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Abstract

Normalizing constant (also called partition function, Bayesian evidence, or marginal likeli-
hood) is one of the central goals of Bayesian inference, yet most of the existing methods are
both expensive and inaccurate. Here we develop a new approach, starting from posterior
samples obtained with a standard Markov Chain Monte Carlo (MCMC). We apply a novel
Normalizing Flow (NF) approach to obtain an analytic density estimator from these sam-
ples, followed by Optimal Bridge Sampling (OBS) to obtain the normalizing constant. We
compare our method which we call Gaussianized Bridge Sampling (GBS) to existing meth-
ods such as Nested Sampling (NS) and Annealed Importance Sampling (AIS) on several
examples, showing our method is both significantly faster and substantially more accurate
than these methods, and comes with a reliable error estimation.
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1. Introduction

Normalizing constant, also called partition function, Bayesian evidence, or marginal like-
lihood, is the central object of Bayesian methodology. Despite its importance, existing
methods are both inaccurate and slow, and may require specialized tuning. One such
method is Annealed Importance Sampling (AIS), and its alternative, Reverse AIS (RAIS),
which can give stochastic lower and upper bounds to the normalizing constant, bracketing
the true value (Neal, 2001; Grosse et al., 2015). However, as the tempered distribution
may vary substantially with temperature, it can be expensive to obtain good samples at
each temperature, which can lead to poor estimates (Murray et al., 2006). Nested sampling
(NS) is another popular alternative (Skilling, 2004; Handley et al., 2015), which can be
significantly more expensive than standard sampling methods in higher dimensions but, as
we show, can also lead to very inaccurate estimates. Moreover, there is no simple way to
know how accurate the estimate is.
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Here we develop a new approach to the problem, combining Normalizing Flow (NF)
density estimators with Optimal Bridge Sampling (OBS). In a typical Bayesian inference
application, we first obtain posterior samples using one of the standard Markov Chain
Monte Carlo (MCMC) methods. In our approach we use these samples to derive the nor-
malizing constant with relatively few additional likelihood evaluations required, making the
additional cost of normalizing constant estimation small compared to posterior sampling.
All of our calculations are run on standard CPU platforms, and will be available in the
BayesFast Python package.

2. Bridge Sampling

Let p(x) and q(x) be two possibly unnormalized distributions defined on Ω, with normalizing
constants Zp and Zq. For any function α(x) on Ω, we have∫

Ω
α(x)p(x)q(x)dx = Zp 〈α(x)q(x)〉p = Zq 〈α(x)p(x)〉q , (1)

if the integral exists. Suppose that we have samples from both p(x) and q(x), and we know
Zq, then Equation (1) gives

Zp =
〈α(x)p(x)〉q
〈α(x)q(x)〉p

Zq, (2)

which is the Bridge Sampling estimation of normalizing constant (Meng and Wong, 1996).
It can be shown that many normalizing constant estimators, including Importance Sampling
and Harmonic Mean, are special cases with different choices of bridge function α(x) (Gronau
et al., 2017).

For a given proposal function q(x), an asymptotically optimal bridge function can be
constructed, such that the ratio r = Zp/Zq is given by the root of the following score
function equation

S(r) =

np∑
i=1

nqrq(xp,i)

npp(xp,i) + nqrq(xp,i)
−

nq∑
i=1

npp(xq,i)

npp(xq,i) + nqrq(xq,i)
= 0, (3)

where np and nq are the numbers of samples from p(x) and q(x). For r ≥ 0, S(r) is
monotonic and has a unique root, so one can easily solve it with e.g. secant method. This
estimator is optimal, in the sense that its relative mean-square error is minimized (Chen
et al., 2012).

Choosing a suitable proposal q(x) for Bridge Sampling can be challenging, as it requires a
large overlap between q(x) and p(x). One approach is Warp Bridge Sampling (WBS) (Meng
and Schilling, 2002), which transforms p(x) to a Gaussian with linear shifting, rescaling and
symmetrizing. As we will show, this approach can be inaccurate or even fail completely for
more complicated probability densities.

3. Normalizing Flow Based Density Estimation

As stated above, an appropriate proposal q(x) which has large overlap with p(x) is required
for OBS to give accurate results. In a typical MCMC analysis we have samples from the
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posterior, so one can obtain an approximate density estimation q(x) from these samples
using a bijective NF. In this approach one maps p(x) to an unstructured distribution such
as zero mean unit variance Gaussian N (0, I). For density evaluation we must also keep
track of the Jacobian of transformation |dΨ/dx|, so that our estimated distribution is
q(x) = N (0, I)|dΨ/dx|, where Ψ(x) is the transformation. The probability density q(x) is
normalized, so we know Zq = 1. There have been various methods of NF recently proposed
in machine learning literature (Dinh et al., 2014, 2016; Papamakarios et al., 2017), which
however failed on several examples we present below. Moreover, we observed that training
with these is very expensive and can easily dominate the overall computational cost.

For these reasons we instead develop Iterative Neural Transform (INT), a new NF ap-
proach, details of which will be presented elsewhere. It is based on combining optimal
transport and information theory, repeatedly finding and transforming one dimensional
marginals that are the most deviant between the target and proposal (Gaussian) distribu-
tions. After computing dual representation of Wasserstein-1 distance to find the maximally
non-Gaussian directions, we apply a bijective transformation that maximizes the entropy
along these directions. For this we use a non-parametric spline based transformation that
matches the 1-d cumulative distribution function (CDF) of the data to a Gaussian CDF,
where kernel density estimation (KDE) is used to smooth the probability density marginals.
We found that using a fixed number of 5 to 10 iterations is sufficient for evidence estimation,
and the computational cost of our NF density estimation is small when compared to the
cost of sampling.

4. Proposed Method

We propose the following Gaussianized Bridge Sampling (GBS) approach, which combines
OBS with NF density estimation. In our typical application, we first run No-U-Turn Sampler
(NUTS) (Hoffman and Gelman, 2014) to obtain 2np samples from p(x) if its gradient
is available, while affine invariant sampling (Foreman-Mackey et al., 2013) can be used
in the gradient-free case. To avoid underestimation of Zp (Overstall and Forster, 2010),
these 2np samples are divided into two batches, and we fit INT with the first batch of np
samples to obtain the proposal q(x). Then we draw nq samples from q(x) and evaluate their
corresponding p(x), where nq is determined by an adaptive rule (see Appendix B.4). We
solve for the normalizing constant ratio r with Equation (3), using these nq samples from
q(x) and the second batch of np samples from p(x) (also evaluating their corresponding
q(x)), and report the result in form of lnZp, with its error approximated by the relative
mean-square error of Zp given in Equation (9) (Chen et al., 2012).

5. Examples

We used four test problems to compare the performance of various estimators. See Ap-
pendix A and B for more details of the examples and algorithms.

(1) The 16-d Funnel example is adapted from Neal et al. (2003). The funnel structure
is common in Bayesian hierarchical models, and in practice it is recommended to reparam-
eterize the model to overcome the pathology (Betancourt and Girolami, 2015). Here we
stick to the original parameterization for test purpose.
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(2) The 32-d Banana example comes from a popular variant of multidimensional Rosen-
brock function (Rosenbrock, 1960), which is composed of 16 uncorrelated 2-d bananas. In
addition, we apply a random 32-d rotation to the bananas, which makes all the parameters
correlated with each other.

(3) The 48-d Cauchy example is adapted from the LogGamma example in Feroz et al.
(2013); Buchner (2016). In contrast to the original example, where the mixture structure
only exists in the first two dimensions, we place a mixture of two heavy-tailed Cauchy
distributions along every dimension.

(4) The 64-d Ring example has strong non-linear correlation between the parameters,
as the marginal distribution of every two successive parameters is ring-shaped.

See Figure 1 for a comparison of the estimators. For all of the four test examples, the
proposed GBS algorithm gives the most accurate result and a valid error estimation. We
use NS as implemented in dynesty (Speagle, 2019) with its default settings. For all other
cases, we use NUTS as the MCMC transition operator. We chose to run (R)AIS with equal
number of evaluations as our GBS, but as seen from Figure 1 this number is inadequate for
(R)AIS, which needs about 10-100 times more evaluations to achieve sufficient accuracy (see
Appendix B.3). In contrast, if we run GBS with 4 times fewer evaluations (Gaussianized
Bridge Sampling Lite, GBSL), we achieve an unbiased result with a larger error than GBS,
but still smaller than other estimators. For comparison we also show results replacing OBS
with IS (GIS) or HM (GHM), while still using INT for q(x). Although GIS and GHM
are better than NS or (R)AIS, they are worse than GBS(L), highlighting the importance
of OBS. Finally, we also compare to WBS, which uses a very simple proposal distribution
q(x), and fails on several examples, highlighting the importance of using a more expressive
NF for q(x).

For our GBS(L), most of evaluation time is used to get the posterior samples with stan-
dard MCMC, which is a typical Bayesian inference goal, and the additional cost to evaluate
evidence is small compared to the MCMC (see Appendix B.4). In contrast, Thermodynamic
Integration (TI) or (R)AIS is more expensive than posterior sampling, since the chains need
to be accurate at every intermediate state (Neal, 1993). The same comment applies to NS,
which is more expensive than the MCMC approaches we use here for posterior analysis,
especially when non-informative prior is used.

6. Conclusion

We present a new method to estimate the normalizing constant (Bayesian evidence) in
the context of Bayesian analysis. Our starting point are the samples from the posterior
using standard MCMC based methods, and we assume that these have converged to the
correct probability distribution. In our approach we combine OBS with INT, a novel NF
based density estimator, showing on several high dimensional examples that our method
outperforms other approaches in terms of accuracy and computational cost, and provides a
reliable error estimate.
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Figure 1: Comparison of normalizing constant estimators on the four examples, based on
64 simulations for each case. Note that some panels use symmetrical logarithmic
scale for x-axis. See the main text for abbreviation keys. We show the quantiles
of normalizing constant results on the left and the number of total evaluations
on the right, separately for likelihood and its gradient. For WBS, GBS(L), GIS
and GHM, the number of evaluations shown includes those required for posterior
sampling, and the cost for evidence estimation alone is much smaller.
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Appendix A. Details of Examples

A.1. 16-d Funnel

The model likelihood is

L = N (x1 | 0, a2)

n∏
i=2

N (xi | 0, exp(2bx1)), a = 1, b = 0.5, n = 16, (4)

with flat prior x1 ∼ U(−4, 4), x2:n ∼ U(−30, 30). We use lnZp = −63.4988 as the fiducial
value, and the corner plot of the first four dimensions is shown in Figure 2.
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Figure 2: Corner plot for the Funnel example.

A.2. 32-d Banana

The model likelihood is

lnL = −
n/2∑
i=1

[
(y2

2i−1 − y2i)
2/Q+ (y2i−1 − 1)2

]
, y = Ax, Q = 0.01, n = 32, (5)

with flat prior U(−15, 15) on all the parameters. The rotation matrix A is generated
from a random sample of SO(n), and the same A is used for all the simulations. We use
lnZp = −127.364 as the fiducial value, and the corner plot of the first four dimensions,
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Figure 3: Corner plot for the Banana example. Top: without random rotation. Bottom:
with random rotation.
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without or with the random rotation, is shown in Figure 3. The strong degeneracy can
no longer be identified in the plot once we apply the rotation, however it still exists and
hinders most estimators from getting reasonable results.

A.3. 48-d Cauchy

The model likelihood is

L =
n∏

i=1

1

2
[ Cauchy(xi|µ, σ) + Cauchy(xi|−µ, σ) ] , µ = 5, σ = 1, n = 48, (6)

with flat prior U(−100, 100) on all the parameters. We use lnZp = −254.627 as the fiducial
value, and the corner plot of the first four dimensions is shown in Figure 4.
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Figure 4: Corner plot for the Cauchy example.

A.4. 64-d Ring

The model likelihood is

lnL = −
[

(x2
n + x2

1 − a)2

b

]2

−
n−1∑
i=1

[
(x2

i + x2
i+1 − a)2

b

]2

, a = 2, b = 1, n = 64, (7)

with flat prior U(−5, 5) on all the parameters. We use lnZp = −114.492 as the fiducial
value, and the corner plot of the first four dimensions is shown in Figure 5.
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Figure 5: Corner plot for the Ring example.
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Appendix B. Details of Algorithms

B.1. Obtaining Fiducial Values

Analytic normalizing constants for the (unconstrained) likelihood of the Funnel, Banana and
Cauchy examples are available. For the Funnel and Banana examples, we account for the
effect of finite prior range by simply generating a large amount of samples and counting the
fraction of the samples that are inside the prior range. For the Cauchy example, we directly
evaluate its CDF. For the Ring example, the fiducial normalizing constant is obtained by a
long AIS and RAIS run, with 300,000 intermediate states and 64 chains in both directions.

B.2. Nested Sampling

We use dynamic NS implemented in dynesty, which is considered more efficient than static
NS. Traditionally, NS does not need the gradient of the likelihood, at the cost of lower sam-
pling efficiency in high dimensions. Since analytic gradient of the four examples is available,
we follow dynesty’s default setting, which requires the gradient to perform Hamitonian Slice
Sampling for dimensions d > 20. While for dimensions 10 ≤ d ≤ 20, random walks sam-
pling is used instead. dynesty also provides an error estimate for the evidence; see Speagle
(2019) for details.

B.3. (Reversed) Annealed Importance Sampling

For (R)AIS, we divide the warm-up iterations of NUTS into two equal stages, and the (flat)
prior is used as the base density. In the first stage, we set β = 0.5 and adapt the mass
matrix and step size of NUTS, which acts as a compromise between the possibly broad prior
and narrow posterior. In the second stage, we set β = 0 (β = 1) for AIS (RAIS) to get
samples from the prior (posterior). After warm-up, we use the following sigmoidal schedule
to perform annealing,

β̃t = σ

(
δ

(
2t

T − 1
− 1

))
, βt =

β̃t − β̃0

β̃T−1 − β̃0

, 0 ≤ t ≤ T − 1, (8)

where σ denotes the logistic sigmoid function and we set δ = 4 (Grosse et al., 2015). We use
1,000 warm-up iterations for all the four examples, and adjust the number of states T so
that it needs roughly the same number of evaluations as GBS in total. The exact numbers
are listed in Table 1. We run 16 chains for each case, and average reported lnZp of different
chains, which gives a stochastic lower (upper) bound for AIS (RAIS) according to Jensen’s
inequality. The uncertainty is estimated from the scatter of different chains, and should be
understood as the error of the lower (upper) bound of lnZp, instead of lnZp itself.

Funnel Banana Cauchy Ring

AIS 800 2000 3000 3500
RAIS 700 1500 2500 3000

Table 1: The number of states T used by (R)AIS.
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Using the mass matrix and step size of NUTS adapted at β = 0.5, and the prior as
base density, may account for the phenomenon that RAIS failed to give an upper bound in
the Banana example: the density is very broad at high temperatures and very narrow at
low temperatures, which is difficult for samplers adapted at a single β. One may remedy
this issue by using a better base density that is closer to the posterior, but this will require
delicate hand-tuning and is beyond the scope of this paper. While the upper (lower) bounds
of (R)AIS are valid in the limit of a very large number of samples, achieving this limit may
be extremely costly in practice.

B.4. Sample-Based Estimators

The remaining normalizing constant estimators require a sufficient number of samples from
p(x), which we obtain with NUTS. For WBS, GBS, GIS and GHM, we run 8 chains with
2,500 iterations for the Funnel and Banana examples, and 5,000 iterations for the Cauchy
and Ring examples, including the first 20% warm-up iterations, which are removed from the
samples. Then we fit INT using 10 iterations for GBS, GIS and GHM, whose computation
cost (a few seconds for the Funnel example) is small or negligible relative to NUTS sampling,
and does not depend on the cost of ln p(x) evaluations. For GBSL, the number of NUTS
chains, NUTS iterations and INT iterations are all reduced by half, leading to a factor of
four decrease in the total computation cost.

The relative mean-square error of OBS is minimized and given by

R̂E2
OBS =

1

nq

Varq(f1(x))

E2
q(f1(x))

+
τf2
np

Varp(f2(x))

E2
p(f2(x))

, (9)

where f1(x) = p′(x)
spp′(x)+sqq(x) , f2(x) = q(x)

spp′(x)+sqq(x) , sp =
np

np+nq
, sq =

nq

np+nq
. Here

p′(x) = p(x)/Zp and q(x) should be normalized densities. We assume the samples from
q(x) are independent, whereas the samples from p(x) may be autocorrelated, and τf2 is the
integrated autocorrelation time of f2(xp) (Frühwirth-Schnatter, 2004), which is estimated
by the autocorr module in emcee (Foreman-Mackey et al., 2013). Analogous expressions
can be derived for IS and HM,

R̂E2
IS =

1

nq
Varq(fIS(x)), fIS(x) =

p′(x)

q(x)
,

R̂E2
HM =

τfHM

np
Varp(fHM(x)), fHM(x) =

q(x)

p′(x)
. (10)

The claimed uncertainty in Figure 1 is obtained by assuming that the error is Gaussian
distributed.

There can be different strategies to allocate samples for BS. In the literature, it is
recommended that one draws samples from p(x) and q(x) based on equal-sample-size or
equal-time allocation (Bennett, 1976; Meng and Wong, 1996). Since NUTS based sampling
usually requires at least hundreds of evaluations to obtain one effective sample from p(x) in
high dimensions (Hoffman and Gelman, 2014), which is orders of magnitude more expensive
than our NF based sampling for q(x), it could be advantageous to set nq > np. Throughout
this paper, the following adaptive strategy is adopted to determine nq for GBS(L). After
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obtaining 2np samples from p(x), we divide them into two equal batches, which will be used
for fitting the proposal q(x) and evaluating the evidence, respectively. As an starting point,
we draw nq,0 = np samples from q(x) and estimate the error of OBS using Equation (9).
Note that the right side of Equation (9) is composed of two terms, and only the first term
will decrease as one increases nq but fixes np. Assuming that current samples provide an
accurate estimate of the variance and expectation terms in Equation (9), one can solve
for nq such that ferr, the fraction of q(x) contributions in Equation (9), is equal to some
specified value, which we set to 0.1. Since the nq,0 samples from q(x) can be reused, if
nq < nq,0, no additional samples are required and we set nq = nq,0. On the other hand, we
also require that feva, the fraction of p(x) evaluations that are used for the q(x) samples,
is no larger than 0.1, although this constraint is usually not activated in practice.

We use 0.1 as the default values of ferr and feva, so that the additional cost of evidence
evaluation is small relative to the cost of sampling, while using a larger nq alone can no
longer significantly improve the accuracy of normalizing constant. However, if one wants
to put more emphasis on posterior sampling (evidence estimation), a larger (smaller) ferr

and/or smaller (larger) feva can be used. In principle, it is also possible to use different
number of p(x) samples to fit the proposal and evaluate the evidence, in contrast to equal
split used in Overstall and Forster (2010), which we leave for feature research.

For GIS and WBS, we use the same nq as solved for GBS(L). No samples from p(x)
are required to estimate normalizing constant for GIS, so in this case all the 2np samples
will be used to fit INT. While for GHM, no samples from q(x) are required. Note that for
WBS, the additional p(x) evaluations required for evidence estimation is np + 2nq instead
of nq, which comes from the symmetrization of ln p(x).
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