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ABSTRACT

We present GraphMix, a regularized training scheme for Graph Neural Network
based semi-supervised object classification, leveraging the recent advances in
the regularization of classical deep neural networks. Specifically, we propose a
unified approach in which we train a fully-connected network jointly with the
graph neural network via parameter sharing, interpolation-based regularization
and self-predicted-targets. Our proposed method is architecture agnostic in the
sense that it can be applied to any variant of graph neural networks which applies a
parametric transformation to the features of the graph nodes. Despite its simplicity,
with GraphMix we can consistently improve results and achieve or closely match
state-of-the-art performance using even simpler architectures such as Graph Convo-
lutional Networks, across three established graph benchmarks: the Cora, Citeseer
and Pubmed citation network datasets, as well as three newly proposed datasets :
Cora-Full, Co-author-CS and Co-author-Physics.

1 INTRODUCTION

Due to the presence of graph structured data across a wide variety of domains, such as biological
networks, social networks and telecommunication networks, there have been several attempts to
design neural networks that can process arbitrarily structured graphs. Early work includes (Gori
et al.; Scarselli et al., 2009) which propose a neural network that can directly process most type of
graphs e.g., acyclic, cyclic, directed, and undirected graphs. More recent approaches include (Bruna
et al., 2013; Henaff et al., 2015; Defferrard et al., 2016; Kipf & Welling, 2016; Gilmer et al., 2017;
Hamilton et al., 2017; Veličković et al., 2018; 2019; Qu et al., 2019; Gao & Ji, 2019; Ma et al.,
2019), among others. Many of these approaches are designed for addressing the important problem
of Semi-supervised learning over graph structured data (Zhou et al., 2018). Much of this research
effort has been dedicated to developing novel architectures.

Unlike many existing works which try to come up with the new architectures, we re-synthesize
ideas from the recent advances in the regularization of the classical neural network, and propose
an architecture-agnostic framework for regularized training of graph neural network based semi-
supervised object classification. Recently, Data-Augmentation based regularization has been shown
to be very effective in other types of neural networks but how to apply these techniques in graph
neural networks is still under-explored. Our proposed method GraphMix 1is a unified framework that
utilizes interpolation based data augmentation (Zhang et al., 2018; Verma et al., 2019a) and self-target-
prediction based data-augmentation techniques (Laine & Aila, 2016; Tarvainen & Valpola, 2017;
Verma et al., 2019b; Berthelot et al., 2019). We show that with our proposed unified framework, we
can achieve state-of-the-art performance even when using simpler graph neural network architectures
such as Graph Convolutional Networks (Kipf & Welling, 2017) and without incurring any significant
additional computation cost.

1code available at https://github.com/anon777000/GraphMix
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2 PROBLEM DEFINITION AND PRELIMINARIES

2.1 PROBLEM SETUP

We are interested in the problem of semi-supervised object classification using graph structured data.
We can formally define such graph structured data as G = (V, A), where V represents the set of
nodes {v1, . . . , vn}, and A is the adjacency matrix representing the edges between the nodes of V .

Each node vi in the graph has a corresponding d-dimensional feature vector xi ∈ Rd. The feature
vectors of all the nodes X = [x1, . . . ,xn]

> are stacked together to form the entire feature matrix
X ∈ Rn×d. Each node belongs to one out of C classes and can be labeled with a C-dimensional
one-hot vector yi ∈ {0, 1}C . Given the labels of YL for few of the labeled nodes VL ⊂ V , the task
is to predict the labels YU of the remaining nodes VU = V \ VL.

2.2 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNN) learn the lth layer representations of a sample i by leveraging the
representations of the samplesNB(i) in the neighbourhood of i. This is done by using an aggregation
function that takes as an input the representations of all the samples and the graph structure and
outputs the aggregated representation. The aggregation function can be defined using the Graph
Convolution layer (Kipf & Welling, 2017), Graph Attention Layer (Veličković et al., 2018), or any
general message passing layer (Gilmer et al., 2017). Formally, let Hl ∈ Rn×k be a matrix containing
the k-dimensional representation of n nodes in the lth layer, then:

Hl+1 = a(HlW, A) (1)

where W ∈ Rk×k′ is a linear transformation matrix, k′ is the dimension of (l + 1)th layer and a is
the aggregation function that utilizes the graph adjacency matrix A.

2.3 INTERPOLATION BASED REGULARIZATION TECHNIQUES

Recently, interpolation-based techniques have been proposed for regularizing neural networks. We
briefly describe some of these techniques here. Mixup (Zhang et al., 2018) trains a neural network on
the convex combination of input and targets, whereas Manifold Mixup (Verma et al., 2019a) trains a
neural network on the convex combination of the hidden states of a randomly chosen hidden layer
and the targets. While Mixup regularizes a neural network by enforcing that the model output should
change linearly in between the examples in the input space, Manifold Mixup regularizes the neural
network by learning better (more discriminative) hidden states.

Formally, suppose g : x −→ h is a function that maps input sample to hidden states, f : h −→ ŷ is a
function that maps hidden states to predicted output, λ is a random variable drawn from Beta(α, α)
distribution, Mixλ(a,b) = λ ∗ a+ (1− λ) ∗b is an interpolation function, D is the data distribution,
(x,y) and (x′,y′) is a pair of examples sampled from distribution D and ` be a loss function such as
cross-entropy loss, then the Manifold Mixup Loss is defined as:

L = E
(x,y)∼D

E
(x′,y′)∼D

E
λ∼Beta(α,α)

`(f(Mixλ(g(x), g(x′))),Mixλ(y,y′)). (2)

We use above Manifold Mixup loss for training an auxiliary Fully-connected-network as described in
Section 3 and Line 6 and 12 of Algorithm 1.

3 GRAPHMIX

3.1 MOTIVATION

Data Augmentation is arguably the simplest and most efficient technique for regularizing a neural
network. In some domains, such as computer vision, speech and text, there exist efficient data
augmentation techniques, for example, random cropping, translation or Cutout (Devries & Taylor,
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Figure 1: The procedure for training with GraphMix . The Fully-Connected Network (FCN) and
the Graph Neural Network (GNN) share linear transformation matrix (W ) applied on the node
features. The FCN is trained using Manifold Mixup by interpolating the hidden states HFCN and the
corresponding labels Y . This leads to better features which are transferred to the GNN via parameter
sharing. The predicted targets generated by the GNN for unlabeled data are used to augment the input
data for the FCN. The FCN and the GNN losses are minimized jointly by alternate minimization.

2017) for computer vision, Ko et al. (2015) and Park et al. (2019) for speech and Xie et al. (2017)
for text domain. However, data augmentation for the graph-structured data remains under-explored.
There exists some recent work along these lines but the prohibitive additional computation cost (see
Section 5.3) introduced by these methods make them impractical for real-world large graph datasets.
Based on these limitations, our main objective is to propose an efficient data augmentation technique
for graph datasets.

Recent work based on interpolation-based data augmentation (Zhang et al., 2018; Verma et al., 2019a)
has seen sizable improvements in regularization performance across a number of tasks. However,
these techniques are not directly applicable to graphs for an important reason: Although we can
create additional nodes by interpolating the features and corresponding labels, it remains unclear
how these new nodes must be connected to the original nodes via synthetic edges such that the
structure of the whole graph is preserved. To alleviate this issue, we propose to train an auxiliary
Fully-connected-net (FCN) using Manifold Mixup as discussed in Section 3.2. Note that the FCN
only uses the node features ( not the graph structure), thus the Manifold mixup loss in Eq. 2 can
be directly used for training the FCN. Furthermore, drawing inspiration from the success of self-
supervised semi-supervised learning algorithms (self-predicted-targets based algorithms which can
be also interpreted as a form of data-augmentation techniques) (Verma et al., 2019b; Berthelot et al.,
2019), we explore self-supervision in the training of GNNs. We note that self-supervision has already
been explored for unsupervised representation learning from graph structured data (Veličković et al.,
2019), but not for semi-supervised object classification over graph structured data. Based on these
challenges and motivations we present our proposed approach GraphMix for training Graph Neural
Networks in the following Section.

3.2 METHOD

GraphMix augments the vanilla GNN with a Fully Connected Network (FCN). The FCN loss is
computed using the Manifold Mixup as discussed in Section 2.3 and the GNN loss is computed in
the standard way. The Manifold Mixup training of FCN facilitates learning more discriminative
node representations. How to transfer these discriminative node representations to the GNN? We
apply parameter sharing between FCN and GNN to facilitate this. Using these more discriminative
representations of the nodes, as well as the graph structure, GNN loss is computed in the usual way.
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Algorithm 1 GraphMix : A procedure for improved training of Graph Neural Networks (GNN)

1: Input: A GCN: g(X,A, θ), a FCN: f(X, θ, λ) which shares parameters with the GCN. Beta distribution
parameter α for Manifold Mixup . Number of random perturbations K, Sharpening temperature T .
Consistency parameter γ. Number of epochs N . γ(t): rampup function for increasing the importance of
consistency regularization. (XL, YL) represents labeled samples and XU represents unlabeled samples.

2: for t = 1 to N do
3: i = random(0,1) // generate randomly 0 or 1
4: if i=0 then
5: λ ∼ Beta(α, α) // Sample a mixing coefficient from Beta distribution
6: Lsup = L

(
f(XL, θ, λ), YL

)
// supervised loss from FCN using the Manifold Mixup

7: for k = 1 to K do
8: X̂U,k = RandomPerturbations(XU ) // Apply kth round of random perturbation to XU

9: end for
10: ȲU = 1

K

∑
k g(Y | X̂U,k; θ,A) // Compute average predictions across K perturbations of XU

using the GCN
11: YU = Sharpen(ȲU , T ) // Apply temperature sharpening to the average prediction
12: Lusup = L

(
f(XU , θ, λ), YU

)
// unsupervised loss from FCN using the Manifold Mixup

13: L = Lsup + γ(t) ∗ Lusup // Total loss is the weighted sum of supervised and unsupervised FCN
loss

14: else
15: L = L

(
g(XL, θ, A), YL

)
// Loss using the vanilla GCN

16: end if
17: end for
18: return L

Both the FCN loss and GNN loss are optimized in an alternating fashion during training. Furthermore,
the predicted targets from the GNN are used to augment the training set of the FCN. In this way, both
FCN and GNN facilitate each other’s learning process. At inference time, the predictions are made
using only GNN. The diagrammatic representation of GraphMix is presented in Figure 1 and the full
algorithm is presented in Algorithm 1.

The GraphMix framework can be applied to any underlying GNN as long as the underlying GNN ap-
plies parametric transformations to the node features. In our experiments, we show the improvements
over GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2018) and Graph U-Net using GraphMix .
Furthermore, GraphMix(GCN) framework does not add any significant computation cost over the
underlying GNN, because the underlying GNN is trained in the standard way and the FCN training
requires trivial additional computation cost for computing the predicted-targets (Section 3.2.1 and
3.2.1) and the interpolation function ( Mixλ(a,b) in Section 2.3). There are no additional memory
requirements for GraphMix(GCN) , since FCN and GNN share the parameters.

Some implementation considerations. For Manifold Mixup training of FCN, we apply mixup only in
the hidden layer. Note that in Verma et al. (2019a), the authors recommended applying mixing in a
randomly chosen layer (which also includes the input layer) at each training update. However, we
observed under-fitting when applying mixup randomly at the input layer or hidden layer. Applying
mixup only in the input layer also resulted in underfitting and did not improve test accuracy.

The performance of self-supervision based algorithms such as GraphMix is greatly affected by the
accuracy of the predicted targets. To improve the accuracy of the predicted targets, we applied
the average of the model prediction on K random perturbations of an input sample as discussed
in Section 3.2.1 and sharpening as described in Section 3.2.2. Further, we draw similarities and
difference of GraphMix w.r.t. Co-training framework in the Section 3.2.3.

3.2.1 ACCURATE TARGET PREDICTION FOR UNLABELED DATA

Recent state-of-the-art semi-supervised learning methods use a teacher model to accurately predict
targets for the unlabeled data. These predicted targets on the unlabeled data are used as "true labels"
for further training of the model. The teacher model can be realized as a temporal ensemble of the
student model (the model being trained) (Laine & Aila, 2016) or by using an Exponential Moving
Average (EMA) of the parameters of the student model (Tarvainen & Valpola, 2017). Another
recently proposed method for accurate target predictions for unlabeled data is to use the average of
the predicted targets across K random augmentations of the input sample (Berthelot et al., 2019).

4



Under review as a conference paper at ICLR 2020

Along these lines, in this work, we compute the predicted target as the average of predictions on K
drop-out versions of the input sample. We also used the EMA of the student model but it did not
improve test accuracy across all the datasets (see Section 4.4 for details).

3.2.2 ENTROPY MINIMIZATION

Many recent semi-supervised learning algorithms (Laine & Aila, 2016; Miyato et al., 2018; Tarvainen
& Valpola, 2017; Verma et al., 2019b) are based on the cluster assumption (Chapelle et al., 2010),
which posits that the class boundary should pass through the low-density regions of the marginal
data distribution. One way to enforce this assumption is to explicitly minimize the entropy of the
model’s predictions p(y|x, θ) on unlabeled data by adding an extra loss term to the original loss
term (Grandvalet & Bengio, 2005). The entropy minimization can be also achieved implicitly by
modifying the model’s prediction on the unlabeled data such that the prediction has low entropy and
using these low-entropy predictions as targets for the further training of the model. Examples include
"Pseudolabels" (Lee, 2013) and "Sharpening" (Berthelot et al., 2019). Pseudolabeling constructs
hard(1-hot) labels for the unlabeled samples which have “high-confidence predictions”. Since
many of the unlabeled samples may have “low-confidence predictions”, they can not be used in
the Pseudolabeling technique. On the other hand, Sharpening does not require “high-confidence
predictions” , and thus it can be used for all the unlabelled samples. Hence in this work, we use
Sharpening for entropy minimization. The Sharpening function over the model prediction p(y|x, θ)
can be formally defined as follows (Berthelot et al., 2019), where T is the temperature hyperparameter
and C is the number of classes:

Sharpen(pi, T ) := p
1
T
i

/ C∑
j=1

p
1
T
j (3)

3.2.3 CONNECTION TO CO-TRAINING

The GraphMix approach can be seen as a special instance of the Co-training framework (Blum &
Mitchell, 1998). Co-training assumes that the description of an example can be partitioned into two
distinct views and either of these views would be sufficient for learning if we had enough labeled
data. In this framework, two learning algorithms are trained separately on each view and then the
prediction of each learning algorithm on the unlabeled data is used to enlarge the training set of the
other. Our method has some important differences and similarities to the Co-training framework.
Similar to Co-training, we train two neural networks and the predictions from the GNN are used
to enlarge the training set of FCN. The important difference is that instead of using the predictions
from the FCN to enlarge the training set for the GNN, we employ parameter sharing for passing the
learned information from FCN to GNN. In our experiments, directly using the predictions of the FCN
for GNN training resulted in reduced accuracy. This is due to the fact that the number of labeled
samples for training the FCN is sufficiently low and hence the FCN does not make accurate enough
predictions. Another important difference is that unlike the co-training framework, FCN and GNN
do not use completely distinct views of the data: the FCN uses feature vectors X and the GNN uses
the feature vector and adjacency matrix (X, A).

4 EXPERIMENTS

We present results for the GraphMix algorithm using standard benchmark datasets and the standard
architecture in Section 4.2 and 4.3. We also conduct an ablation study on GraphMix in Section 4.4 to
understand the contribution of various components to its performance. Refer to Appendix A.5 for
implementation and hyperparameter details.

4.1 DATASETS

We use three standard benchmark citation network datasets for semi-supervised node classification,
namely Cora, Citeseer and Pubmed. In all these datasets, nodes correspond to documents and edges
correspond to citations. Node features correspond to the bag-of-words representation of the document.
Each node belongs to one of C classes. During training, the algorithm has access to the feature
vectors and edge connectivity of all the nodes but has access to the class labels of only a few of the
nodes.
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For semi-supervised link classification, we use two datasets Bitcoin Alpha and Bitcoin OTC from
(Kumar et al., 2016; 2018). The nodes in these datasets correspond to the bitcoin users and the edge
weights between them correspond to the degree of trust between the users. Following (Qu et al.,
2019), we treat edges with weights greater than 3 as positive instances, and edges with weights less
than -3 are treated as negative ones. Given a few labeled edges, the task is to predict the labels of
the remaining edges. The statistics of these datasets as well as the number of training/validation/test
nodes is presented in Appendix A.1.

4.2 SEMI-SUPERVISED NODE CLASSIFICATION

For baselines, we choose GCN (Kipf & Welling, 2017), and the recent state-of-the-art methods GAT
(Veličković et al., 2018), GMNN (Qu et al., 2019) and Graph U-Net (Gao & Ji, 2019). We additionally
use two self-training based baselines: in the first one, we trained a GCN with self-generated predicted
targets, and in the second one, we trained a FCN with self-generated predicted targets, named “GCN
(with predicted-targets)” and “FCN (with predicted-targets)” respectively in Table 1. For generating
the predicted-targets in above two baselines, we followed the procedure of Section 3.2.1 and Section
3.2.2. GraphMix(GCN) , GraphMix(GAT) and GraphMix(Graph U-Net) refer to the methods where
underlying GNNs are GCN, GAT and Graph U-Net respectively. Refer to Appendix Section A.5 for
implementation and hyperparameter details.

Shchur et al. (2018) has demonstrated that the performance of the current state-of-the-art Graph
Neural Networks on the standard train/validation/test split of the popular benchmark datasets (such
as Cora, Citeseer, Pubmed, etc) is significantly different from their performance on the random
splits. For fair evaluation, they recommend using multiple random partitions of the datasets. Along
these lines, we created 10 random splits of the Cora, Citeseer and Pubmed with the same train/
validation/test number of samples as in the standard split. We also provide the results for the standard
train/validation/test split in Table 5 in Appendix A.2.

The results are presented in Table 1. We observe that GraphMix always improves the accuracy of the
underlying GNNs such as GCN, GAT and Graph U-Net across all the dataset, with GraphMix(GCN)
achieving the best results.

We further present results with fewer labeled samples and results on larger datasets (Cora-Full,
Co-author-CS and Co-author-Physics) Section A.3 and Section A.4 respectively.

Table 1: Results of node classification (% test accuracy) using 10 random Train/Validation/Test split
of datasets. [*] means the results are taken from the corresponding papers. We conduct 100 trials and
report mean and standard deviation over the trials (refer to Table 5 in the Appendix for comparison
with other methods on standard Train/Validation/Test split).

Algorithm Cora Citeseer Pubmed
GCN 77.84±1.45 72.56±2.46 78.74±0.99
GAT 77.74±1.86 70.41±1.81 78.48±0.96

Graph U-Net 77.59±1.60 67.55±0.69 76.79±2.45
GCN(with predicted-targets) 80.41±1.78 73.62±2.11 79.81±2.85
FCN(with predicted-targets) 75.19±3.53 70.49±1.91 73.40±2.48

GraphMix (GCN) 82.07±1.17 76.45±1.57 80.72±1.08
GraphMix (GAT) 80.63±1.31 74.08±1.26 80.14±1.51

GraphMix (Graph-U-Net) 80.18±1.62 72.85±1.71 78.47±0.64

4.3 SEMI-SUPERVISED LINK CLASSIFICATION

In the Semi-supervised Link Classification problem, the task is to predict the labels of the remaining
links, given a graph and labels of a few links. Following (Taskar et al., 2004), we can formulate the
link classification problem as a node classification problem. Specifically, given an original graph
G, we construct a dual Graph G′. The node set V ′ of the dual graph corresponds to the link set E′
of the original graph. The nodes in the dual graph G′ are connected if their corresponding links in
the graph G share a node. The attributes of a node in the dual graph are defined as the index of the
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nodes of the corresponding link in the original graph. Using this formulation, we present results on
link classification on Bit OTC and Bit Alpha benchmark datasets in the Table 2. As the numbers
of the positive and negative edges are strongly imbalanced, we report the F1 score. Our results
show that GraphMix(GCN) improves the performance over the baseline GCN method for both the
datasets. Furthermore, the results of GraphMix(GCN) are comparable with the recently proposed
state-of-the-art method GMNN (Qu et al., 2019).

Table 2: Results on Link Classification (%F1 score). [*] means the results are taken from the
corresponding papers

Algorithm Bit OTC Bit Alpha
DeepWalk (Perozzi et al., 2014) 63.20 62.71

GMNN*(Qu et al., 2019) 66.93 65.86
GCN 65.72±0.38 64.00±0.19

GCN(with predicted-targets) 65.15±0.29 64.56±0.21
FCN(with predicted-targets) 60.13±0.40 59.74±0.32

GraphMix (GCN) 66.35±0.41 65.34±0.19

4.4 ABLATION STUDY

Since GraphMix consists of various components, some of which are common with the existing
literature of semi-supervised learning, we set out to study the effect of various components by
systematically removing or adding a component from GraphMix . We measure the effect of the
following:

• Removing the Manifold Mixup and predicted targets from the FCN training.

• Removing the predicted targets from the FCN training.

• Removing the Manifold Mixup from the FCN training.

• Removing the Sharpening of the predicted targets.

• Removing the Average of predictions for K random perturbations of the input sample

• Using the EMA (Tarvainen & Valpola, 2017) of GNN for target prediction.

The ablation results for semi-supervised node classification are presented in Table 3. We did not do
any hyperparameter tuning for the ablation study and used the best performing hyperparameters found
for the results presented in Table 1. We observe that all the components of GraphMix contribute to its
performance, with Manifold Mixup training of FCN contributing possibly the most. Furthermore, we
observe that using the EMA model (which is an emsemble model) (Tarvainen & Valpola, 2017) for
computing the predicted- targets could improve the performance of GraphMix for all the datasets.

Table 3: Ablation study results using 10 labeled samples per class (% test accuracy). We report mean
and standard deviation over ten trials.

Ablation Cora Citeseer Pubmed
GraphMix 79.30±1.36 70.78±1.41 77.13±3.60

-without Manifold Mixup, without predicted targets 68.78±3.54 61.01±1.24 72.56±1.08
-without predicted-targets 72.85±3.79 64.40±2.20 74.74±1.69
-without Manifold Mixup 69.08±5.03 62.66±1.80 74.11±0.94
-no Sharpening 73.25±3.41 64.65±2.21 74.97±1.47
-no Averaging of predictions 74.17±1.99 65.52±1.78 75.59±2.63
-with EMA 79.84±2.28 71.21±1.32 77.46±3.13

7



Under review as a conference paper at ICLR 2020

4.5 VISUALIZATION OF THE LEARNED FEATURES

In this section, we present the analysis of the features learned by GraphMix for Cora dataset.
Specifically, we present the 2D visualization of the hidden states using the t-SNE (van der Maaten &
Hinton, 2008) in Figure 2a, 2b and 2c . We observe that GraphMix learns hidden states which are
better separated and condensed than GCN and GCN(predicted-targets). We further evaluate the Soft-
rank (refer to Appendix A.7) of the class-specific hidden states to demonstrate that GraphMix(GCN)
makes the class-specific hidden states more concentrated than GCN and GCN(predicted-targets), as
shown in 2d. Refer to Appendix A.8 for 2D representation of other datasets.

(a) GCN (b) GCN(predicted-targets) (c) GraphMix(GCN) (d) Class-specific Soft-
Rank

Figure 2: 2D representation of the hidden states of Citeseer dataset using (a) GCN, (b) GCN(predicted-
targets), (c) GraphMix, and (d) Soft-Rank of Class-specific hidden states (lower Soft-Rank reflects
more concentrated class-specific hidden states)

5 RELATED WORK

5.1 SEMI-SUPERVISED LEARNING OVER GRAPH DATA

There exists a long line of work for Semi-supervised learning over Graph Data. Earlier work included
using Graph Laplacian Regularizer for enforcing local smoothness over the predicted targets for
the nodes (Zhu & Ghahramani, 2002; Zhu et al., 2003; Belkin et al., 2006). Another line of work
learns node embedding in an unsupervised way (Perozzi et al., 2014) which can then be used as an
input to any classifier, or learns the node embedding and target prediction jointly (Yang et al., 2016).
Many of the recent Graph Neural Network based approaches (refer to Zhou et al. (2018) for a review
of these methods) are inspired by the success of Convolutional Neural Networks in image and text
domains, defines the convolutional operators using the neighbourhood information of the nodes (Kipf
& Welling, 2017; Veličković et al., 2018; Defferrard et al., 2016). These convolution operator based
method exhibit state-of-the-results for semi-supervised learning over graph data, hence much of the
recent attention is dedicated to proposing architectural changes to these methods (Qu et al., 2019;
Gao & Ji, 2019; Ma et al., 2019). Unlike these methods, we propose a regularization technique that
can be applied to any of these Graph Neural Networks which uses a parameterized transformation on
the node features.

5.2 DATA AUGMENTATION

It is well known that the generalization of a learning algorithm can be improved by enlarging the
training data size. Because labeling more samples is labour-intensive and costly, Data-augmentation
has become de facto technique for enlarging the training data size, especially in the computer vision
applications such as image classification. Some of the notable Data Augmentation techniques include
Cutout (Devries & Taylor, 2017) and DropBlock (Ghiasi et al., 2018). In Cutout, a contiguous part
of the input is zeroed out. DropBlock further extends Cutout to the hidden states. In another line of
research, such as Mixup and BC-learning (Zhang et al., 2018; Tokozume et al., 2017), additional
training samples are generated by interpolating the samples and their corresponding targets. Manifold
Mixup (Verma et al., 2019a) proposes to augment the data in the hidden states and shows that it
learns more discriminative features for supervised learning. Furthermore, ICT (Verma et al., 2019b)
and MixMatch (Berthelot et al., 2019) extend the Mixup technique to semi-supervised learning, by
computing the predicted targets for the unlabeled data and applying the Mixup on the unlabeled data
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and their corresponding predicted targets. Even further, for unsupervised learning, ACAI (Berthelot*
et al., 2019) and AMR (Beckham et al., 2019) explore the interpolation techniques for autoencoders.
ACAI interpolates the hidden states of an autoencoder and uses a critic network to constrain the
reconstruction of these interpolated states to be realistic. AMR explores different ways of combining
the hidden states of an autoencoder other than the convex combinations of the hidden states. Unlike,
all of these techniques which have been proposed for the fixed topology datasets, in this work, we
propose interpolation based data-augmentation techniques for graph structured data.

5.3 REGULARIZING GRAPH NEURAL NETWORKS

Regularizing Graph Neural Networks has drawn some attention recently. GraphSGAN (Ding et al.,
2018) first uses an embedding method such as DeepWalk (Perozzi et al., 2014) and then trains
generator-classifier networks in the adversarial learning setting to generate fake samples in the
low-density region between sub-graphs. BVAT (Deng et al., 2019) and Feng et al. (2019) generate
adversarial perturbations to the features of the graph nodes while taking graph structure into account.
While these methods improve generalization in graph-structured data, they introduce significant
additional computation cost: GraphScan requires computing node embedding as a preprocessing
step, BVAT and Feng et al. (2019) require additional gradient computation for computing adversar-
ial perturbations. Unlike these methods, GraphMix does not introduce any significant additional
computation since it is based on interpolation-based techniques and self-generated predicted targets.

6 DISCUSSION

We presented GraphMix , a simple and efficient regularized training scheme for graph neural net-
works. GraphMix is a general scheme that can be applied to any graph neural network that uses a
parameterized transformation on the feature vector of the graph nodes. Through extensive experi-
ments, we demonstrated state-of-the-art performances or close to state-of-the-art performance using
this simple regularization technique on various benchmark datasets, more importantly, GraphMix
improves test accuracy over vanilla GNN across all the datasets, even without doing any extensive
hyperparameter search. Further, we conduct a systematic ablation study to understand the effect of
different components in the performance of GraphMix . This suggests that in parallel to designing
new architectures, exploring better regularization for graph structured data is a promising avenue for
research.
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A APPENDIX

A.1 DATASETS

The statistics of these datasets as well as the number of training/validation/test nodes is presented in
Table 4.

Table 4: Dataset statistics.

Dataset # Nodes # Edges # Features # Classes # Training # Validation # Test
Cora 2,708 5,429 1,433 7 140 500 1,000

Citeseer 3,327 4,732 3,703 6 120 500 1,000
Pubmed 19,717 44,338 500 3 60 500 1,000

Bitcoin Alpha 3,783 24,186 3,783 2 100 500 3,221
Bitcoin OTC 5,881 35,592 5,881 2 100 500 5,947

A.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We present the comparion of GraphMix with the recent state-of-the-art methods as well as earlier
methods using the standard Train/Validation/Test split in Table 5.

A.3 RESULTS WITH FEWER LABELED SAMPLES

We further evaluate the effectiveness of GraphMix in the learning regimes where fewer labeled
samples exist. For each class, we randomly sampled K ∈ {5, 10} samples for training and the same
number of samples for the validation. We used all the remaining labeled samples as the test set. We
repeated this process for 10 times. The results in Table 6 show that GraphMix achieves even better
improvements when the labeled samples are fewer ( Refer to Table 1 for results with 20 training
samples per class).

A.4 RESULTS ON LARGER DATASETS

In this section, we provide results on three recently proposed datasets which are relatively larger
than standard benchmark datasets (Cora/Citeseer/Pubmed). Specifically, we use Cora-Full dataset
proposed in Bojchevski & Günnemann (2018) and Coauthor-CS and Coauthor-Physics datasets
proposed in Shchur et al. (2018). We took processed versions of these dataset available here 2. We
did 10 random splits of the the data into train/validation/test split. For the classes which had more
than 100 samples, we choose 20 samples per class for training, 30 samples per class for validation
and the remaining samples as test data. For the classes which had less than 100 samples, we chose
20% samples, per class for training, 30% samples for validation and the remaining for testing. For
each split we run experiments using 100 random seeds. The statistics of these datasets in presented
in Table 8 and the results are presented in Table 7. We observe that GraphMix(GCN) improves the
results over GCN for all the three datasets. We note that we did minimal hyperparameter search for
GraphMix(GCN) as mentioned in Section A.8.1, and doing more rigorous hyperparameter search can
further improve the performance of GraphMix .

2https://github.com/shchur/gnn-benchmark
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Table 5: Comparison of GraphMix with other methods (% test accuracy ), for Cora, Citeseer and
Pubmed.

Method Cora Citeseer Pubmed

Results reported from the literature

MLP 55.1% 46.5% 71.4%
ManiReg (Belkin et al., 2006) 59.5% 60.1% 70.7%
SemiEmb (Weston et al., 2012) 59.0% 59.6% 71.7%
LP (Zhu et al., 2003) 68.0% 45.3% 63.0%
DeepWalk (Perozzi et al., 2014) 67.2% 43.2% 65.3%
ICA (Lu & Getoor, 2003) 75.1% 69.1% 73.9%
Planetoid (Yang et al., 2016) 75.7% 64.7% 77.2%
Chebyshev (Defferrard et al., 2016) 81.2% 69.8% 74.4%
GCN (Kipf & Welling, 2017) 81.5% 70.3% 79.0%
MoNet (Monti et al., 2016) 81.7 ± 0.5% — 78.8 ± 0.3%
GAT (Veličković et al., 2018) 83.0 ± 0.7% 72.5 ± 0.7% 79.0 ± 0.3%
GraphScan (Ding et al., 2018) 83.3 ±1.3 73.1±1.8 —
GMNN (Qu et al., 2019) 83.7% 73.1% 81.8%
DisenGCN (Ma et al., 2019) 83.7% 73.4% 80.5%
Graph U-Net (Gao & Ji, 2019) 84.4% 73.2% 79.6%
BVAT (Deng et al., 2019) 83.6±0.5 74.0±0.6 79.9±0.4

Our Experiments

GCN 81.30±0.66 70.61±0.22 79.86±0.34
GAT 82.70±0.21 70.40±0.35 79.05±0.64
Graph U-Net 81.74±0.54 67.69±1.10 77.73 ±0.98
GCN (with predicted-targets) 82.03±0.43 73.38±0.35 82.42±0.36
FCN (with predicted-targets) 80.30±0.75 71.50±0.80 77.40±0.37

GraphMix (GCN) 83.94±0.57 74.52±0.59 80.98±0.55
GraphMix (GAT) 83.32±0.18 73.08±0.23 81.10±0.78
GraphMix (Graph U-Net) 82.18±0.63 69.00 ±1.32 78.76±1.09

Table 6: Results using less labeled samples (% test accuracy). K referes to the number of labeled
samples per class.

Algorithm Cora Citeseer Pubmed
K = 5 K = 10 K = 5 K = 10 K = 5 K = 10

GCN 66.39±4.26 72.91±3.10 55.61±5.75 64.19±3.89 66.06±3.85 75.57±1.58
GAT 68.17±5.54 73.88±4.35 55.54±1.82 61.63±0.42 64.24±4.79 73.60±1.85

Graph U-Net 64.42±5.44 71.48±3.03 49.43±5.81 61.16±3.47 65.05±4.69 68.65±3.69

GraphMix (GCN) 71.99±6.46 79.30±1.36 58.55±2.26 70.78±1.41 67.66±3.90 77.13±3.60
GraphMix (GAT) 72.01±6.68 75.82±2.73 57.6±0.64 62.24±2.90 66.61±3.69 75.96±1.70

GraphMix (Graph U-Net) 66.84±6 5.10 73.14±3.17 54.39±5.07 64.36±3.48 67.40±5.33 70.43±3.75

A.5 IMPLEMENTATION AND HYPERPARAMETER DETAILS

We use the standard benchmark architecture as used in GCN (Kipf & Welling, 2017), GAT (Veličković
et al., 2018) and GMNN (Qu et al., 2019), among others. This architecture has one hidden layer and
the graph convolution is applied twice : on the input layer and on the output of the hidden layer. The
FCN in GraphMix shares the parameters with the GCN.

GraphMix introduces four additional hyperparameters, namely the α parameter of Beta distribution
used in Manifold Mixup training of the FCN, the max-consistency coefficient γmax which controls the
trade-off between the supervised loss and the unsupervised loss (loss computed using the pseudolables)
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Table 7: Comparison of GraphMix with other methods (% test accuracy ), for Cora-Full, Coauthor-CS,
Coauthor-Physics, and NELL. ∗ refers to the results reported in Shchur et al. (2018).

Method Cora-Full Coauthor-CS Coauthor-Physics NELL
GCN* 62.2±0.6 91.1±0.5 92.8±1.0 —
GAT* 51.9±1.5 90.5±0.6 92.5±0.9 —
MoNet* 59.8±0.8 90.8±0.6 92.5±0.9 —
GS-Mean* 58.6±1.6 91.3±2.8 93.0±0.8 —
GCN (Kipf & Welling, 2017) — — — 66.0

GCN 60.13±0.57 91.27±0.56 92.90±0.92 63.65±1.17
GraphMix (GCN) 61.80±0.54 91.83±0.51 94.49±0.84 66.32±1.04

Table 8: Dataset statistics

Datasets Classes Features Nodes Edges
Cora-Full 67 8710 18703 62421
Coauthor-CS 15 6805 18333 81894
Coauthor-Physics 5 8415 34493 247962
NELL 210 5414 65755 266144

of FCN, the temparature T in sharpening and the number of random perturbations K applied to the
input data for the averaging of the predictions.

We conducted minimal hyperparameter seach over only α and γmax and fixed the hyperparameters
T and K to 0.1 and 10 respectively. The other hyperparameters were set to the best values for
underlying GNN (GCN or GAT), including the learning rate, the L2 decay rate, number of units in
the hidden layer etc. We observed that GraphMix is not very sensitive to the values of α and γmax
and similar values of these hyperparameters work well across all the benchmark datasets. Refer to
Appendix A.5 and A.6 for the details about the hyperparameter values and the procedure used for the
best hyperparameters selection.

A.5.1 FOR RESULTS REPORTED IN SECTION 4.2

For GCN and GraphMix(GCN), we used Adam optimizer with learning rate 0.01 and L2-decay 5e-4,
the number of units in the hidden layer 16 , dropout rate in the input layer and hidden layer was set to
0.5 and 0.0, respectively. For GAT and GraphMix(GAT), we used Adam optimizer with learning rate
0.005 and L2-decay 5e-4, the number of units in the hidden layer 8 , and the dropout rate in the input
layer and hidden layer was searched from the values {0.2, 0.5, 0.8}.
For α and γmax of GraphMix(GCN) and GraphMix(GAT) , we searched over the values in the set
[0.0, 0.1, 1.0, 2.0] and [0.1, 1.0, 10.0, 20.0] respectively.

For GraphMix(GCN) : α = 1.0 works best across all the datasets. γmax = 1.0 works best for Cora
and Citeseer and γmax = 10.0 works best for Pubmed.

For GraphMix(GAT) : α = 1.0 works best for Cora and Citeseer and α = 0.1 works best for Pubmed.
γmax = 1.0 works best for Cora and Citeseer and γmax = 10.0 works best for Pubmed. Input
droputrate=0.5 and hidden dropout rate=0.5 work best for Cora and Citeseer and Input dropout
rate=0.2 and hidden dropout rate =0.2 work best for Pubmed.

We conducted all the experiments for 2000 epochs. The value of consistency coefficient γ (line 13
in Algorithm 1) is increased from 0 to its maximum value γmax from epoch 500 to 1000 using the
sigmoid ramp-up of Mean-Teacher (Tarvainen & Valpola, 2017).
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A.5.2 FOR RESULTS REPORTED IN SECTION A.3

For α of GraphMix(GCN) , we searched over the values in the set [0.0, 0.1, 0.5, 1.0] and found that
0.1 works best across all the datasets. For γmax, we searched over the values in the set [0.1, 1.0, 10.0]
and found that 0.1 and 1.0 works best across all the datasets. Rest of the details for GraphMix(GCN)
and GCN are same as Section A.5.1.

A.5.3 FOR RESULTS REPORTED IN SECTION 4.3

For α of GraphMix(GCN) , we searched over the values in the set [0.0, 0.1, 0.5, 1.0] and found that
0.1 works best for both the datasets. For γmax, we searched over the values in the set [0.1, 1.0, 10.0]
and found that 0.1 works best for both the datasets. We conducted all the experiments for 150 epochs.
The value of consistency coefficient γ (line 13 in Algorithm 1) is increased from 0 to its maximum
value γmax from epoch 75 to 125 using the sigmoid ramp-up of Mean-Teacher (Tarvainen & Valpola,
2017).

Both for GraphMix(GCN) and GCN, we use Adam optimizer with learning rate 0.01 and L2-decay
0.0, the number of units in the hidden layer 128 , dropout rate in the input layer was set to 0.5.

A.6 HYPERPARAMETER SELECTION

For each configuration of hyperparameters, we run the experiments with 100 random seeds. We
select the hyperparameter configuration which has the best validation accuracy averaged over these
100 trials. With this best hyperparameter configuration, for 100 random seeds, we train the model
again and use the validataion set for model selection ( i.e. we report the test accuracy at the epoch
which has best validation accuracy.)

A.7 SOFT-RANK

Let H be a matrix containing the hidden states of all the samples from a particular class. The
Soft-Rank of matrix H is defined by the sum of the singular values of the matrix divided by the
largest singular value. A lower Soft-Rank implies fewer dimensions with substantial variability and it
provides a continuous analogue to the notion of rank from matrix algebra. This provides evidence
that the concentration of class-specific states observed when using GraphMix in Figure 3 can be
measured directly from the hidden states and is not an artifact of the T-SNE visualization.

A.8 FEATURE VISUALIZATION

We present the 2D visualization of the hidden states learned using GCN and GraphMix(GCN) for
Cora, Pubmed and Citeseer datasets in Figure 3. We observe that for Cora and Citeseer, GraphMix
learns substantially better hidden states than GCN. For Pubmed, we observe that although there is
no clear separation between classes, "Green" and "Red" classes overlap less using the GraphMix,
resulting in better hidden states.

A.8.1 HYPERPARAMETER DETAILS FOR RESULTS IN TABLE 7

For all the experiments we use the standard architecture mentioned in Section A.5 and used Adam
optimizer with learning rate 0.001 and 64 hidden units in the hidden layer. For Coauthor-CS and
Coauthor-Physics, we trained the network for 2000 epochs. For Cora-Full, we trained the network for
5000 epochs because we observed the training loss of Cora-Full dataset takes longer to converge.

For Coauthor-CS and Coauthor-Physics: We set the input layer dropout rate to 0.5 and weight-decay
to 0.0005, both for GCN and GraphMix(GCN) . We did not conduct any hyperparameter search over
the GraphMix hyperparameters α, λmax, temparature T and number of random permutations K
applied to the input data for GraphMix(GCN) for these two datasets, and set these values to 1.0, 1.0,
0.1 and 10 respectively.

For Cora-Full dataset: We found input layer dropout rate 0.2 and weight-decay 0.0 to be the
best for both GCN and GraphMix(GCN) . For GraphMix(GCN) we fixed α, temparature T and
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Figure 3: T-SNE of hidden states for Cora (left), Pubmed (middle), and Citeseer (right). Top row is
GCN baseline, bottom row is GraphMix.

number of random permutations K to 1.0 0.1 and 10 respectively. For λmax, we did search over
{1.0, 10.0, 20.0} and found that 10.0 works best.

For all the GraphMix(GCN) experiments, the value of consistency coefficient γ (line 13 in Algorithm
1) is increased from 0 to its maximum value γmax from epoch 500 to 1000 using the sigmoid ramp-up
of Mean-Teacher (Tarvainen & Valpola, 2017).
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