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Abstract

Learning in recurrent neural networks (RNNs) is most often implemented by
gradient descent using backpropagation through time (BPTT), but BPTT does
not model accurately how the brain learns. Instead, many experimental results
on synaptic plasticity can be summarized as three-factor learning rules involving
eligibility traces of the local neural activity and a third factor. We present here
eligibility propagation (e-prop), a new factorization of the loss gradients in RNNs
that fits the framework of three factor learning rules when derived for biophysical
spiking neuron models. When tested on the TIMIT speech recognition benchmark,
it is competitive with BPTT both for training artificial LSTM networks and spiking
RNNs. Further analysis suggests that the diversity of learning signals and the
consideration of slow internal neural dynamics are decisive to the learning efficiency
of e-prop.

Introduction

The brain seems to be able to solve tasks such as counting, memorizing and reasoning which require
efficient temporal processing capabilities. It is natural to model this with recurrent neural networks
(RNNs), but their canonical training algorithm called backpropagation through time (BPTT) does not
appear to be compatible with learning mechanisms observed in the brain. There, long-term changes
of synaptic efficacies depend on the local neural activity. It was found that the precise timing of
the electric pulses (i.e. spikes) emitted by the pre- and post-synaptic neurons matters, and these
spike-timing dependent plasticity (STDP) changes can be conditioned or modulated by a third factor
that is often thought to be a neuromodulator (see [1, 2] for reviews). Looking closely at the relative
timing, the third factor affects the plasticity even if it arrives with a delay. This suggests the existence
of local mechanisms that retain traces of the recent neural activity during this temporal gap and they
are often referred to as eligibility traces [2].

To verify whether three factor learning rules can implement functional learning algorithms, researchers
have simulated how interesting learnt behaviours can emerge from them [1, 3, 4]. The third factor is
often considered as a global signal emitted when a reward is received or predicted, and this alone
can solve learning tasks of moderate difficulty, even in RNNs [4]. Yet in feed-forward networks, it
was already shown that plausible learning algorithms inspired by backpropagation and resulting in
neuron-specific learning signals largely outperform the rules based on a global third factor [5, 6, 7].
This suggests that backpropagation provides important details that are not captured by all three factor
learning rules.

Here we aim at a learning algorithm for RNNs that is general and efficient like BPTT but remains
plausible. A major plausibility issue of BPTT is that it requires to propagate errors backwards in time
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or to store the entire state space trajectory raising questions on how and where this is performed in
the brain [8]. We suggest instead a rigorous re-analysis of gradient descent in RNNs that leads to
a gradient computation relying on a diversity of learning signals (i.e. neuron-specific third factors)
and a few eligibility traces per synapse. We refer to this algorithm as eligibility propagation (e-prop).
When derived with spiking neurons, e-prop fits under the three factor learning rule framework and is
qualitatively compatible with experimental data [2]. To test its learning efficiency, we applied e-prop
to artificial Long Short-Term Memory (LSTM) networks [9], and Long short-term memory Spiking
Neural Networks (LSNNs) [10] (spiking RNNs combining short and long realistic time constants).
We found that (1) it is competitive with BPTT on the TIMIT speech recognition benchmark, and (2)
it can solve nontrivial temporal credit assignment problems with long delays. We are not aware of
any comparable achievements with previous three factor learning rules.

Real-time recurrent learning (RTRL) [11] computes the same loss gradients as BPTT in an online
fashion but requires many more operations. Eventhough the method is online, one may wonder
where can it be implemented in the brain if it requires a machinery bigger than the network itself.
Recent works [12, 13, 6] have suggested that eligibility traces can be used to approximate RTRL.
This was shown to be feasible if the neurons do not have recurrent connections [6], if the recurrent
connections are ignored during learning [12] or if the network dynamics are approximated with a
trained estimator [13]. However these algorithms were derived for specific neuron models without
long-short term memory, making it harder to tackle challenging RNN benchmark tasks (no machine
learning benchmarks were considered in [6, 12]). Other mathematical methods [14, 15], have
suggested approximations to RTRL which are compatible with complex neuron models. Yet those
methods lead to gradient estimates with a high variance [15] or requiring heavier computations when
the network becomes large [14, 11]. This issue was solved in e-prop, as the computational and
memory costs are the same (up to constant factor) as for running any computation with the RNN.
This reduction of the computational load arises from an essential difference between e-prop and
RTRL: e-prop computes the same loss gradients but only propagates forward in time the terms that
can be computed locally. This provides a new interpretation of eligibility traces that is mathematically
grounded and generalizes to a broad class of RNNs. Our empirical results show that such traces are
sufficient to approach the performance of BPTT despite a simplification of the non-local learning
signal, but we believe that more complex strategies for computing a learning signals can be combined
with e-prop to yield even more powerful online algorithms. A separate paper presents one such
example to enable one-shot learning in recurrent spiking neural networks [8].

Eligibility propagation

The mathematical basis for e-prop E-prop applies for a general class of recurrent network models
that includes LSTMs and LSNNs, where each neuron j has a hidden state hj P R

d where d is
typically 1 or 2 (e.g. the memory cell content of an LSTM unit or the membrane potential for
a spiking neuron), and an observable state ztj P R (e.g. the LSTM outputs or the spikes). The
performance of a network on a specific task is usually expressed using a loss function E, and learning
by gradient descent learning amounts to changing the network weightsW such that E is minimized.
Much like BPTT, e-prop computes the gradient dE

dWji
with respect to the weights from i to j where

the neurons i and j are potentially connected. Here, this gradients depends on learning signals Lt
j

specific to the neuron j and eligibility traces etji such that (see proof in [16]):
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The eligibility traces etji are defined by etji “
Bzt

j

Bht
j
εtji, using so-called eligibility vectors that are

expressed recursively and propagated forward in time:

εtji “
Bht

j

Bht´1
j

¨ εt´1
ji `
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BWji
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This allows the loss-independent eligibility traces to be defined for any RNN model. For equation (1)
to hold, the ideal learning signal is required to be Lt

j “
dE
dzt

j
. Since this derivative captures how the

output ztj of neuron j influences the loss E via future observable states of other neurons, its precise
value is in general not available at time t. For e-prop, we replace it by an online approximation, we use
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Figure 1: Solving a task with difficult temporal credit assignment by e-prop. A) Setup of cor-
responding rodent experiments of [17]. B) Input spikes, internal spiking activity of 10 out of 50
sample ALIF neurons, sample learning signals and samples of slow components of eligibility traces
in the bottom row. C) Learning curves for BPTT and e-prop for the task in A-B. D) Performance of
LSNNs (top) and of LSTMs (bottom) trained with BPTT, symmetric e-prop and random e-prop on
frame-wise phoneme classification (left) and on phoneme sequence recognition (right). For LSNNs
the performance of e-prop with global instead neuron-specific learning signals is also reported.

the partial derivative BE
Bzt

j
which ignores indirect influences through the future activity zt`1, ¨ ¨ ¨ zT ,

and only takes into account the direct effect of ztj on the loss E. For instance, for supervised
regression when the network outputs ytk are linearly related to the observable states ytk “

ř

j W
out
jk ztj ,

the learning signal becomes Lt
j “

ř

kW
out
jk py

t
k ´ y

˚,t
k q where y˚,tk are the output targets.

E-prop can be implemented online by accumulating the products Lje
t
ji or applying them directly at

each time step and does not require to backpropagate through time or to store the past neural activity.
This solves a major plausibility issue raised by BPTT. To also avoid the implausible weight sharing
between the feedback and feedforward pathways, one can replace the feedback weights in Lt

j by
fixed random values as done in [5] leading to the two variants: symmetric and random e-prop.

E-prop for spiking neurons and data on synaptic plasticity To link the theory to data on STDP
and three factor learning rules, we applied e-prop to a recurrent network of spiking neurons. We use
leaky-integrate and fire (LIF) neurons for which the dynamics of the membrane voltage is modelled as
a leaky integrator and a spike is emitted when the voltage crosses a firing threshold from below. When
simulated in discrete time with a time step of one millisecond, a recurrent network of LIF neurons
fits into the general class of RNNs described above such that the hidden state ht

j is the membrane
voltage and the spikes are modelled by a binary observable state ztj P t0, 1u. Non-differentiability of
the binary output of spiking neurons is solved as in [10], by using a pseudo-derivative in-place of
Bzt

j

Bht
j
. Remarkably, the eligibility trace etji that emerges for a LIF neuron is a product of the pre- and

post-synaptic activity. It is non-zero only if pre-synaptic spikes have preceded a depolarization of
the post-synaptic neuron in a time window of about 20 ms which is reminiscent of STDP. Moreover
it was verified in [16] that the replacement of etji in equation (1) by a form of voltage dependent
STDP used to fit data accurately [2], does not strongly impair the performance of e-prop on a pattern
generation task [16].

Forward and stable propagation of RNN gradients with eligibility traces To enhance the work-
ing memory capabilities of the spiking network model, we model slower neural dynamics by in-
troducing a model of firing rate adaptation: after each spike the threshold increases by a constant
amount and reduces back to its resting value after hundreds of milliseconds or few seconds. This
type of adaptive LIF (ALIF) neuron also includes its current firing threshold in its hidden state ht

j . A
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recurrent network of ALIF and LIF neurons connected in an all-to-all fashion is termed LSNN [10].
For an ALIF neuron j each eligibility vector εtji include a slow component εtji,a that decays with the
time constants of adaptation, i.e. much slower than for non-adaptive LIF neurons.

We tested the ability of e-prop and LSNNs to learn temporal dependencies on a task that was used
to study working memory in rodents [17] and that requires to memorize over a delay of hundreds
of milliseconds. It requires the rodent to run along a linear track in a virtual environment, where it
encounters a number of visual cues to its left and its right, see Figure 1A. After arrival at a T-junction,
it has to decide whether it had observed more cues to the left or on the right side and turn towards
that direction. This task requires to establish a connection between errors in the decision and the
processing of cues that happened a long time ago. We found that LSNNs with 100 neurons can
be trained by e-prop to solve this task (Figure 1B), but a similar network of LIF neurons without
adaptation cannot solve the task (Figure 1C). The key feature arising with adaptive neurons is the
slow component εtji,a of the eligibility vector associated with the threshold adaptation and sharing
its slow dynamics (see Figure 1B bottom). As the learning signal Lt

j is only non-zero during the
decision period at the last time steps of the episode, the eligibility traces must hold the information
about the relevant cues for hundreds of time steps during the delay (see Figure 1A). In this way e-prop
alleviates the need to propagate signals backwards in time.

Approaching the performance of BPTT We compare E-prop and BPTT on two benchmarks for
RNNs based on the TIMIT dataset: phoneme classification of each audio frame in a spoken sentence,
and transcription of the entire sequence of phonemes spoken in a sentence. The LSTM and BPTT
baselines were obtained by reproducing the experiments from [18] solving framewise-phoneme
classification with 400 LSTM units and [19] solving sentence transcription with three layers of 500
LSTM units. For the LSNN we used 800 spiking neurons in the first task and three layers of 800
spiking neurons in the second. Remarkably, the error rate obtained with e-prop is only a few percents
larger than the BPTT baseline in all cases, even if the feedback weights are replaced by random ones
(Figure 1D). In contrast, the loss performance of e-prop when using uniform feedback matrices was
significantly worse: the error rate jumped from 34.6 to 52% for frame-wise classification and from
24.7 to 60% for the speech transcription. Beyond supervised learning task it is also shown in [20, 16]
that e-prop can be applied on reinforcement learning tasks.

Discussion E-prop is a novel learning algorithm that qualitatively fits experimental data on synaptic
plasticity and maintains a performance that is competitive with BPTT. Our analysis shows that
e-prop can take advantage of neuron models with enhanced memory capabilities to solve non-trivial
temporal credit assignment problems, and the diversity of the learning signals is decisive for the
learning efficiency of three factor learning rules. Interestingly, it was found recently that dopaminergic
neurons encode more diverse information than a global reward prediction error [17], and performance
monitoring neurons providing potential learning signals are found prominently in cortices [21].
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