pair, folds input space along a symmetry axis and effectively reduce the
problem by half. This results in a foldXY operation followed by a sequence of m rotate ◦ foldX
operations, followed by top.

Marking a fold operation as FσC and a rotate operation as R, where F,C,R being matrices, the
MLP takes the form: FσCRFσCRFσCRF . . . where a sequence CRF of matrix operations can
be collapsed into a single matrix M . This brings us to the familiar MLP form that alternates matrix
multiplications and ReLU activations. Overall, the network has m+ 1 non-linear activations (from
m foldX operations and 1 foldXY operation), resulting in m+ 1 layers.

The response regions produced by the constructed MLP and by a shallow network are depicted in
Figure 3.

5 PROOFS OF LEMMAS

5.1 LEMMA 3

Modeling Pm as a piecewise linear function requires at least 2m response regions.

Proof: consider the polygon Pm, and let MLPm be a ReLU MLP (piecewise-linear function) cor-
rectly classifying the problem. Let Veven be the set of every second vertex along a complete traversal
of Pm. For each vertex take an ε step away from the origin to create V ′even (see Figure 4a for an
illustration). Each of the points in V ′even are strictly outside Pm and therefore should be classified
as class −1.

The response regions produced by MLPm are both convex and linear. Let pi, pj by two arbitrary
points in V ′even, pi 6= pj . We will show that pi, pj belong in different response regions. Assume
by contradiction that pi, pj are in the same response region. By convexity all points in a straight
line between pi and pj are also in the same response region. Also, by linearity these points have
an activation value between pj and pj and therefore should also be classified as class −1. From the
problem construction we know that lines between the even vertices of Pm cross the class boundary
as demonstrated in Figure 4b. Therefore, pi and pj must lay in different response regions. Since pi
and pj are arbitrary, MLPm’s number of response regions is at least |V ′even| = 2m.

5.2 LEMMA 4

Rectified MLP with input in R2, with d hidden layers and where each layer has width of at most w,
has at most 22d log2 w response regions.
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Figure 2: Constructing P 3 using folding and rotation transformations. The 3 blackened markers
show how 3 points in the input space are transformed during this process. (a-b) a foldXY operation
maps all points to the first quadrant. (c) the slice is rotated clockwise by 45◦using a linear transfor-
mation. (d-e) the bottom half is mapped into the first quadrant using a foldX operation. (f) rotate
by 45/2◦. (g-h) folding. final rotation by 45/4◦ and a final linear decision boundary that correctly
classifies the three points.

b.a.

Figure 3: : a.) The response regions of the constructed solution for P2. b.) A shallow, one layer
MLP that solve P2 - Such an MLP must model each of the regular polygon edges separately .

Proof: Raghu et al. (2017) prove a version of this lemma for input space Rn, which have at most
O(wnd) = O(2nd log2 w) response region. We prove the more restricted case of inputs in R2, in a
similar fashion. We first consider the bound for 1 hidden-layer networks, then extend to d layers.
The first part of the proof follows classic and basic results in computational geometry. The argument
in the second part (move from 1 to d layers) is essentially the same one of Raghu et al. (2017).
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Figure 4: Left: V ′even are created by taking every second vertex of Pm then moving them slightly
such that they are strictly outside Pm. Right: a chord a in green connecting any two vertices
of V ′even, must cross Pm. Had both of the chord vertices been in the same response region, by
convexity so do all points on a. By linearity, the final network activation of a’s points will interpolate
the activation of a’s endpoints.

Number of regions in a line-arrangement of n lines We start by showing that the maximal
number of regions in R2 created by a line arrangement of n lines, denoted r(n), is r(n) ≤ n2. This
is based on classic result from computational geometry (Zaslavsky, 1975). Initially, the entire space
is a region. A single line divides the space in two, adding one additional region. What happens as
we add additional lines? The second line intersects3 with the first, and splits each of the previous
regions in two, adding 2 more regions. The third line intersects with both lines, dividing the line
into three sections. Each section splits a region, adding 3 more regions. Continuing this way, the ith
line intersects i− 1 lines, resulting in i sections, each intersecting a region and thus adding a region.
Figure 5 shows this for the 4th line. We get:

r(n) = 1 + 1 + 2 + 3 + 4 + . . .+ n = 1 +

n∑
i=1

i = 1 +
n(n+ 1)

2
≤ n2 (for n > 2)

A 1 hidden-layer ReLU network is a line arrangement Consider a network of the form y =
v(Ax + b) where the matrix A projects the input x to w dimensions, and the vector v combines
them into a weighted sum. The entire input space is linear under this network: the output is linear
in the input.4 When setting an ReLU activation function after the first layer: y = vσ(Ax + b) we
get a 1-hidden layer ReLU network. For a network with a width w hidden layer (A ∈ Rw×2), we
get w linear equations, A(i)x + b(i) corresponding to w piecewise linear functions: each function
has a section where it behaves according to its corresponding equation (the “active” section), and
a section where it is 0 (the “rectified” section). The input transitions between the active and the
rectified sections of function i at the boundary given by A(i)x+b(i) = 0. Thus, each ReLU neuron
corresponds to a line that splits the input space into two: one input region where the neuron is active,
and one where it is rectified. Within each region, the behavior of the neuron is linear. For a width w
network, we have w such lines — a line arrangement of w lines. The arrangement splits the space
into at most r(w) < w2 convex cells, where each cell corresponds to a set of active neurons. Within
each cell, the behavior of the input is linear. Such a cell is called a linear region.

Additional Layers (Raghu et al., 2017; Pascanu et al., 2013) Additional layers further split the
linear regions. Consider the network after d − 1 layers, and a given linear region R. Within R, the

3We assume the added lines are not parallel to any previous line, and do not cross an intersection of previous
lines. It is easy to be convinced that such cases will split the space into fewer regions.

4We can then set a linear classifier by setting a threshold on y, this will divide the input space in 2, with a
single line.

7



Under review as a conference paper at ICLR 2020

1

2

3

4

ab

c
d

Figure 5: By iteratively introducing lines we can count the maximal number of regions created by
k lines. In general positions, the 4th introduced line (d. in greed) will intersect its 3 predecessor
in 3 different points. These will create 4 sections, each splitting a region into two (red-blue) hence
adding 4 regions to the total count.

set of active neurons in layers < d− 1 is constant, and so within the region the next layer computes
a linear function of the input. As above, the ReLU activation then again gives w line equations, but
this time these equations are only valid within R. The next layer than splits R into at most r(w)
regions.

Max number of regions in deep networks Raghu et al. (2017) Consider a network with two
hidden layers of width w. The first layer introduced at most r(w) ≤ w2 convex regions. As we
saw above, for the second layer each region can be split again into at most r(w) regions, resulting
in at most w2 · w2 = (w2)2 regions. Applying this recursively, we get that the maximal number of
regions in a depth d width w ReLU MLP network is r(w, d) = w2d. By writing w as 2log2w we get
the bound asserted in the lemma, concluding its proof.

6 CONCLUSION

We present a depth separation proof for ReLU MLP which is fully self contained and uses only basic
mathematical concepts and proof techniques. To the best of our knowledge, the problem construc-
tion, the main proof, and lemma 3 are novel. The proof of lemma 4 is a simplified presentation of a
more general existing result.
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