
Strategizing against No-regret Learners

Yuan Deng
Duke University

ericdy@cs.duke.edu

Jon Schneider
Google Research

jschnei@google.com

Balasubramanian Sivan
Google Research

balusivan@google.com

Abstract

How should a player who repeatedly plays a game against a no-regret learner
strategize to maximize his utility? We study this question and show that under
some mild assumptions, the player can always guarantee himself a utility of at least
what he would get in a Stackelberg equilibrium of the game. When the no-regret
learner has only two actions, we show that the player cannot get any higher utility
than the Stackelberg equilibrium utility. But when the no-regret learner has more
than two actions and plays a mean-based no-regret strategy, we show that the
player can get strictly higher than the Stackelberg equilibrium utility. We provide
a characterization of the optimal game-play for the player against a mean-based
no-regret learner as a solution to a control problem. When the no-regret learner’s
strategy also guarantees him a no-swap regret, we show that the player cannot get
anything higher than a Stackelberg equilibrium utility.

1 Introduction

Consider a two player bimatrix game with a finite number of actions for each player repeated over T
rounds. When playing a repeated game, a widely adopted strategy is to employ a no-regret learning
algorithm: a strategy that guarantees the player that in hindsight no single action when played
throughout the game would have performed significantly better. Knowing that one of the players (the
learner) is playing a no-regret learning strategy, what is the optimal gameplay for the other player
(the optimizer)? This question is the focus of our work.

If this were a single-shot strategic game where learning is not relevant, a (pure or mixed strategy)
Nash equilibrium is a reasonable prediction of the game’s outcome. In the T rounds game with
learning, can the optimizer guarantee himself a per-round utility of at least what he could get in a
single-shot game? Is it possible to get significantly more utility than this? Does this utility depend on
the specific choice of learning algorithm of the learner? What gameplay the optimizer should adopt
to achieve maximal utility? None of these questions are straightforward, and indeed none of these
have unconditional answers.

Our results. Central to our results is the idea of the Stackelberg equilibrium of the underlying
game. The Stackelberg variant of our game is a single-shot two-stage game where the optimizer is
the first player and can publicly commit to a mixed strategy; the learner then best responds to this
strategy. The Stackelberg equilibrium is the resulting equilibrium of this game when both players
play optimally. Note that the optimizer’s utility in the Stackelberg equilibrium is always weakly
larger than his utility in any (pure or mixed strategy) Nash equilibrium, and is often strictly larger.

Let V be the utility of the optimizer in the Stackelberg equilibrium. With some mild assumptions on
the game, we show that the optimizer can always guarantee himself a utility of at least (V −ε)T−o(T)
in T rounds for any ε > 0, irrespective of the learning algorithm used by the learner as long as it has
the no-regret guarantee (Theorem 4). This means that if one of the players is a learner the other player
can already profit over the Nash equilibrium regardless of the specifics of the learning algorithm
employed or the structure of the game. Further, if any one of the following conditions is true:

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

1. the game is a constant-sum game,
2. the learner’s no-regret algorithm has the stronger guarantee of no-swap regret (see Section 2),
3. the learner has only two possible actions in the game,

the optimizer cannot get a utility higher than V T + o(T) (see Theorem 5, Theorem 6, Theorem 7).

If the learner employs a learning algorithm from a natural class of algorithms called mean-based
learning algorithms [Braverman et al., 2018] (see Section 2) that includes popular no-regret algorithms
like the Multiplicative Weights algorithm, the Follow-the-Perturbed-Leader algorithm, and the EXP3
algorithm, we show that there exist games where the optimizer can guarantee himself a utility
V ′T − o(T) for some V ′ > V (see Theorem 8). We note the contrast between the cases of 2 and
3 actions for the learner: in the 2-actions case even if the learner plays a mean-based strategy, the
optimizer cannot get anything more than V T + o(T) (Theorem 7), whereas with 3 actions, there are
games where he is able to guarantee a linearly higher utility.

Given this possibility of exceeding Stackelberg utility, our final result is on the nature and structure
of the utility optimal gameplay for the optimizer against a learner that employs a mean-based strategy.
First, we give a crisp characterization of the optimizer’s asymptotic optimal algorithm as the solution
to a control problem (see Section 4.2) in N dimensions where N is the number of actions for the
learner. This characterization is predicated on the fact that just knowing the cumulative historical
utilities of each of the learner’s actions is essentially enough information to accurately predict the
learner’s next action in the case of a mean-based learner. These N cumulative utilites thus form an
N -dimensional “state” for the learner which the optimizer can manipulate via their choice of action.
We then proceed to make multiple observations that simplify the solution space for this control
problem. We leave as a very interesting open question of computing or characterizing the optimal
solution to this control problem and we further provide one conjecture of a potential characterization.

Comparison to prior work. The very recent work of Braverman et al. [2018] is the closest to ours.
They study the specific 2-player game of an auction between a single seller and single buyer. The
main difference from Braverman et al. [2018] is that they consider a Bayesian setting where the
buyer’s type is drawn from a distribution, whereas there is no Bayesian element in our setting. But
beyond that the seller’s choice of the auction represents his action, and the buyer’s bid represents her
action. They show that regardless of the specific algorithm used by the buyer, as long as the buyer
plays a no-regret learning algorithm the seller can always earn at least the optimal revenue in a single
shot auction. Our Theorem 4 is a direct generalization of this result to arbitrary games without any
structure. Further Braverman et al. [2018] show that there exist no-regret strategies for the buyer
that guarantee that the seller cannot get anything better than the single-shot optimal revenue. Our
Theorems 5, 6 and 7 are both generalizations and refinements of this result, as they pinpoint both the
exact learner’s strategies and the kind of games that prevent the optimizer from going beyond the
Stackelberg utility. Braverman et al. [2018] show that when the buyer plays a mean-based strategy,
the seller can design an auction to guarantee him a revenue beyond the per round auction revenue.
Our control problem can be seen as a rough parallel and generalization of this result.

Other related work. The first notion of regret (without the swap qualification) we use in the paper
is also referred to as external-regret (see Hannan [1957], Foster and Vohra [1993], Littlestone and
Warmuth [1994], Freund and Schapire [1997], Freund and Schapire [1999], Cesa-Bianchi et al.
[1997]). The other notion of regret we use is swap regret. There is a slightly weaker notion of regret
called internal regret that was defined earlier in Foster and Vohra [1998], which allows all occurrences
of a given action x to be replaced by another action y. Many no-internal-regret algorithms have been
designed (see for example Hart and Mas-Colell [2000], Foster and Vohra [1997, 1998, 1999], Cesa-
Bianchi and Lugosi [2003]). The stronger notion of swap regret was introduced in Blum and Mansour
[2005], and it allows one to simultaneously swap several pairs of actions. Blum and Mansour show
how to efficiently convert a no-regret algorithm to a no-swap-regret algorithm. One of the reasons
behind the importance of internal and swap regret is their close connection to the central notion of
correlated equilibrium introduced by Aumann [1974]. In a general n players game, a distribution over
action profiles of all the players is a correlated equilibrium if every player has zero internal regret.
When all players use algorithms with no-internal-regret guarantees, the time averaged strategies of
the players converges to a correlated equilibrium (see Hart and Mas-Colell [2000]). When all players
simply use algorithms with no-external-regret guarantees, the time averaged strategies of the players
converges to the weaker notion of coarse correlated equilibrium. When the game is a zero-sum game,

2

the time-averaged strategies of players employing no-external-regret dynamics converges to the Nash
equilbrium of the game.

On the topic of optimizing against a no-regret-learner, Agrawal et al. [2018] study a setting similar
to Braverman et al. [2018] but also consider other types of buyer behavior apart from learning, and
show to how to robustly optimize against various buyer strategies in an auction.

2 Model and Preliminaries

2.1 Games and equilibria

Throughout this paper, we restrict our attention to simultaneous two-player bimatrix games G. We
refer to the first player as the optimizer and the second player as the learner. We denote the set
of actions available to the optimizer as A = {a1, a2, . . . , aM} and the set of actions available to
the learner as B = {b1, b2, . . . , bN}. If the optimizer chooses action ai and the learner chooses
action bj , then the optimizer receives utility uO(ai, bj) and the learner receives utility uL(ai, bj).
We normalize the utility such that |uO(ai, bj)| ≤ 1 and |uL(ai, bj)| ≤ 1. We write ∆(A) and
∆(B) to denote the set of mixed strategies for the optimizer and learner respectively. When the
optimizer plays α ∈ ∆(A) and the learner plays β ∈ ∆(B), the optimizer’s utility is denoted by
uO(α, β) =

∑M
i=1

∑N
j=1 αiβjuO(ai, bj), similarly for the learner’s utility.

We say that a strategy b ∈ B is a best-response to a strategy α ∈ ∆(A) if b ∈ argmaxb′∈B uL(α, b′).
We are now ready to define Stackelberg equilibrium [Von Stackelberg, 2010].

Definition 1. The Stackelberg equilibrium of a game is a pair of strategies α ∈ ∆(A) and b ∈ B that
maximizes uO(α, b) under the constraint that b is a best-response to α. We call the value uO(α, b)
the Stackelberg value of the game.

A game is zero-sum if uO(ai, bj) + uL(ai, bj) = 0 for all i ∈ [M] and j ∈ [N]; likewise, a game
is constant-sum if uO(ai, bj) + uL(ai, bj) = C for some fixed constant C for all i ∈ [M] and
j ∈ [N]. Note that for zero-sum or constant-sum games, the Stackelberg equilibrium coincides with
the standard notion of Nash equilibrium due to the celebrated minimax theorem [von Neumann,
1928]. Moreover, throughout this paper, we assume that the learner does not have weakly dominated
strategies: a strategy b ∈ B is weakly dominated if there exists β ∈ ∆(B \ {b}) such that for all
a ∈ A, uL(a, β) ≥ uL(a, b).

We are interested in the setting where the optimizer and the learner repeatedly play the game G for T
rounds. We will denote the optimizer’s action at time t as at; likewise we will denote the learner’s
action at time t as bt. Both the optimizer and learner’s utilities are additive over rounds with no
discounting.

The optimizer’s strategy can be adaptive (i.e. at can depend on the previous values of bt) or non-
adaptive (in which case it can be expressed as a sequence of mixed strategies (α1, α2, . . . , αT)).
Unless otherwise specified, all positive results (results guaranteeing the optimizer can guarantee some
utility) apply for non-adaptive optimizers and all negative results apply even to adaptive optimizers.
As the name suggests, the learner’s (adaptive) strategy will be specified by some variant of a low-regret
learning algorithm, as described in the next section.

2.2 No-regret learning and mean-based learning

In the classic multi-armed bandit problem with T rounds, the learner selects one of K options (a.k.a.
arms) on round t and receives a reward ri,t ∈ [0, 1] if he selects option i. The rewards can be chosen
adversarially and the learner’s objective is to maximize her total reward.

Let it be the arm pulled by the learner at round t. The regret for a (possibly randomized) learning
algorithm Alg is defined as the difference between performance of the algorithm Alg and the best
arm: Reg(Alg) = maxi

∑T
t=1 ri,t − rit,t. An algorithm Alg for the multi-armed bandit problem

is no-regret if the expected regret is sub-linear in T , i.e., E[Reg(Alg)] = o(T). In addition to the
bandits setting in which the learner only learns the reward of the arm he pulls, our results also apply
to the experts setting in which the learner can learn the rewards of all arms for every round. Simple
no-regret strategies exist in both the bandits and the experts settings.

3

Among no-regret algorithms, we are interested in two special classes of algorithms. The first is the
class of mean-based strategies:

Definition 2 (Mean-based Algorithm). Let σi,t =
∑t
s=1 ri,s be the cumulative reward for pulling

arm i for the first t rounds. An algorithm is γ-mean-based if whenever σi,t < σj,t − γT , the
probability for the algorithm to pull arm i on round t is at most γ. An algorithm is mean-based if it is
γ-mean-based for some γ = o(1).

Intuitively, mean-based strategies are strategies that play the arm that historically performs the best.
Braverman et al. [2018] show that many no-regret algorithms are mean-based, including commonly
used variants of EXP3 (for the bandits setting), the Multiplicative Weights algorithm (for the experts
setting) and the Follow-the-Perturbed-Leader algorithm (for the experts setting).

The second class is the class of no-swap-regret algorithms:

Definition 3 (No-Swap-Regret Algorithm). The swap regret Regswap(Alg) of an algorithm Alg is
defined as

Regswap(Alg) = max
π:[K]→[K]

Reg(Alg, π) =

T∑
t=1

rπ(it),t − rit,t

where the maximum is over all functions π mapping options to options. An algorithm is no-swap-regret
if the expected swap regret is sublinear in T , i.e. E[Regswap(Alg)] = o(T).

Intuitively, no-swap-regret strategies strengthen the no-regret criterion in the following way: no-regret
guarantees the learning algorithm performs as well as the best possible arm overall, but no-swap-
regret guarantees the learning algorithm performs as well as the best possible arm over each subset of
rounds where the same action is played. Given a no-regret algorithm, a no-swap-regret algorithm can
be constructed via a clever reduction (see Blum and Mansour [2005]).

3 Playing against no-regret learners

3.1 Achieving Stackelberg equilibrium utility

To begin with, we show that the optimizer can achieve an average utility per round arbitrarily close to
the Stackelberg value against a no-regret learner.

Theorem 4. Let V be the Stackelberg value of the game G. If the learner is playing a no-regret
learning algorithm, then for any ε > 0, the optimizer can guarantee at least (V − ε)T − o(T) utility.

Proof. Let (α, b) be the Stackelberg equilibrium of the game G. Since (α, b) forms a Stackelberg
equilibrium, b ∈ argmaxb′ uL(α, b′). Moreover, by the assumption that the learner does not have a
weakly dominated strategy, there does not exist β ∈ ∆(B \ {b}) such that for all a ∈ A, uL(a, β) ≥
uL(a, b). By Farkas’s lemma [Farkas, 1902], there must exist an α′ ∈ ∆(A) such that for all
b′ ∈ B \ {b}, uL(α′, b) ≥ uL(α′, b′) + κ for κ > 0.

Therefore, for any δ ∈ (0, 1), the optimizer can play the strategy α∗ = (1− δ)α+ δα′ such that b is
the unique best response to α∗ and playing strategy b′ 6= b will induce a utility loss at least δκ for
the learner. As a result, since the leaner is playing a no-regret learning algorithm, in expectation,
there is at most o(T) rounds in which the learner plays b′ 6= b. It follows that the optimizer’s
utility is at least V T − δ(V − uO(α′, b))T − o(T). Thus, we can conclude our proof by setting
ε = δ(V − uO(α′, b)).

Next, we show that in the special class of constant-sum games, the Stackelberg value is the best that
the optimizer can hope for when playing against a no-regret learner.

Theorem 5. Let G be a constant-sum game, and let V be the Stackelberg value of this game. If the
learner is playing a no-regret algorithm, then the optimizer receives no more than V T + o(T) utility.

Proof. Let ~a = (a1, · · · , aT) be the sequence of the optimizer’s actions. Moreover, let α∗ ∈ ∆(A)
be a mixed strategy such that α∗ plays ai ∈ A with probability α∗i = |{t | at = ai}|/T .

4

Since the learner is playing a no-regret learning algorithm, the learner’s cumulative utility is at least
maxb′∈B uL(a∗, b′)T − o(T) = CT − (minb′∈B uO(a∗, b′)T + o(T)), where C is the constant sum,
which implies that the optimizer’s utility is at most

max
a∗∈∆(A)

min
b′∈B

uO(a∗, b′)T + o(T) = V T + o(T)

where the equality follows that the Stackelberg value is equal to the minimax value by the minimax
theorem for a constant-sum game.

3.2 No-swap-regret learning

In this section, we show that if the learner is playing a no-swap-regret algorithm, the optimizer can
only achieve their Stackelberg utility per round.
Theorem 6. Let V be the Stackelberg value of the game G. If the learner is playing a no-swap-regret
algorithm, then the optimizer will receive no more than V T + o(T) utility.

Proof. Let ~a = (a1, · · · , aT) be the sequence of the optimizer’s actions and let~b = (b1, · · · , bT) be
the realization of the sequence of the learner’s actions. Moreover, let Pr[~b] be the probability that
the learner (who is playing some no-swap-regret learning algorithm) plays~b given that the adversary
plays ~a. Then, the marginal probability for the learner to play bj ∈ B at round t is

Pr[bt = bj] =
∑

~b:bt=bj

Pr[~b].

Let αbj ∈ ∆(A) be a mixed strategy such that αbj plays ai ∈ A with probability

α
bj
i =

∑
t:at=ai

Pr[bt = bj]∑
t Pr[bt = bj]

.

Let B̄ = {bj ∈ B : bj 6∈ argmaxb′ uL(αbj , b′)} and consider a mapping π such that π(bj) ∈
argmaxb′ uL(αbj , b′). Then, the swap-regret under π is∑

bj∈B

((
uL(αbj , π(bj))− uL(αbj , bj)

)
·
∑
t

Pr[bt = bj]

)

=
∑
bj∈B̄

((
uL(αbj , π(bj))− uL(αbj , bj)

)
·
∑
t

Pr[bt = bj]

)

≥ δ ·
∑
bj∈B̄

(∑
t

Pr[bt = bj]

)
where δ = minbj∈B̄

(
uL(αbj , π(bj)) − uL(αbj , bj). Therefore, since the learner is playing a no-

swap-regret algorithm, we have
∑
bj∈B̄ (

∑
t Pr[bt = bj]) = o(T).

Moreover, for bj ∈ B \ B̄, the optimizer’s utility when the learner plays bj is at most

uO(αbj , bj) ·
∑
t

Pr[bt = bj] ≤ V ·
∑
t

Pr[bt = bj].

Thus, the optimizer’s utility is at most∑
bj∈B

(
uO(αbj , bj) ·

∑
t

Pr[bt = bj]

)

=
∑

bj∈B\B̄

(
uO(αbj , bj) ·

∑
t

Pr[bt = bj]

)
+
∑
bj∈B̄

(
uO(αbj , bj) ·

∑
t

Pr[bt = bj]

)

≤ V ·
∑

bj∈B\B̄

(∑
t

Pr[bt = bj]

)
+ 1 ·

∑
bj∈B̄

(∑
t

Pr[bt = bj]

)
≤ V T + o(T).

5

Theorem 7. Let G be a game where the learner has N = 2 actions, and let V be the Stackelberg
value of this game. If the learner is playing a no-regret algorithm, then the optimizer receives no
more than V T + o(T) utility.

Proof. By Theorem 6, it suffices to show that when there are two actions for the learner, a no-regret
learning algorithm is in fact a no-swap-regret learning algorithm.

When there are only two actions, there are three possible mappings from B → B other than the
identity mapping. Let π1 be a mapping such that π1(b1) = b1 and π1(b2) = b1, π2 be a mapping such
that π2(b1) = b2 and π2(b2) = b2, and π3 be a mapping such that π3(b1) = b2 and π3(b2) = b1.

Since the learner is playing a no-regret learning algorithm, we have E[Reg(A, π1)] = o(T) and
E[Reg(A, π2)] = o(T). Moreover, notice that

E[Reg(A, π3)] = E[Reg(A, π1)] + E[Reg(A, π2)] = o(T),

which concludes the proof.

4 Playing against mean-based learners

From the results of the previous section, it is natural to conjecture that no optimizer can achieve more
than the Stackelberg value per round if playing against a no-regret algorithm. After all, this is true for
the subclass of no-swap-regret algorithms (Theorem 6) and is true for simple games: constant-sum
games (Theorems 5) and games in which the learner only has two actions (Theorem 7).

In this section we show that this is not the case. Specifically, we show that there exist games G where
an optimizer can win strictly more than the Stackelberg value every round when playing against a
mean-based learner. We emphasize that the same strategy for the optimizer will work against any
mean-based learning algorithm the learner uses.

We then proceed to characterize the optimal strategy for a non-adaptive optimizer playing against
a mean-based learner as the solution to an optimal control problem in N dimensions (where N is
the number of actions of the learner), and make several preliminary observations about structure an
optimal solution to this control problem must possess. Understanding how to efficiently solve this
control problem (or whether the optimal solution is even computable) is an intriguing open question.

4.1 Beating the Stackelberg value

We begin by showing it is possible for the optimizer to get significantly (linear in T) more utility
when playing against a mean-based learner.

Theorem 8. There exists a game G with Stackelberg value V where the optimizer can receive utility
at least V ′T − o(T) against a mean-based learner for some V ′ > V .

Proof. Assume that the learner is using a γ-mean-based algorithm. Consider the bimatrix game
shown in Table 1 in which the optimizer is the row player (These utilities are bounded in [−2, 2]
instead of [−1, 1] for convenience; we can divide through by 2 to get a similar example where utility
is bounded in [−1, 1]). We first argue that the Stackelberg value of this game is 0. Notice that if the
optimizer plays Bottom with probability more than 0.5, then the learner’s best response is to play Mid,
resulting in a −2 utility for the optimizer . However, if the optimizer plays Bottom with probability
at most 0.5, the expected utility for the optimizer from each column is at most 0. Therefore, in the
Stackelberg equilibrium, the optimizer will play Top and Bottom with probability 0.5 each, and the
learner will best respond with purely playing Right.

Left Mid Right
Top (0,

√
γ) (-2, -1) (-2, 0)

Bottom (0, -1) (-2, 1) (2, 0)
Table 1: Example game for beating the Stackelberg value.

6

However, the optimizer can obtain utility T − o(T) by playing Top for the first 1
2T rounds and

then playing Bottom for the remaining 1
2T rounds. Given the optimizer’s strategy, for the first 1

2T
rounds, the learner will play Left with probability at least (1− 2γ) after first

√
γT rounds. For the

remaining 1
2T rounds, the learner will switch to play Right with probability at least (1− 2γ) between

(
1+
√
γ

2 + γ)T -th round and (1− γ)T -th round, since the cumulative utility for playing Left is at most
1
2T ·
√
γ −

√
γ

2 T − γT = −γT and the cumulative utility for playing Mid is at most −γT .

Therefore, the cumulative utility for the optimizer for the first 1
2T rounds is at least

(1− 2γ)(
1

2
−√γ)T · 0 +

(
1

2
T − (1− 2γ)(

1

2
−√γ)T

)
· (−2) = −o(T),

and the cumulative utility for the optimizer for the remaining 1
2T rounds is at least

(1− 2γ)(
1

2
−
√
γ

2
− 2γ)T · 2 +

(
1

2
T − (1− 2γ)(

1

2
−
√
γ

2
− 2γ)T

)
· (−2) = T − o(T).

Thus, the optimizer can obtain a total utility T − o(T), which is greater than V T = 0 for the
Stackelberg value V = 0 in this game.

4.2 The geometry of mean-based learning

We have just seen that it is possible for the optimizer to get more than the Stackelberg value when
playing against a mean-based learner. This raises an obvious next question: how much utility can
an optimizer obtain when playing against a mean-based learner? What is the largest α such that an
optimizer can always obtain utility αT − o(T) against a mean-based learner?

In this section, we will see how to reduce the problem of constructing the optimal gameplay of a
non-adaptive optimizer to solving a control problem in N dimensions. The primary insight is that a
mean-based learner’s behavior depends only on their historical cumulative utilities for each of their
N actions, and therefore we can characterize the essential “state” of the learner by a tuple of N real
numbers that represent the cumulative utilities for different actions. The optimizer can control the
state of the learner by playing different actions, and in different regions of the state space the learner
plays specific responses.

More formally, our control problem will involve constructing a path in RN starting at the origin. For
each i ∈ [N], let Si equals the subset of (u1, u2, . . . , uN) ∈ RN where ui = max(u1, u2, . . . , uN)
(this will represent the subset of state space where the learner will play action bi). Note that these
sets Si (up to some intersection of measure 0) partition the entire space RN .

We represent the optimizer’s strategy π as a sequence of tuples (α1, t1), (α2, t2), . . . , (αk, tk) with
αi ∈ ∆(A) and ti ∈ [0, 1] satisfying

∑
i ti = 1. Here the tuple (αi, ti) represents the optimizer

playing mixed strategy αi for a ti fraction of the total rounds. This strategy evolves the learner’s state
as follows. The learner originally starts at the state P0 = 0. After the ith tuple (αi, ti), the learner’s
state evolves according to Pi = Pi−1 + ti(uL(αi, b1), uL(αi, b2), . . . , uL(αi, bN)) (in fact, the state
linearly interpolates between Pi−1 and Pi as the optimizer plays this action). For simplicity, we will
assume that positive combinations of vectors of the form (uL(αi, b1), uL(αi, b2), . . . , uL(αi, bN))
can generate the entire state space RN .

To characterize the optimizer’s reward, we must know which set Si the learner’s state belongs to.
For this reason, we will insist that for each 1 ≤ i ≤ k, there exists a ji such that both Pi−1 and Pi
belong to the same region Sji . It is possible to convert any strategy π into a strategy of this form
by subdividing a step (α, t) that crosses a region boundary into two steps (α, t′) and (α, t′′) with
t = t′+ t′′ so that the first step stops exactly at the region boundary. If there is more than one possible
choice for ji (i.e. Pi−1 and Pi lie on the same region boundary), then without loss of generality we
let the optimizer choose ji, since the optimizer can always modify the initial path slightly so that Pi
and Pi−1 both lie in a unique region.

Once we have done this, the optimizer’s average utility per round is given by the expression:

U(π) =

k∑
i=1

tiuO(αi, bji).

7

Theorem 9. Let U∗ = supπ U(π) where the supremum is over all valid strategies π in this control
game. Then

1. For any ε > 0, there exists a non-adaptive strategy for the optimizer which guarantees
expected utility at least (U∗ − ε)T − o(T) when playing against any mean-based learner.

2. For any ε > 0, there exists no non-adaptive strategy for the optimizer which can guarantee
expected utility at least (U∗ + ε)T + o(T) when playing against any mean-based learner.

Understanding how to solve this control problem (even inefficiently, in finite time) is an interesting
open problem. In the remainder of this section, we make some general observations which will let us
cut down the strategy space of the optimizer even further and propose a conjecture to the form of the
optimal strategy.

The first observation is that when the learner hasN actions, our state space is trulyN−1 dimensional,
not N dimensional. This is because in addition to the learner’s actions only depending on the
cumulative reward for each action, they in fact only depend on the differences between cumulative
rewards for different actions (see Definition 2). This means we can represent the state of the learner
as a vector (x1, x2, . . . , xN−1) ∈ RN−1, where xi = ui − uN . The sets Si for 1 ≤ i ≤ N − 1 can
be written in terms of the xi as

Si = {x|xi = max(x1, . . . , xN−1, 0)}

and
SN = {x|0 = max(x1, . . . , xN−1, 0)}.

The next observation is that if the optimizer makes several consecutive steps in the same region Si,
we can combine them into a single step. Specifically, assume Pi, Pi+1, and Pi+2 all belong to some
region Sj , where (αi, ti) sends Pi to Pi+1 and (αi+1, ti+1) sends Pi+1 to Pi+2. Then replacing these

two steps with
(
αiti+αi+1ti+1

ti+ti+1
, ti + ti+1

)
results in a strategy with the exact same reward U(π).

Applying this fact whenever possible, this means we can restrict our attention to strategies where all
Pi (with the possible exception of the final state Pk) lie on the boundary of two or more regions Si.

Finally, we observe that this control problem is scale-invariant; if

π = ((α1, t1), (α2, t2), . . . , (αn, tn))

is a valid policy that obtains utility U , then

λπ = ((α1, λt1), (α2, λt2), . . . , (αn, λtn))

is another valid policy (with the exception that
∑
ti = λ, not 1) which obtains utility λU (this is

true since all the regions Si are cones with apex at the origin). This means we do not have to restrict
to policies with

∑
ti = 1; we can choose a policy of any total time, as long as we normalize the

utility by
∑
ti. This generalizes the strategy space, but is useful for the following reason. Consider a

sequence of steps π which starts at some point P (not necessarily 0) and ends at P . Then if U is the
average utility of this cycle, then U∗ ≥ U (in particular, we can consider any policy which goes from
0 to P and then repeats this cycle many times). Likewise, if we have a sequence of steps π which
starts at some point P and ends at λP for some λ > 1 which achieves average utility U , then again
U∗ ≥ U (by considering the policy which proceeds 0 → P → λP → λ2P → . . . (note that it is
essential that λ ≥ 1 to prevent this from converging back to 0 in finite time).

These observations motivate the following conjecture.
Conjecture 10. The value U∗ is achieved by either:

1. The average utility of a policy starting at the origin and consisting of at most N steps (in
distinct regions).

2. The average utility of a path of at most N steps (in distinct regions) which starts at some
point P and returns to λP for some λ ≥ 1.

We leave it as an interesting open problem to compute the optimal solution to this control problem.

8

References
Shipra Agrawal, Constantinos Daskalakis, Vahab S. Mirrokni, and Balasubramanian Sivan. Robust

repeated auctions under heterogeneous buyer behavior. In Proceedings of the 2018 ACM Conference
on Economics and Computation, Ithaca, NY, USA, June 18-22, 2018, page 171, 2018.

Robert J. Aumann. Subjectivity and correlation in randomized strategies. Journal of Mathematical
Economics, 1(1):67 – 96, 1974. ISSN 0304-4068.

Avrim Blum and Yishay Mansour. From external to internal regret. In Peter Auer and Ron Meir,
editors, Learning Theory, 2005.

Mark Braverman, Jieming Mao, Jon Schneider, and Matt Weinberg. Selling to a no-regret buyer. In
Proceedings of the 2018 ACM Conference on Economics and Computation, pages 523–538. ACM,
2018.

Nicolò Cesa-Bianchi and Gábor Lugosi. Potential-based algorithms in on-line prediction and game
theory. Machine Learning, 51(3):239–261, Jun 2003.

Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E. Schapire, and
Manfred K. Warmuth. How to use expert advice. J. ACM, 44(3):427–485, May 1997. ISSN
0004-5411.

Julius Farkas. Theorie der einfachen ungleichungen. Journal für die reine und angewandte Mathe-
matik, 124:1–27, 1902.

Dean P. Foster and Rakesh V. Vohra. A randomization rule for selecting forecasts. Operations
Research, 41(4):704–709, 1993.

Dean P. Foster and Rakesh V. Vohra. Calibrated learning and correlated equilibrium. Games and
Economic Behavior, 21(1):40 – 55, 1997.

Dean P. Foster and Rakesh V. Vohra. Asymptotic calibration. Biometrika, 85(2):379–390, 06 1998.

Dean P. Foster and Rakesh V. Vohra. Regret in the on-line decision problem. Games and Economic
Behavior, 29(1):7 – 35, 1999.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119 – 139, 1997.

Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative weights. Games
and Economic Behavior, 29(1):79 – 103, 1999.

James Hannan. Approximation to bayes risk in repeated plays. Contributions to the Theory of Games,
3:97–139, 1957.

Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to correlated equilibrium.
Econometrica, 68(5):1127–1150, 2000.

N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Information and Computation,
108(2):212 – 261, 1994.

John von Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):295–320,
1928.

Heinrich Von Stackelberg. Market structure and equilibrium. Springer Science & Business Media,
2010.

9

	Introduction
	Model and Preliminaries
	Games and equilibria
	No-regret learning and mean-based learning

	Playing against no-regret learners
	Achieving Stackelberg equilibrium utility
	No-swap-regret learning

	Playing against mean-based learners
	Beating the Stackelberg value
	The geometry of mean-based learning

