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Abstract

We consider the problem of estimating a regres-
sion function in the common situation where the
number of features is small, where interpretability
of the model is a high priority, and where simple
linear or additive models fail to provide adequate
performance. To address this problem, we present
GapTV, an approach that is conceptually related
both to CART and to the more recent CRISP al-
gorithm (Petersen et al., 2016), a state-of-the-art
alternative method for interpretable nonlinear re-
gression. GapTV divides the feature space into
blocks of constant value and fits the value of all
blocks jointly via a convex optimization routine.
Our method is fully data-adaptive, in that it in-
corporates highly robust routines for tuning all
hyperparameters automatically. We compare our
approach against CART and CRISP via both a
complexity-accuracy tradeoff metric and a human
study, demonstrating that that GapTV is a more
powerful and interpretable method.1

1. Introduction
A recent line of research in interpretable machine learning
focuses on low-dimensional regression, where the feature
set is relatively small and human intelligibility as a primary
concern. For example, lattice regression with monotonicity
constraints has been shown to perform well in video-ranking
tasks where interpretability was a prerequisite (Gupta et al.,
2016). The interpretability of the system enables users to
investigate the model, gain confidence in its recommen-
dations, and guide future recommendations. In the two-
and three- dimensional regression scenario, the Convex Re-
gression via Interpretable Sharp Partitions (CRISP) method
(Petersen et al., 2016) has recently been introduced as a
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way to achieve a good trade off between accuracy and in-
terpretability by inferring sharply-defined 2d rectangular
regions of constant value. Such a method is readily useful,
for example, when making business decisions or executive
actions that must be explained to a non-technical audience.

Data-adaptive, interpretable sharp partitions are also useful
in the creation of areal data from a set of spatial point-
referenced data—turning a continuous spatial problem into
a discrete one. A common application of the framework
arises when dividing a city, state, or other region into a set of
contiguous cells, where values in each cell are aggregated to
help anonymize individual demographic data. Ensuring that
the number and size of grid cells remains tractable, handling
low-data regions, and preserving spatial structure are all
important considerations for this problem. Ideally, one cell
should contain data points which all map to a similar under-
lying value, and cell boundaries should represent significant
change points in the value of the signal being estimated. If
a cell is empty or contains a small number of data points,
the statistical strength of its neighbors should be leveraged
to both improve the accuracy of the reported areal data and
further aid in anonymizing the cell which may otherwise be
particularly vulnerable to deanonymization. Viewed through
this lens, we can interpret the areal-data creation task as a
machine learning problem, one focused on finding sharp
partitions that still achieve acceptable predictive loss.2

To this end, and motivated by the success of CRISP, we
present GapTV, a method for interpretable, low-dimensional
convex regression with sharp partitions. GapTV involves
two main steps: (1) a non-standard application of the gap
statistic (Tibshirani et al., 2001) to create a data-adaptive
grid over the feature space; and (2) smoothing over this grid
using a fast total variation denoising algorithm (Barbero &
Sra, 2014). The resulting model displays a good balance
between interpretability, average accuracy, and degrees of
freedom. We conduct a human study on the predictive inter-
pretability of each method, showing both qualitatively and

2We note that such a task will likely only represent a single
step in a larger anonymization pipeline that may include other
techniques such as additive noise and spatial blurring. While we
provide no proofs of how strong the anonymization is for our
method, we believe it is compatible with other methods that focus
on adherence to a specified k-anonymity threshold (e.g., (Cassa
et al., 2006)).
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quantitatively that GapTV achieves superior performance
over CART and CRISP.

2. Background
2.1. Convex Regression with Interpretable Sharp

Partitions

Petersen et al. (2016) propose the CRISP algorithm. As in
our approach, they focus on the 2d scenario and divide the
(x1, x2) space into a grid via a data-adaptive procedure. For
each dimension, they divide the space into q regions, where
each region break is chosen such that a region contains 1/q
of the data. This creates a q × q grid of differently-sized
cells, some of which may not contain any observations. A
prediction matrix M ∈ Rq×q is then learned, with each
element Mij representing the prediction for all observations
in the region specified by cell (i, j).

CRISP applies a Euclidean penalty on the differences be-
tween adjacent rows and columns of M . The final estimator
is then learned by solving the convex optimization problem,

minimize
M∈Rq×q

1

2

n∑
i=1

(yi − Ω(M,x1i, x2i))
2 + λP (M) ,

(1)
where Ω is a lookup function mapping (x1i, x2i) to the
corresponding element in M . P (M) is the group-fused
lasso penalty on the rows and columns of M ,

P (M) =

q−1∑
i=1

[∣∣∣∣Mi· −M(i+1)·
∣∣∣∣
2

+
∣∣∣∣M·i −M·(i+1)

∣∣∣∣
2

]
,

(2)
where Mi· and M·i are the ith row and column of M , re-
spectively.

By rewriting Ω(·) as a sparse binary selector matrix and
introducting slack variables for each row and column in the
P (M) term, CRISP solves (1) via ADMM. The resulting
algorithm requires an initial step of O(n+ q4) operations
for n samples on a q × q grid, and has a per-iteration com-
plexity of O(q3). The authors recommend using q = n
when the size of the data is sufficiently small so as to be
computationally tractable, and setting q = 100 otherwise.

In comparison to other interpretable methods, such as CART
and thin-plate splines (TPS), CRISP is shown to yield a good
tradeoff between accuracy and interpretability.

2.2. Graph-based Total Variation Denoising

Total variation (TV) denoising solves a convex regularized
optimization problem defined generally over a graph G =

(V, E) with node set V and edge set E ,

minimize
β∈R|V|

∑
s∈V

`(βs) + λ
∑

(r,s)∈E

|βr − βs| , (3)

where ` is some smooth convex loss function over the value
at a given node βs. The solution to (3) yields connected
subgraphs (i.e. plateaus in the 2d case) of constant value.
TV denoising has been shown to have attractive minimax
rates theoretically (Wang et al., 2014) and is robust against
model mispecification empirically, particularly in terms of
worst-cell error (Tansey et al., 2016).

Many efficient, specialized algorithms have been developed
for the case when ` is a Gaussian loss and the graph has a
specific constrained form. For example, when G is a one-
dimensional chain graph, (3) is the ordinary (1d) fused lasso
(Tibshirani et al., 2005), solvable in linear time via dynamic
programming (Johnson, 2013). When G is a d-dimensional
grid graph, (3) is typically referred to as total variation
denoising (Rudin et al., 1992) or the graph-fused lasso,
for which several efficient solutions have been proposed
(Chambolle & Darbon, 2009; Barbero & Sra, 2011; 2014).

The TV denoising penalty was investigated as an alternative
to CRISP in (Petersen et al., 2016). They note anecdotally
that TV denoising over-smooths when the same q was used
for both CRISP and TV denoising. We present a principled
approach to choosing q in a data-adaptive way that prevents
over-smoothing and leads to a superior fit in terms of the
accuracy-complexity tradeoff.

3. The GapTV Algorithm
We note that we can rewrite (1) as a weighted least-squares
problem,

minimize
β∈Rq2

1

2

q2∑
i=1

ηi(ỹi − βi)2 + λg(β) , (4)

where β = vec(M) is the vectorized form of M , ηi is the
number of observations in the ith cell, and ỹi is the empirical
average of the observations in the ith cell. g(·) is a penalty
term that operates over a vector β rather than a matrix M .

We choose g(·) to be a graph-based total variation penalty,

g(β) =
∑

(r,s)∈E

|βr − βs| , (5)

where E is the set of edges defining adjacent cells on the
q × q grid graph. Having formulated the problem as a
graph TV denoising problem, we can now use the convex
minimization algorithm of Barbero & Sra (2014) (or any
other suitable algorithm) to efficiently solve (4).

We auto-tune the two hyperparameters: q, the granularity
of the grid, and λ, the regularization parameter. We take a
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pipelined approach by first choosing q and then selecting λ
under the chosen q value.

3.1. Choosing bins via the gap statistic

The recommendation for CRISP is to choose q = n, assum-
ing the computation required is feasible. Doing so creates a
very sparse grid, with q − 1× q empty cells. However, by
tying together the rows and columns of the grid, each CRISP
cell actually draws statistical strength from a large number
of bins. This compensates for the data sparsity problem and
results in reasonably good fits despite the sparse grid.

Choosing q = n does not work for our TV denoising ap-
proach. Since the graph-based TV penalty only ties to-
gether adjacent cells, long patches of sparsity overwhelm
the model and result in over-smoothing. If one instead
chooses a smaller value of q, however, the TV penalty per-
forms quite well. The challenge is therefore to adaptively
choose q to fit the appropriate level of overall data sparsity.
We do this via a novel use of the gap statistic (Tibshirani
et al., 2001).

In a typical clustering algorithm, such as K-means, one
would have unlabeled data X = {x1,x2, . . . ,xn}, some
distance metric δ(xi,xj), and a specified number of K
clusters to find. In K-means, cluster assignment is based on
the nearest centroid,

ai = argmin
k

δ(xi, ck) , (6)

where ck = 1
|Ak|

∑
i∈Ak

xi is the cluster centroid andAk =

{i : ai = k,∀i}.

The gap statistic is an approach to choosing the value of K
for a generic clustering algorithm by comparing it against
a suitable null distribution. The best clustering is the one
which minimizes the gap term:

En [log(W ∗1 )]− log(WK) , (7)

where WK is the sum of average pairwise distances in each
cluster for a clustering with K clusters. To use the gap
statistic, one must define a suitable null distribution over
W1.

In our case, the “clusters” are defined by a quantile grid over
(x1, x2). The number of cells is specified by the choice
of q, which means choosing the value of q corresponds
directly to choosing K. However, unlike typical clustering,
a cluster centroid is defined by the yi values corresponding
to the xi points in the cell. Therefore, our distance metric
for computing the gap statistic is actually between pairs of
(yi, yj).

In the regression case, we assume each yi ∼ N (µ, σ2),
where µ and σ2 are unknown. For a distance metric, we

use Euclidean distance, δ(yi, yj) = (yi − yj)2. Since each
yi is assumed to be IID normal, the null distribution over
pairwise distances is W1 ∼ 2σ2χ2

ν , where ν = n2

2 − n is
the degrees of freedom. The expectation of the log of a χ2

distribution can be calculated exactly (Walck, 2007) as

E
[
log(χ2

ν)
]

= log 2 + ψ
(ν

2

)
, (8)

where ψ is the digamma function. Thus, up to an additive
constant, we can calculate the reference distribution exactly
without knowing the mean or variance.

The procedure for choosing q is now straightforward. We
first partition the points on a grid for a series of candidate q
values in the range 2 ≤ q ≤ qmax ≤ n. For each candidate
partitioning, we calculate the gap statistic

gap(q) = ψ(
ν

2
)−

q2∑
k=1

1

ηk

∑
i∈Ai

∑
j∈Ai,j>i

δ(yi, yj) . (9)

We then choose the q that minimizes gap(q) and smooth
using the TV denoising algorithm.

Once a value of q has been chosen, λ can be chosen by fol-
lowing a solution path approach. For the regression scenario
with a Gaussian loss, as in (4), determining the degrees of
freedom is well studied (Tibshirani & Taylor, 2011). Thus,
we could select λ via an information criterion such as AIC
or BIC. We select λ via cross-validation because we found
empirically that it produces better results.

4. Case Study: Austin Crime Data
We applied CART, CRISP, and GapTV to a dataset of
publicly-available crime report counts3 in Austin, Texas
in 2014. To preprocess the data, we binned all observations
into a fine-grained 100 × 100 grid based on latitude and
longitude, then took the log of the total counts in each cell.
Points with zero observed crimes were omitted from the
dataset as it is unclear whether they represented the absence
of crime or a location outside the boundary of the local
police department. Figure 1 (Panel A) shows the raw data
for Austin.

The GapTV method used q values in the range [2, 100] and
the CRISP method used q = 100. We ran a 20-fold cross-
validation to measure RMSE and calculated plateaus with
a fully-connected grid (i.e., as if all pixels were connected)
which we then projected back to the real data for every
non-missing point. Figure 1 shows the qualitative results
for CART (Panel B), CRISP (Panel C), and GapTV (Panel
D). The CART model clearly over-smooths by dividing the
entire city into huge blocks of constant plateaus; conversely,
CRISP under-smooths and creates too many regions. The

3https://www.data.gov/open-gov/

https://www.data.gov/open-gov/
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(a) Raw (b) CART

(c) CRISP (d) GapTV

Figure 1. Areal data results for the Austin crime data. The maps
show the raw fine-grained results (Panel A) and the results of
the three main methods. Qualitatively, CART (Panel B) over-
smooths and creates too few regions in the city; CRISP (Panel C)
under-smooths, creating too many regions; and GapTV (Panel D)
provides a good balance that yields interpretable sections.

GapTV method finds an appealing visual balance, creating
flexible plateaus that partition the city well. These results
are confirmed quantitatively in Table 1, where GapTV out-
performs the other methods in terms of AIC.

To evaluate the interpretability of the GapTV method against
the benchmark CART and CRISP methods, we ran a Me-
chanical Turk study with human annotators. The annotation
task was to choose a grayscale value for a held-out cell in
the center of a 7 × 7 patch of data. Each annotator was
shown a patch as rendered by GapTV, CART, CRISP, and as
raw data; each task involved two randomly sampled patches
from the Austin crime dataset (5× 2 = 10 patches per HIT,
shown in random order).

We added two additional uniform validation patches, throw-
ing out data from annotators who were not within 10% of
the uniform value in the solid-colored patch. We gathered
information from 207 annotators for 190 patches, throwing
out 37 annotators who failed validation. We measured the
squared difference between the average annotators’ predic-
tions per (patch, method) combination against the true value
in the raw data, shown in Table 1 (rightmost column).

The raw data is noisy and has high local variance, and so an-
notators do poorly at the prediction task without any smooth-
ing (0.0471 ± 0.00539, not shown in Table 1). The over-

Austin Crime Data
AIC Human error ×10−2

CART 11139.29 3.24±0.341
CRISP 18326.33 3.99±0.664
GapTV 10327.58 2.75±0.334

Table 1. Results for the three methods on crime data for Austin.
The GapTV method achieves the best trade-off between accuracy
and the number of constant regions, as measured by AIC. Human
annotator predictions are also statistically significantly closer than
when annotators are shown raw data, which neither CART nor
CRISP achieve.

smoothed CART values create too many uniform plateaus
where the annotators cannot reasonably predict anything
other than the missing uniform value, which has low accu-
racy. The CRISP method fails to sufficiently smooth the
data, resulting in overly noisy patches which again makes
the prediction task difficult. GapTV provides a good balance
of smoothing and flexibility.

According to a Tukey’s range test comparing pairwise hu-
man annotations across methods, GapTV statistically signif-
icantly outperforms the raw data for the human prediction
task; by contrast, CART and CRISP fail to outperform the
raw data. No methods were shown to outperform one an-
other with significance.
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Barbero, Álvaro and Sra, Suvrit. Fast newton-type methods

for total variation regularization. In Getoor, Lise and
Scheffer, Tobias (eds.), ICML, pp. 313–320. Omnipress,
2011.
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