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Abstract. The analysis of the tumor environment on digital histopathol-
ogy slides is becoming key for the understanding of the immune response
against cancer, supporting the development of novel immuno-therapies.
We introduce here a novel deep learning solution to the related problem
of tumor epithelium segmentation. While most existing deep learning
segmentation approaches are trained on time-consuming and costly man-
ual annotation on single stain domain (PD-L1), we leverage here semi-
automatically labeled images from a second stain domain (Cytokeratin-
CK). We introduce an end-to-end trainable network that jointly segment
tumor epithelium on PD-L1 while leveraging unpaired image-to-image
translation between CK and PD-L1, therefore completely bypassing the
need for serial sections or re-staining of slides. Extending the method
to differentiate between PD-L1 positive and negative tumor epithelium
regions enables the automated estimation of the clinically relevant PD-
L1 Tumor Cell score. Quantitative experimental results demonstrate the
accuracy of our approach against state-of-the-art segmentation methods.
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1 Introduction

Histopathology is key to many clinical decisions taken in oncology, based on
the visual quantification of biomarkers on stained slides of suspected tumor tis-
sue. In a clinical setting, the PD-L1 Tumor Cell (TC) score for Non Small Cell
Lung Cancer (NSCLC) is for instance predictive of response for patients treated
with an anti-PD1/PD-L1 checkpoint inhibitor therapy [11]. Several exploratory
studies have moreover shown that both tumor immune contexture [4] and ep-
ithelial immune cell infiltration are predictive of patient prognosis [1]. All these
examples rely on an accurate segmentation of the epithelial compartment. The
non-specificity of the PD-L1 staining, which includes epithelial regions but also
immune cells and necrotic regions (cf. Fig. 1b) makes this task challenging. This
difficulty, together with the demonstrated performance of deep learning methods
in digital pathology image analysis [7, 3, 6] leads us towards this set of methods,
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Fig. 1. Synthetic (a) and real (b) PD-L1 datasets generated from the semi-automated
segmentation of CK images and manual annotations, respectively. (c) DASGAN model
for joint domain adaptation and semantic segmentation. NB: the two cycle losses be-
tween the real and the cyclic images are not displayed for clarity purposes.

and more particularly towards deep semantic segmentation networks [9]. The
prerequisite dataset of boundary-precise manual annotations is, however, time-
consuming and costly to generate. Here, and because CK labels epithelium, we
semi-automatically build the prerequisite dataset on CK images using coarse
manual input combined with simple heuristic segmentation rules. By transfer-
ring the segmentation masks and the CK images into the PD-L1 stain domain
using unpaired image-to-image translation, we generate a synthetic CK-based
PD-L1 dataset which is merged with manual annotations on true PD-L1 images
and used for training the PD-L1 epithelial semantic segmentation network.

We exploit recent advances in generative adversarial networks (GANs), espe-
cially of unpaired image-to-image translation using CycleGAN [15] as used for
the normalization of HE images [12]. This makes the transformation of CK im-
ages into synthetic PD-L1 images possible without the need for serial sections nor
re-staining [13]. Here, we present what is to our knowledge the first application
of domain adaptation based semantic segmentation in the field of digital pathol-
ogy. Other studies described similar ideas for medical image analysis, e.g. to
convert CT images into synthetic MRI images and train a segmentation network
on both real and synthetic MRI images[2, 5], but follow a two-step methodol-
ogy. Instead, we introduce an end-to-end trainable network (cf. Fig. 1c) named
DASGAN (Domain Adaptation and Segmentation GAN) that jointly performs
unpaired image-to-image translation and semantic segmentation. We show the
superiority of the introduced network against (i) networks trained only on man-
ual annotations of real PD-L1 images and (ii) networks trained separately for
domain adaptation and for semantic segmentation.
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2 Methods

The good specificity of CK staining makes the segmentation of epithelial regions
in CK images possible using color deconvolution followed by Otsu thresholding
and closing morphological operations (cf. Fig. 1a). While the newly introduced
network for joint unpaired domain adaptation and semantic segmentation the-
oretically makes it possible to combine manual or automated annotations from
any two stain domains and independent cohorts, we apply it here to transfer
images from the CK domain to PD-L1 domain and to leverage the epithelial
segmentation masks in the CK domain as annotations in the PD-L1 domain.

2.1 CycleGAN

Two generators GBA : XB → X ′A and GAB : XA → X ′B are trained to synthesize
samples in domain A (PD-L1) from real samples in domain B (CK) and vice
versa. Two discriminators DA and DB are trained in opposition to identify
synthetic from real samples in the two domains. The parameters of the two
discriminator and two generator networks are learned in an adversarial manner
following a min-max game on the two adversarial losses LAB

GAN and LBA
GAN :

min
GAB

max
DB

LAB
GAN := ExB∼XB

log(DB(xB)) +ExA∼XA
log(1−DB(GAB(xA))) (1)

min
GBA

max
DA

LBA
GAN := ExA∼XA

log(DA(xA)) +ExB∼XB
log(1−DA(GBA(xB))) (2)

The necessity of having image pairs for image translation between A and B is
bypassed using a cycle consistent loss Lcycle [15]. The cycle loss is defined to
prevent mode collapse of the two GAN models and to constrain the invertability
of the translated domains, based on the translation of the synthesized samples
x′B = GAB(xA) and x′A = GBA(xB) back to their original domains A and B:

Lcycle := ExA∼XA
‖xA −GBA(x′B)‖+ ExB∼XB

‖xB −GAB(x′A)‖ (3)

2.2 DASGAN

Following the auxiliary classifier GAN (AC-GAN) model [10], we extend the Cy-
cleGAN model [15] to obtain segmentation maps as auxiliary from the two dis-
criminators DA and DB (cf. Fig. 1c). We condition the input images of GAB and
GBA with the respective ground truth segmentation class mask by concatenat-
ing the mask across the input image channel axis. The respective concatenated
volumes go through a series of transformations by GAB and GBA to produce syn-
thetic images in the respective target domains B and A. The two discriminator
networks are extended to predict pixel-wise class probability maps in addition
to predicting the correct source of image. To this end, and to propagate the class
specific information through to the generator, a segmentation loss is introduced
to the discriminator in addition to the original adversarial loss:

Lseg := LCE(ytrueA , ypredA ) + LCE(ytrueB , ypredB ) (4)
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Fig. 2. Segmentation accuracy on the unseen test set, for the three baseline models
(in gray, blue and yellow) and for the proposed DASGAN model (in orange) under the
condition (i) of low availability of manual annotations on real PD-L1 images. F1 scores
are reported for each class of interest - epithelium (TC), epithelium positive (TC+),
epithelium negative (TC-) and Other, together with their average score Avg. in both
scenarios of epithelium detection and replication of TC score.

where LCE(ytrue, ypred) = −
∑
ytrue log(ypred) denotes the categorical cross-

entropy loss and where ytrue and ypred correspond to the ground truth and
the predicted label maps respectively. This results in the following loss for the
proposed joint domain adaptation and semantic segmentation DASGAN model:

L := LAB
GAN + LBA

GAN + λ1Lcycle + λ2Lseg, (5)

with λ1 = 10 and λ2 = 1 weighting the losses associated with the cycle constrain
and the segmentation auxiliary task respectively. The proposed DASGAN model
is used, at training training time, to leverage annotations on CK stained images
for the segmentation of epithelial regions in PD-L1 stained images. While only
the discriminator DA is employed at prediction time, the use of a symmetric dis-
criminator DB ensures the balancing of the two counterplaying GAN networks.

2.3 Extension to Tumor Cell scoring

To differentiate between PD-L1 positive and PD-L1 negative tumor epithelial
regions as requisite for the calculation of the TC score, we perform three-class
pixel-wise mask conditioning. We transform each CK binary segmentation mask
into two examples of both a PD-L1 negative and a PD-L1 positive epithelial
masks that results in two versions of same CK image (c.f. Fig. 1(a)). Given
a CK binary segmentation mask, a PD-L1 negative epithelium mask is built
by giving the labels 0 and 1 to the non-epithelium and the epithelium regions
respectively. This conditions the generator to yield a PD-L1 negative image.
Similarly, a PD-L1 positive epithelium mask is built from the same CK mask
by giving the respective labels 0 and 2 instead. This conditions the generator to
yield a PD-L1 positive image from the same CK image.

After describing the training, validation and test datasets as well as the net-
work architectures, we present results of quantitative evaluation against pathol-
ogist manual annotations for the two problems of (i) epithelial segmentation and
(ii) PD-L1 positive and negative epithelial region detection.
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Fig. 3. Segmentation accuracy (avg. f1-score) on the unseen test set, for the baseline
model trained only on real PD-L1 samples (blue) and the proposed DASGAN model
trained on both real and synthetic PD-L1 samples (orange), for increasing availability
(i)-(ii)-(iii) of manual annotations on real PD-L1 images.

3 Experiments and Results

3.1 Cytokeratin and PD-L1 Datasets

The training set consists of NCK = 56 CK stained whole slide images (WSI) of
NSCLC samples and of NPD−L1 = 69 WSIs of the same indication and stained
with the SP263 PD-L1 clone. The CK images and the PD-L1 images are un-
paired and come from two independent patient cohorts. To ensure purity of the
samples generated on the CK stained slides, the samples are created on tumor
regions delineated by pathologists and regions with non-specific staining are dis-
carded. Because this manual input is provided at a macroscopic scale (1x or 2x),
the associated effort is minimal compared to the annotation of fine epithelium
structure at high resolution (20x). Positive (TC+) and negative (TC−) epithe-
lium regions were partially delineated at high resolution on PD-L1 images, to-
gether with non-epithelium regions (e.g. immune, necrotic, and stromal regions).
Patches of 128×128 pixels are uniformly sampled from the annotated regions on
the PD-L1 stained slides and from the detected epithelium regions on the CK
stained slides, using a 10× resolution (1µm/px). The validation set, similarly
generated from 28 partially annotated PD-L1 stained WSIs, is used for selecting
the model maximizing the segmentation f1 score. The test set, consisting of 106
fields of view (500 × 500µm) selected from 25 PD-L1 stained WSIs is densely
annotated by pathologists. It is solely employed for quantitative evaluation of
the segmentation accuracy and was selected to cover a high variability of differ-
ent cancer types (adeno, squamous) and growth pattens (acinar, papillary and
solid). To study the impact of NPD−L1 on the segmentation accuracy, we report
results with three different configurations for the training and validation sets:
(i) 44K patches from NPD−L1 = 22 slides, (ii) 103K patches from NPD−L1 = 49
slides and (iii) 149K patches from NPD−L1 = 69 slides, all patches from (i) being
included in (ii) and those of (ii) in (iii). The CK-based training and validation
sets, as well as the PD-L1 test set remain unchanged in these experiments. Note
that, a thorough quantification the quality of the domain adaptation is not in
the scope of this work, which is more towards its final impact on semantic seg-
mentation results.



6 Kapil et al.

3.2 Network architectures

The architectures of the two generators are similar to that in the original Cycle-
GAN paper [15] with minor modifications: we concatenate the input images and
the segmentation mask. For the two discriminators, weights between the predic-
tion of the source distribution and of the semantic segmentation posterior maps
are shared in the first three convolutional layers and the branch for semantic
segmentation extended to include three resnet blocks and three deconvolutional
layers. Spectral normalization [8] and self-attention blocks [14] are added in the
discriminators and generators to increase training stability and to model long
structural dependencies respectively. Network definition, training and inference
are performed using the Tensorflow library. All models are trained on a single
Nvidia V100 GPU with 32GB of memory and Adam optimization performed
for both the generators (lr=1e-4, beta1=0.5) and the discriminators (lr=5e-4,
beta1=0.5) for 150k iterations. Because the same architecture DA is used by all
networks for segmentation, the prediction time is the same for all networks: 0.08
sec for 512× 512 pixels is measured on Nvidia K80 GPU.

3.3 Segmentation performance

Segmentation accuracy is reported on the unseen test set. We first consider the
configuration (i) corresponding to a relative shortage of manual annotations. As
illustrated in Fig. 2, the proposed DASGAN outperforms the two models trained
solely on real or synthetic PD-L1 images as well as the two-step model trained
on real and synthetic PD-L1 images. Mean f1 scores of f1 = 0.886/0.850 are
reported for the DASGAN on the binary problem of epithelium detection and
on the three class problem of positive and negative epithelial regions respectively.
Surprisingly, the two-step approach does not improve the segmentation results
(f1 = 0.805/0.804) compared to training only on real PD-L1 images (f1 =
0.807/0.805). A possible explanation is that, while the transformation between
the two stain domains is fixed in the two-step methodology, the DASGAN enables
the domain transfer network to be optimized with the objective to not only
generate realistic PD-L1 images but also to ensure that the generated images
improves the performance of the segmentation network.

As shown in Fig. 3, while the proposed DASGAN model systematically out-
performs the baseline model trained only on real PD-L1 samples, the relative
improvement in accuracy metrics tends to decrease with the availability of man-
ual annotations. In the configuration (iii) of highest availability, accuracy metrics
of f1 = (0.894/0.890) and f1 = (0.916/0.899) are reached by the baseline model
trained only on real PD-L1 samples and by our approach respectively. This quan-
titatively confirms the expectation that the use of synthetic data is most relevant
in case of relative shortage of manually labeled data.

3.4 Tumor Cell scoring

PD-L1 status, which is predictive for survival of NSCLC patients receiving
PD1/PD-L1 checkpoint inhibitor therapy [11], is determined based on the Tu-
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(a) (b)

Fig. 4. (a) Example of negative (red) and positive (blue) epithelial regions as well
as of non-epithelial regions (green) segmented by the proposed DASGAN model. (b)
Bar plot showing mean and standard deviation of the TC scores estimated by the
proposed approach on unseen cases (n=704), on the following TC score bins: TC < 1,
1 <= TC < 10, 10n <= TC < 10(n + 1) for 1 < n < 10 and TC = 100. The inverted
histogram at the top shows the distribution of cases w.r.t. pathologist TC score.

mor Cell score, defined as the percentage of tumor epithelial cells that are PD-L1
positive. Following [6], the TC score is approximated as the relative area of the
detected TC(+) regions:

TCCNN =
#TC(+)

#TC(−) + #TC(+)
. (6)

Fig. 4a displays an example of epithelial segmentation output by the proposed
DASGAN model. To quantitatively assess the clinical relevance of the proposed
approach, we consider a set of 704 PD-L1 stained images unseen for training nor
selection of the segmentation model. This set originates from three independent
patient cohorts and contain both needle biopsies and resectates. Fig. 4b shows
the bar plot of mean and standard deviation of the estimated TCCNN scores
against the true TC scores visually estimated by pathologists. Lin’s concordance
coefficient of Lcc = 0.93, Pearson correlation coefficient of Pcc = 0.94 and mean
absolute error of MAE = 7.30 are reported between the estimated and the true
TC score values, quantitatively showing the high concordance of the proposed
method with visual scoring by pathologist.

4 Discussion and Conclusion

In this paper, we introduce a novel method to leverage data from two stain do-
mains (CK and PD-L1) and two independent cohorts for the segmentation of
epithelium in PD-L1 images. The semi-automatic generation of large boundary-
precise datasets for epithelium segmentation in CK images together with their
unpaired translation into realistic-looking images PD-L1 images makes it pos-
sible to generate large dataset for epithelial segmentation in the PD-L1 stain
domain, without the need for serial sections or re-staining of slides.
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The proposed DASGAN model performs joint domain translation and se-
mantic segmentation. As experimentally shown, it enables (i) the segmentation
of the epithelial regions, (ii) the segmentation of PD-L1 positive and negative
epithelial regions, (iii) the replication of the clinically relevant PD-L1 Tumor Cell
(TC) score. Upon confirmation that the presented results match survival pre-
dictive ability of manual scoring and replication of the findings in a prospective
trial, we envision that the proposed method could be used in a clinical setting to
identify patients which may benefit from an anti-PD1/PD-L1 therapy. A direct
extension of this work would the analysis of slides stained with HE and other
immunohistochemistry markers. More generally, we believe that the proposed
joint domain adaptation and segmentation methodology is very generic and can
be applied to the analysis of a wide variety of histopathological data.
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