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Abstract

The verification of planning domain models is crucial to
ensure the safety, integrity and correctness of planning-
based automated systems. This task is usually performed us-
ing model checking techniques. However, directly applying
model checkers to verify planning domain models can result
in false positives, i.e. counterexamples that are unreachable
by a sound planner when using the domain under verification
during a planning task. In this paper, we discuss the down-
side of unconstrained planning domain model verification.
We then propose a fail-safe practice for designing planning
domain models that can inherently guarantee the safety of the
produced plans in case of undetected errors in domain mod-
els. In addition, we demonstrate how model checkers, as well
as state trajectory constraints planning techniques, should be
used to verify planning domain models so that unreachable
counterexamples are not returned.

1 Introduction
Planning and task scheduling techniques are increasingly ap-
plied to real-world problems such as activity sequencing,
constraint solving and resource management. These pro-
cesses are implemented in planning-based automated sys-
tems which are already used in space missions (Muscettola
et al. 1998; Chien et al. 2004; Ai-Chang et al. 2004), search
and rescue (Hugh et al. 1995), logistics (Tate, Drabble, and
Dalton 1996) and many other domains. Since the failure of
such systems could have catastrophic consequences, these
applications are regarded as safety-critical. Therefore, veri-
fication methods that are robust, trustworthy and systematic
are crucial to gain confidence in the safety, integrity and cor-
rectness of these systems.

The literature is rich with studies on verification of plan-
ning systems. For instance, Smith et al. (1999) carried out
scenario-based testing and model-based validation of the re-
mote agent that controlled the Deep Space 1 mission. An-
other example is the verification of the safety of the au-
tonomous science agent design that was deployed on the
Earth Orbiter 1 spacecraft (Cichy et al. 2004).

A typical planning system consists of a planning domain
model, planning problem, planner, plan, executive, and mon-
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itor. Planners take as an input a domain model which de-
scribes application-specific states and actions, and a prob-
lem that specifies the goal and the initial state. From these
inputs, a sequence of actions that can achieve the goal start-
ing from the initial state is returned as plan. The plan is then
executed by an executive to change the world state to match
the desired goal.

Our research focuses on the verification of planning do-
main models wrt. safety properties. Domain models provide
the foundations for planning. They describe real-world ac-
tions by capturing their pre-conditions and effects. Due to
modelling errors, a domain model might be inconsistent, in-
complete, or inaccurate. This could cause the planner to fail
in finding a plan or to generate unrealistic plans that will
fail to execute in the real world. Moreover, erroneous do-
main models could lead planners to produce unsafe plans
that, when executed, could cause catastrophic consequences
in the real world.

This paper addresses the fact that the state-of-the-art ver-
ification methods for planning domain models are vulner-
able to false positive counterexamples. In particular, un-
constrained verification tasks might return counterexamples
that are unreachable by planners. Such counterexamples can
mislead designers to unnecessarily restrict domain models,
thereby potentially blocking valid and possibly necessary
behaviours. In addition, false positive counterexamples can
lead verification engineers to overlook counterexamples that
are reachable by planners.

To overcome these deficiencies, we propose to employ
planning goals as constraints during verification. Thus, we
introduce goal-constrained planning domain model verifi-
cation, a novel concept that eliminates unreachable coun-
terexamples per se. We formally prove that goal-constrained
planning domain model verification of safety properties is
guaranteed to return reachable counterexamples if and only
if any exist. We also demonstrate two different ways to per-
form goal-constrained planning domain model verification,
one using model checkers and the other using state trajectory
constraints planning techniques. To the best of our knowl-
edge, this work is the first to recommend fail-safe plan-
ning domain model design practice; introduce the concept of
goal-constrained planning domain model verification. and
demonstrate how model checkers, as well as state trajec-
tory constraints planning techniques, can be used to perform



goal-constrained planning domain model verification
The rest of this paper is organised as follows. First, Sec-

tion 2, contrasts the concepts presented here with related
work. Second, Section 3 discusses the problem of unreach-
able counterexamples in planning domain model verifica-
tion. Third, Section 4 proposes a design practice for plan-
ning domain models that can inherently guarantee domain
model safety even in the case of undetected modelling er-
rors. A verification concept of planning domain models that
avoids returning unreachable counterexamples is presented
in Section 5. Then, Section 6 discusses the implementation
of this concept on the Cave Diving planning domain using
Spin and MIPS-XXL. Finally, Section 7 concludes the paper
and suggests future work.

2 Related Work
Closely related, but different, is the work by (Albarghouthi,
Baier, and Mcilraith 2009). Their main objective is to treat
verification as a planning task, whereas our aim is to demon-
strate how model checkers and planners can be used for do-
main model verification. They proposed to perform system
model verification using classical planners. To do this, they
first translated the model of the system under verification
into a planning domain model. Then, the negation of the
safety property to be established, is used as the goal for the
planner, which is then consulted to find a plan that acts as
counterexample for the given property. In our study, because
our aim is to verify domain models against a given property
with respect to a specific goal and initial state, we used state
trajectory constraints to restrict counterexamples to identify
plans that can achieve the planning goal while falsifying the
safety property. Unlike (Albarghouthi, Baier, and Mcilraith
2009), where the negation of the safety property is used as
the goal, in our verification as planning method, the nega-
tion of the safety property is represented as state trajectory
constraint and the goal is the given planning goal.

(Raimondi, Pecheur, and Brat 2009) also apply verifica-
tion as planning to verify planning domain models, starting
from LTL specifications. This work fundamentally differs
from our work. Raimondi, Pecheur, and Brat (2009) focused
their work on translating specification properties into trap
formulas which can help in testing the impact of individual
atomic propositions on the validity of the overall verified
property. However, their method does not consider the in-
teraction between property testing and the original planning
goal. Note that finding a planning constraint to exercise a
specific atomic proposition is not enough to ensure the con-
straint itself would be exercised during the planning process.
For example, a planning goal might be achieved through
a state trajectory that does not exercise the hard constraint
used to represent the tested property. Our work is mainly
based on investigating this interaction. Therefore, we used
state trajectory constraints to guarantee the property is tested
while achieving the planning goal. Additionally, their work,
just like other similar methods, requires a complete planner
to give deterministic results, whereas our work, as discussed
in Section 5, guarantees definite verification without this re-
quirement.

(Goldman, Kuter, and Schneider 2012) also used classical
planners for planning systems verification, but they exam-
ined verifying plans rather than domain models. They pro-
posed an approach that uses classical planners to find coun-
terexamples for a given planning problem and plan instance.
Their work and ours are related in that both suggest perform-
ing planning verification for a specific planning problem
rather than attempting ungrounded verification of a planning
system. However, their work is limited to the verification of
single plan instances, whereas our method verifies all po-
tential plans that can be spun from a domain model for a
specific goal and initial state.

Among others, (Penix, Pecheur, and Havelund 1998;
Khatib, Muscettola, and Havelund 2000; Smith et al. 2005;
Havelund et al. 2008; Cesta et al. 2010) used model check-
ers to verify planning domain models. They translated the
respective domain models into the input language of the se-
lected model checker. The model checker is then applied to
verify the domain model wrt. a given specification property.
Similarly, we also proposed a method to verify domain mod-
els using model checkers. However, our method differs from
the others in two aspects. First, in the way we define the
planning domain model verification problem, and, second,
in the way we use model checkers to perform verification.
As explained in Section 5, we consider the verification of
planning domain models to be constrained by a specific goal
and initial state pair. In contrast, previous studies perform
ungrounded verification of domain models, i.e. leaving the
goal and initial state open. As discussed in Section 3, the un-
grounded goal and initial state may cause the model checker
to return counterexamples that are unreachable when a plan-
ner uses the DUV. These unreachable counterexamples can
mislead the designers to over-restrict the DUV during the
debugging process. On the other side, when the goal and
initial state are constrained for verification, then we have
shown that the returned counterexamples, if any, are guar-
anteed to be reachable by any sound planner. The second
difference is that, after the planning domain model is trans-
lated to the model checker’s input language, we augment
the model transitions, introducing the negation of the goal
as a new constraint that forces the model checker to termi-
nate once the goal is reached. This modification prevents the
model checker from returning counterexamples that falsify
the given property after satisfying the goal; these are un-
reachable by planners.

3 Unreachable counterexamples in planning
domain model verification

Planning domain model verification aims to demonstrate
that any produced plan satisfies a set of properties. To
achieve this, formal planning domain model verification
methods leave the planning goal open. This, we define as
unconstrained verification of planning domain models, i.e.
the verification is expected to hold for any potential goal.

unconstrained verification searches the domain model for
a sequence of actions that can falsify the given property, re-
gardless of any other conditions. In particular, whether or
not a planner would consider this sequence to be a plan,



is not taken into account. This is a critical oversight, be-
cause, when the domain model is used to solve a specific
planning problem, the sequence of actions that constitutes
such a counterexample might, in fact, be “pruned away” by
the planner, if it does not satisfy the planning goal. There-
fore, for a specific planning problem, counterexamples that
do not achieve the planning goal are deemed unreachable
counterexamples from the planner’s perspective.
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Figure 1: Microwave oven FSM without reachable coun-
terexample

To illustrate this, we use a modified version of the mi-
crowave oven example, introduced in (Clarke, Grumberg,
and Peled 1999), as presented in Figure 1. A safety require-
ment would be that the domain model does not allow the
generation of erroneous plans, in LTL p0 = G(¬Error),
where G is the LTL globally operator. Unconstrained ver-
ification will return 〈StartOven〉 as a counterexample that
when applied to s0 will produce s2 which is an error state.
However, when this model is used to find a plan that achieves
the goal (g = Heat), this sequence will not be consid-
ered by the planner as it does not lead to a state that
achieves the goal. Moreover, we observe that the valid plan
〈CloseDoor, StartOven〉 does satisfy the property p0, i.e.
is error-free. Thus, the sequence 〈StartOven〉 from s0 to
s2 is an unreachable counterexample for the planner; it does
not achieve the goal, nor is it part of a valid plan towards the
goal.

Counterexamples that are unreachable by planners exist
in the literature. For example, (Smith et al. 2005) used the
Spin model checker to verify whether a planning domain
model would permit an automated planning system to se-
lect plans that would waste resources and therefore not meet
the mission’s science goals. To express this requirement,
they used “five data-producing activities must be sched-
uled by any returned plan” as a property for model check-
ing. The automated system has two data-producing and two
data-consuming activities, and a buffer that can hold four
data blocks. The goal of the planner is to schedule five
data-producing activity instances. The counterexample re-
turned by the model checker represented a plan with the
two data-consuming activities scheduled before four data-
producing activities. This plan did not contain a fifth data-

producing task, because the data buffer was full after four
data-producing activities and the only two data-consuming
tasks that would have cleared the buffer, were scheduled at
the beginning of the plan with no data in the buffer. Though
the model checker found a counterexample to falsify the
property, we argue that any sound planner would not gen-
erate such a plan, because it does not achieve the planning
goal. As such, this counterexample would have been pruned
during the planner’s goal search, and consequently, it would
never have been returned as a plan, i.e. it is unreachable for
the planner, yet reachable by a goal-ignorant model checker.

The problem with unreachable counterexamples is that
they mislead the designer to unnecessarily restrict the do-
main model in the process of removing them. Consequently,
debugging is made harder and genuine counterexamples
could potentially be introduced in the process.

To overcome this, we observe that planning is performed
for a specific goal and initial state. To exploit this obser-
vation for domain model verification, we propose to use the
goal and initial state given to the planner as constraints to en-
sure that the counterexamples returned by a model checker,
or other tools used in this context, falsify the given prop-
erty while also achieving the planning goal. Thus, instead
of performing unconstrained domain model verification, we
propose goal-constrained verification of planning domain
models. The details of this method are further explained
in Section 5. Next, we describe an inherently safe domain
model design practice which can help to make domain mod-
els safer.

4 Inherently safe domain models
The ultimate objective of planning domain model verifica-
tion is to ensure that the plans produced by the verified do-
mains satisfy a given specification. An alternative and guar-
anteed way of achieving this goal is to extract plan con-
straints from the specification, then include them in the do-
main model. A sound planner using this constrained do-
main model cannot produce any plan that could violate these
constraints. This idea was first noticed in 2005 (Smith et
al. 2005) but was dismissed as it was not possible to de-
scribe overall plan constraints using PDDL 2.2. However,
in 2006 Gerevini and Long (2006) proposed an extension to
the PDDL 2.2 language that allows the expression of plan
state trajectory constraints. The extended language, called
PDDL3.0, was proposed for the fifth international planning
competition (IPC-5).

Smith et al. (2005) provided an example of a system con-
sisting of a camera, solid-state recorder and a radio, and a re-
quirement that for all plans, if an image is taken and stored,
then it is eventually uplinked. With the hard state trajec-
tory constraints, this property can be expressed as sometime-
after((image is taken and image is stored) image is up-
linked). With this constraint, any sequence of actions that
does not respect this property would not be returned as a
plan.

Though including specification properties in the domain
model as strong constraints is enough to guarantee that
sound planners using the constrained domain models will
produce plans that meet the specification, this method will



not be able to find any errors in the domain model. Instead,
it will just ensure these errors, if any, are masked and pre-
vented from affecting any plans that could possibly be gener-
ated using the modified domain model. As such, this method
can be seen as a safety defence layer, a firewall, that prevents
any potential property violation. Nevertheless, note that un-
detected bugs in a domain model could cause what would
have been valid plans to be masked, thus unnecessarily re-
stricting the planner. Therefore, further verification efforts
are needed to reveal and rectify any underlying errors.

We consider including plan constraints in the domain
model to be a good practice to design inherently safe do-
main models. The effort of extracting formal properties from
the specification and inserting them as constraints in the
domain model is a small investment in return to the huge
benefit of guaranteed safe plans, i.e. plans that are safe “by
construction”. This, together with our new concept of goal-
constrained verification, as introduced in the next section,
can deliver safe and error-free models.

5 Goal-constrained verification of planning
domain models

Planning domain model verification covers different objec-
tives, including the domain’s correctness, completeness, ro-
bustness, effectiveness and safety. The intent of safety ver-
ification in this context is to verify that any plan produced
from the DUV will satisfy a given safety property. In other
words, a domain is considered safe if the domain is guaran-
teed only to produce plans that satisfy the given safety prop-
erty when used by a sound planner. This verification task
can be performed using advanced search algorithms, such as
model checkers or classical planners, to find a valid coun-
terexample for the given safety property.

We define a valid counterexample to be a sequence of ac-
tions that, firstly, can falsify the given safety property, sec-
ondly, can achieve the planning goal from the given initial
state, and, thirdly, none of the sub-sequences of the coun-
terexample can achieve the goal.

Formally, this is defined as follows: Let the planning prob-
lem P be a tuple (D, s0, g), where D is the domain model
that describes the set of all available actions A, s0 is the ini-
tial state and g is the desired goal. π is a solution to P , a
plan, defined as a sequence of actions, where these actions
are chosen from A. π = 〈a0, a1, ..., an〉 such that π |= g i.e.
when π is applied to the initial state s0 it yields a sequence
of states S, S = 〈s0, s1, ..., sn〉 where the last state sn satis-
fies the planning goal g, sn |= g. We say a plan π satisfies a
property p, π |= p, if the sequence of states S, generated by
the plan π, satisfies the property p, S |= p.

Furthermore, as defined in (Ghallab, Nau, and Traverso
2004), we call a plan π a redundant plan, if π contains a
subsequence, π′, π′ | π, that achieves the goal g.

Definition 1: A valid counterexample for a safety prop-
erty, p, of a planning problem is a non-redundant plan, π,
that falsifies the safety property, π 6|= p.

Plans are required to be non-redundant in the definition of
valid counterexamples to exclude any plans that are enriched
with action sequences which are unnecessary to achieve the

planning goal but required to falsify the given safety prop-
erty. Such plans represent counterexamples that are unreach-
able by any sound planner when searching for a plan to
achieve a given planning problem in a planning task. Such
plans represent counterexamples that are unreachable by any
sound planner.

To ensure the returned counterexamples are valid, we con-
strain the verification problem with a goal and initial state,
and we exclude any counterexample that is a redundant plan.
More formally, the verification problem associated with
planning task P is defined as the tuple V = (D, (s0, g), p).
Where p is a formal safety property extracted from a given
specification and required to hold over all valid paths that
achieve the goal g from the initial state s0.

In this section, we introduced and formally defined the
concept of goal-constrained verification of planning domain
models. In the following subsections, we demonstrate how
this concept can be realized using model checkers and state
trajectory constraints planning techniques.

5.1 Goal-constrained planning domain model
verification using model checkers

Model checkers verify safety properties by searching for
counterexamples that falsify those properties. In the case of
planning applications, any sequence of actions that does not
achieve the given goal, will be pruned by any sound plan-
ner. Therefore, in the verification of planning problems, any
counterexample that does not achieve the goal of the plan-
ning problem should be eliminated on the bases that this
counterexample is unreachable by the planner.

To force model checkers to only return valid counterex-
amples, the safety property is first negated and then joined
with the planning goal in a conjunction. This conjunction
is then negated and supplied to the model checker as an in-
put property. The final property requires the model checker
to find a counterexample that both, falsifies the safety prop-
erty and satisfies the planning goal. Note that, unlike Def. 1,
this permits sequences that falsify the property after satis-
fying the goal. However, once the goal is achieved, plan-
ners terminate the search, thus rendering such sequences un-
reachable. To eliminate these sequences, model transitions
should be augmented with an additional guard, representing
the negation of the goal, to restrict all transitions once the
goal is achieved. With this modification, the model checker
is forced to return counterexamples that falsify the safety
property before achieving the goal, because once the goal is
satisfied no further transitions will be permitted.

For a verification problem V = (D, (s0, g), p) we first
translate the domain model D into the model checker’s in-
put language, obtaining the model M that incorporates the
initial state s0. Then, a model checker is applied to the veri-
fication problem V ′ = (M,¬F (g)) to establish that

∃π. π |= F (g), (1)

where F is the LTL eventually operator.
The model M is modified to M ′ by augmenting the

guards of all transitions with the negation of the goal con-
dition. The model checker is then applied to the verification



problem V ′′ = (M ′, p′) where p′ is defined as follows:

p′ = ¬
(
F (¬p) ∧ F (g)

)
(2)

There are two possible outcomes of the verification task
V ′′. If the model checker returns a counterexample, π, then:

π 6|= p′ (3)
≡ π |= (F (¬p) ∧ F (g)) (4)

From the definition of the LTL eventually operator F :

∃i ≥ 0, si ∈ S, si |= ¬p (5)
∃j ≥ 0, sj ∈ S, sj |= g (6)

It follows that there is at least one sequence S that falsifies
the property p, and there is a state sj in that sequence which
satisfies the goal g, according to (5) and (6). In addition to
that, in the sequence S, p is guaranteed to be falsified before
g is satisfied, due to the modification we introduced in the
model M ′. Thus, the plan π is a valid counterexample for
the original safety property p as per Def. 1. This proves that
the DUV does not satisfy the safety property p with respect
to the goal and initial state.

The other potential outcome is that the model checker
fails to find a counterexample, then for all plans, π:

π |= p′ (7)
≡ π 6|= (F (¬p) ∧ F (g)) (8)

It follows that π 6|= F (¬p) ∨ π 6|= F (g). Furthermore,
from (1) we know that ∃π. π |= F (g). Therefore for all
plans, π:

π 6|= F (¬p) (9)
≡ π |= ¬(F (¬p)) (10)
≡ π |= G(p) (11)

That means p is always true for all possible plans. Which
proves that the DUV satisfies the original property with re-
spect to the goal and initial state.

5.2 Goal-constrained planning domain model
verification using planning techniques

Domain models can be verified to only produce valid plans,
in terms of satisfying given a property, for a specific goal
and initial state pair using sound planners. This is achieved
by consulting the planner over the DUV to produce a plan
that can satisfy the goal and the negation of the property. If
the domain model permits producing plans that, along with
achieving the goal, contradict the safety property, then an
unsafe plan can be found. Thus, the returned plan is a coun-
terexample that demonstrates that the safety property does
not hold. On the other hand, if the domain model does not
permit the generation of plans that can satisfy the negation of
the safety property while achieving the goal, then the plan-
ner will fail. Thus, the property holds in any plan produced
for the given goal.

A benefit of goal-constrained planning domain verifica-
tion is, where a planner is used to perform the verification

task, there is no need to for this planner to be complete,
as long as the planner used for the verification is also the
planner that will be used during the planning task. This is
because any counterexample not found by that planner dur-
ing verification, will then also not be reached by the same
planner during the planning task.

The following subsection provides a description of how
state trajectory constraints can be used to verify planning
domain models for a specific goal and initial state.

Goal-constrained planning domain verification using
planning techniques with state trajectory constraints
The PDDL3.0 state trajectory constraints, first mentioned in
Section 4, can be used to perform planning domain model
verification. First, the negation of the given property is ex-
pressed using PDDL3.0 modal operators and embedded in
the original domain model as state trajectory constraint. The
modified model is then used by a planner, as described ear-
lier, to perform the verification.

For a verification problem V = (D, (s0, g), p), we first
apply a planner to the planning problem P = (D, s0, g) to
establish that there is a plan that solves P

∃π. π |= g. (12)

Then, the safety property p is negated and expressed in
terms of PDDL3.0 modal operators as shown in (Gerevini et
al. 2009). The result is added as state trajectory constraint to
the original domain model.

Using the algorithm proposed in (Edelkamp, Jabbar, and
Nazih 2006), the new model is transformed into a PDDL2
compatible version. This is performed by first translating the
state trajectory constraint into a non-deterministic finite state
automaton (NFA) which can monitor property violations by
inserting additional predicates and actions conditional ef-
fects into the model to simulate and observe the behaviour
of the automaton that represents the constraint.

This yields a new planning problem P ′ = (D′, s′0, g
′),

where D′, s′0, g
′ are modified instances of D, s0, g that

are supplemented with the additional predicates and actions
conditional effects of the automaton that represents the in-
troduced constraint. Then, a planner is applied to P ′ with
two possible outcomes. If the planner finds a plan then:

∃π. π |= g′ (13)

Since the satisfaction of g′ implies both, the satisfaction of
the original goal g at the last state of the sequence S, and the
satisfaction of the state trajectory constraint by the sequence
S, (13) can be rewritten as

∃π. π |= g, π |= ¬p. (14)

Furthermore, from (14) it follows that π 6|= p, confirming
that there is at least one plan that achieves the goal while
not respecting the safety property. Therefore, this plan is a
valid counterexample for that property as per Def. 1. Hence,
the DUV does not satisfy the property wrt. the planning goal
and initial state.

Alternatively, if the planner fails to find a plan, then, as



opposed to (14), we have

@π. (π |= g ∧ π |= ¬p) (15)
≡ ∀π. ¬(π |= g ∧ π |= ¬p) (16)
≡ ∀π. (π 6|= g ∨ π 6|= ¬p) (17)

Given (12), (17) can be simplified to:

∀π. π 6|= ¬p ≡ ∀π. π |= p (18)

Hence, all plans satisfy the safety property. Therefore, the
property holds for the planning domain model wrt. the given
goal and initial state.

6 Example
In this section, we discuss how goal-constrained planning
domain verification can verify safety properties using both
the Spin model checker (Holzmann 2004) and the MIPS-
XXL planner (Edelkamp, Jabbar, and Nazih 2006). We per-
form constrained and unconstrained verification tasks to
show how unlike the latter task our method does not re-
turn unreachable counterexamples. As an example, we con-
sider the classical cave diving planning domain taken from
the Satisfying Track of the IPC-2014 (IPC2014 2014). The
problem consists of an underwater cave system with a fi-
nite number of partially interconnected locations. Divers can
enter the cave from a specific location, entrance, and swim
from one location to an adjacent connected one. They can
hold up to four oxygen tanks and they consume one for ev-
ery swim and take-photo action. Only one diver can be in
the cave at a time. Finally, divers have to perform a decom-
pression manoeuvre to go to the surface and this can be done
only at the entrance. Additionally, divers can drop tanks in
or take tanks from any location if they hold at least one tank
or there is one tank available at the location respectively.

The planning goals of this domain, as provided in the
problem files in the IPC-2014, consist of two parts. The first
part dictates the required underwater location of which the
photo is to be taken (we call it mission target) and the second
part which mandates the divers should return to the surface
after completing the mission (we call it safety target).

A critical safety property is that divers should not drown
i.e. they should not be in an underwater location, other than
the entrance, where neither the divers nor the location has
one full oxygen tank at least.

To enable the planner and the model checkers to explore
the entire state space, we simplified this domain by ignor-
ing the ”precludes” condition from the original domain as it
does not affect the verification of the drowning safety prop-
erty. Consequently, we considered only one diver and we
modified some actions to enable the diver to go back into the
water after a dive. These modifications are further explained
in the commented simplified planning domain model PDDL
file which is provided along with the tasks problem PDDL
and Promela files online [address hidden for blind review].

First, we translated the planning domain model from
PDDL to Promela. Thus, the verification results using the
translated model only hold provided that the translation is
valid. The verification of the translation is outside the scope
and focus of this paper and left for future work.

In this example, the chosen planning goal is to have a
photo of the first location, L1, and to get the diver outside
the water. The verification tasks are:

1 - Unconstrained verification with only the safety prop-
erty: Both Spin and MIPS-XXL found a counterexam-
ple 〈prepare-tank, enter-water, swim(L0, L1)〉. Indeed, this
counterexample leads the diver to a drowning state. At the
end of this sequence, the diver will be in underwater loca-
tion L1 which is not the entrance so they can not surface and
with no oxygen tank to swim back to the entrance. How-
ever, this is not a plan because it does not achieve any useful
goal. Therefore, it will not be produced by any sound plan-
ner when it is used in a practical scenario (taking a photo of
any location).

2- Verification with safety property and incomplete goal
(mission target only): Both Spin and MIPS-XXL returned
〈prepare-tank, prepare-tank, enter-water, swim(L0, L1),
take-photo〉. This counterexample achieves the goal and vi-
olates the property. However, without the safety part of the
goal, it would be possible to generate plans that imply divers
should swim to an underwater location and take a photo of
it without requiring the divers to return to the surface. These
kind of plans are illegal as they do not respect the safety
part of the goal. Therefore, such sequences are unreachable
counterexamples i.e. will never be produced by any sound
planner while planning for a legal goal.

3- Verification using Spin with both safety property
and proper goal but without the augmented model M ′:
Spin found a counterexample 〈prepare-tank, prepare-tank,
prepare-tank, prepare-tank, enter-water, swim(L0, L1),
take-photo, swim(L1, L0), decompress, enter water,
swim(L0, L1)〉. This counterexample achieves the goal
and violates the safety property but only after the goal
is achieved. Therefore, this is also an unreachable coun-
terexample because a sound planner will terminate after
achieving the goal and any counterexample that violates
the property after achieving the goal will not be returned.
Hence, it is unreachable.

4- Goal-constrained planning domain verification, as pre-
sented in this paper, the result was: No plan is returned by the
planner MIPS-XXL with complete exploration and no coun-
terexample is returned by Spin with exhaustive verification
mode. This means the planning domain model has no provi-
sion of producing a plan that can violate the safety property
before achieving the goal. I.e. this model is safe with respect
to the given property and goal pair.

Though the counterexamples returned by the incomplete
verification tasks number one, two and three are obviously
unreachable and should not misguide the designers to over-
complicate the model, in a real world sized application such
unreachable counterexamples can be critical and much more
diffcult to recognise and avoid. We expect that our proposed
concept can save practitioners a huge amount of person-
hours trying to alter planning domain models for behaviours
that their planners will never experience in practice.

7 Conclusions and future work
The verification of planning domain models is essential to
guarantee the safety of planning-based automated systems.



Unreachable counterexamples returned by unconstrained
planning domain model verification techniques undermine
the verification results.

In this paper, we have discussed the potential deficien-
cies of this problem and provided an example of an unreach-
able counterexample form the literature. We then introduced
goal-constrained verification, a new concept to address this
problem, which restricts the verification task to a specific
goal and initial state pair. This limits counterexamples to
those practically reachable by a planner that is tasked with
achieving the goal given the initial state. Consequently, our
method verifies the domain model only wrt. a specific goal
and initial state. This is an acceptable limitation, given that
planners also operate on this basis.

We have demonstrated how model checkers and planning
techniques can be used to perform goal-constrained plan-
ning domain model verification. In addition, we have rec-
ommended an inherently safe practice for domain model
design that guarantees the safety of domain models “by
construction” in case of undetected modelling errors. Goal-
constrained domain model verification ensures accurate ver-
ification results and complements the inherently safe domain
model design practice to generate safe and error-free plan-
ning domain models.

In conclusion, the main message of this paper is that the
direct application of verification algorithms to the planning
domain model verification problem can return counterexam-
ples that would never be reached by planners in real plan-
ning tasks. These unreachable counterexamples can mislead
the designers to perform unnecessary remediations that can
be prone to errors. The proposed solution is simple which
makes it readily usable in practice. It is also effective as for-
mally proven in the paper.

Currently, we are investigating the use of Temporally Ex-
tended Goals (TEGs) translators (Torres and Baier 2015) to
perform goal-constrained domain model verification. As fu-
ture work, we intend to automate the proposed methods, so
that they can be applied to real-world sized planning domain
models. Finally, we would like to perform an empirical com-
parison of the proposed methods to assess their scalability
and performance.
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