
Theoretical Limits of Pipeline Parallel Optimization
and Application to Distributed Deep Learning

Igor Colin Ludovic Dos Santos Kevin Scaman
Huawei Noah’s Ark Lab

Abstract

We investigate the theoretical limits of pipeline parallel learning of deep learn-
ing architectures, a distributed setup in which the computation is distributed per
layer instead of per example. For smooth convex and non-convex objective func-
tions, we provide matching lower and upper complexity bounds and show that a
naive pipeline parallelization of Nesterov’s accelerated gradient descent is optimal.
For non-smooth convex functions, we provide a novel algorithm coined Pipeline
Parallel Random Smoothing (PPRS) that is within a d1/4 multiplicative factor of
the optimal convergence rate, where d is the underlying dimension. While the
convergence rate still obeys a slow ε−2 convergence rate, the depth-dependent
part is accelerated, resulting in a near-linear speed-up and convergence time that
only slightly depends on the depth of the deep learning architecture. Finally, we
perform an empirical analysis of the non-smooth non-convex case and show that,
for difficult and highly non-smooth problems, PPRS outperforms more traditional
optimization algorithms such as gradient descent and Nesterov’s accelerated gra-
dient descent for problems where the sample size is limited, such as few-shot or
adversarial learning.

1 Introduction

The recent advances in deep neural networks have brought these methods into indispensable work in
previously hard-to-deal-with tasks, such as speech or image recognition. The ever growing number
of samples available along with the increasing need for complex models have quickly raised the need
of efficient ways of distributing the training of deep neural networks. Pipeline methods [1, 2, 3, 4, 5]
are proven frameworks for parallelizing algorithms both from the samples and the parameters point
of view. While several pipelining approaches for deep networks have arisen in the last few years,
GPipe [1] offers a solid and efficient way of applying pipelining techniques to neural network training.
In this framework, network layers are partitioned and training samples flow across them, only waiting
for the next layer to be free, increasing the overall efficiency in a nearly linear way.

Although pipelining is essentially designed for tackling both parameters and samples distribution over
a network, some specific fields such as few-shot learning, deep reinforcement learning or adversarial
learning present imbalanced needs between data and model distribution. Indeed, these problems
typically require the training of a large model with very few examples, thus encouraging the use of
methods leveraging the information in each sample to its best potential. Randomized smoothing for
machine learning [6, 7] evidenced a way of using data samples more efficiently. The overall idea is
to replace the usual gradient information with an average of gradients sampled around the current
parameter; this approach is particularly effective when dealing with non-smooth problems as it is
equivalent to smoothing the objective function.

The objective of this paper is to provide a theoretical analysis of pipeline parallel optimization, and
show that accelerated convergence rates are possible using randomized smoothing in this setting.

Related work.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Distributing the training of deep neural networks can be tackled from several angles. Data parallelism
[2, 8] focused on distributing the mini-batches amongst several machines. This method is easy to
implement but may show its limits when considering extremely complex models. Although some
attempts have proven successful [9, 10], model parallelism is hard to adapt to the training of deep
neural networks, due to the parameters interdependence. As a result, pipelining [1, 2, 3, 4, 5] offered
a tailored approach for neural networks. Although these methods have been investigated for some
time [3, 2], the recent advances in [1] evidenced a scalable pipeline parallelization framework.

Randomized smoothing applied to machine learning was first presented in [6]. In [7], this technique is
used in a convex distributed setting, thus allowing the use of accelerated methods even for non-smooth
problems and increasing the efficiency of each node in the network. While the landscape of neural
networks with skip connections tends to be nearly convex around local minimums [11], and in several
applications, including optimal control, neural networks may be engineered to be convex [12, 13, 14],
the core of deep learning problems remains non-convex. Unfortunately, results about randomized
sampling for non-convex problems [15, 16] are ill-suited for machine learning scenarios: linesearch
is at the core of the method, requiring prohibitive evaluations of the objective functions at each step
of the algorithm. The guarantees of [15] remain relevant for this work however, since they give a
reasonable empirical criterion to consider when evaluating the different methods.

2 Pipeline parallel optimization setting

In this section, we present the pipeline parallel optimization problem and the types of operations
allowed in this setting.

Optimization problem. We denote as computation graph a directed acyclic graph G = (V, E)
containing containing only 1 leaf. Each root of G represents input variables of the objective function,
while the leaf represents the single (scalar) ouptut of the function. Let n be the number of non-root
nodes, ∆ the depth of G (i.e. the size of the largest directed path), and each non-root node i ∈ J1, nK
is be associated to a function fi and a computing unit. We consider minimizing a function fG whose
computation graph is G, in the following sense: ∃(g1, ..., gn) functions of the input x such that:

g0(x) = x, gn(x) = fG(x), ∀i ∈ J1, nK, gi(x) = fi

((
gk(x)

)
k∈Parents(i)

)
, (1)

where Parents(i) are the parents of node i in G (see Figure 1).

We consider the following unconstrained minimization problem

min
θ∈Rd

fG(θ) , (2)

in a distributed setting. More specifically, we assume that each computing unit can compute a
subgradient ∇fi(θ) of its own function in one unit of time, and communicate values (i.e. vectors
in Rd) to its neighbors in G. A direct communication along the edge (i, j) ∈ E requires a time τ ≥ 0.
These actions may be performed asynchronously and in parallel.While pipeline-parallel optimization
is an abstraction that may be used for many different distribution setups, one of the main application
is DL architectures distributed on multiple GPUs (with memory limitations and communication
bandwidths) by partitioning the model.

Regularity assumptions. Optimal convergence rates depend on the precise set of assumptions
applied to the objective function. In our case, we will consider two different constraints on the
regularity of the functions:

(A1) Lipschitz continuity: the objective function fG is L-Lipschitz continuous, in the sense that,
for all θ, θ′ ∈ Rd,

|fG(θ)− fG(θ′)| ≤ L‖θ − θ′‖2 . (3)

(A2) Smoothness: the objective function is differentiable and its gradient is β-Lipschitz continu-
ous, in the sense that, for all θ, θ′ ∈ Rd,

‖∇fG(θ)−∇fG(θ′)‖2 ≤ β‖θ − θ′‖2 . (4)

Finally, we denote by R = ‖θ0 − θ∗‖ (resp. D = fG(θ0)− fG(θ∗)) the distance (resp. difference in
function value) between an optimum of the objective function θ∗ ∈ argminθ fG(θ) and the initial
value of the algorithm θ0, that we set to θ0 = 0 without loss of generality.

2

g0 = x

g1 = g0/2

g2 = ω

g3 = sin(g0)

g4 = g1 − g2g3

g5 = ln(1 + eg1)

g6 = |g4| g7 = g5 + g6

Figure 1: Example of a computation graph for f(x, ω) = ln(1 + ex/2) + |x/2− ω sin(x)|.

Pipeline parallel optimization procedure. Deep learning algorithms usually rely on backpropaga-
tion to compute gradients of the objective function. We thus consider first-order distributed methods
that can access function values and matrix-vector multiplications with the Jacobian of individual
functions (operations that we will refer to as forward and backward passes, respectively). A pipeline
parallel optimization procedure is a distributed algorithm verifying the following constraints:

1. Internal memory: the algorithm can store past values in a (finite) internal memory. This
memory may be shared in a central server or stored locally on each computing unit. For
each computing unit i ∈ J1, nK, we denoteMi,t the di-dimensional vectors in the memory
at time t. These values can be accessed and used at time t by the algorithm run by any
computing unit, and are updated either by the computation of a local function (i.e. a forward
pass) or a Jacobian-vector multiplication (i.e. a backward pass), that is, for all i ∈ {1, ..., n},

Mi,t ⊂ Span (Mi,t−1 ∪ FPi,t ∪ BPi,t) . (5)

2. Forward pass: each computing unit i can, at time t, compute the value of its local function
fi(u) for an input vector u = (u1, ..., u|Parents(i)|) ∈

∏
k∈Parents(i)Mk,t−1 where all

ui’s are in the shared memory before the computation.

FPi,t =

fi(u) : u ∈
∏

k∈Parents(i)
Mk,t−1

 . (6)

3. Backward pass: each computing unit j can, at time t, compute the product of the Jacobian
of its local function dfj(u) with a vector v, and split the output vector to obtain the partial
derivatives ∂ifj(u)v ∈ Rdi for i ∈ Parents(j).

BPi,t =

∂ifj(u)v : j ∈ Children(i), u ∈
∏

k∈Parents(j)
Mk,t−1, v ∈Mj,t−1

 . (7)

4. Output value: the output of the algorithm at time t is a d0-dimensional vector of the
memory,

θt ∈M0,t . (8)

Several important aspects of the definition should be highlighted: 1) Jacobian computation: during
the backward pass, all partial dervatives ∂ifj(u)v ∈ Rdi for i ∈ Parents(j) are computed by the
computing unit j in a single computation. For example, if fj is a whole neural network, then these
partial derivatives are all computed through a single backpropagation. 2) Matrix-vector multipli-
cations: the backward pass only allows matrix-vector multiplications with the Jacobian matrices.
This is a standard practice in deep learning, as Jacobian matrices are usually high dimensional, and
matrix-matrix multiplication would incur a prohibitive cubic cost in the layer dimension (this is
also the reason for the backpropagation being preferred to its alternative forward propagation to
compute gradients of the function). 3) Parallel computations: forward and backward passes may
be performed in parallel and asynchronously. 4) Perfect load-balancing: each computing unit is
assumed to take the same amount of time to compute its forward or backward pass. This simplifying
assumption is reasonable in practical scenarios when the partition of the neural network into local

3

functions is optimized through load-balancing [17]. 5) No communication cost: communication
time is neglected between the shared memory and computing units, or between two different comput-
ing units. 6) Simple memory initialization: for simplicity and following [18, 7], we assume that
the memory is initialized withMi,0 = {0}.

3 Smooth optimization problems

Any optimization algorithm that requires one gradient computation per iteration can be trivially
extended to pipeline parallel optimization by computing the gradient of the objective function fG
sequentially at each iteration. We refer to these pipeline parallel algorithms as naïve sequential
extensions (NSE). If Tε is the number of iterations to reach a precision ε for a certain optimization
algorithm, then its NSE reaches a precision ε in time O(Tε∆), where ∆ is the depth of the compu-
tation graph. When the objective function fG is smooth, we now show that, in a minimax sense,
naïve sequential extensions of the optimal optimization algorithms are already optimal, and their
convergence rate cannot be improved by more refined pipeline parallelization schemes.

3.1 Lower bounds

In both smooth convex and smooth non-convex settings, optimal convergence rates of pipeline parallel
optimization consist in the multiplication of the depth of the computation graph ∆ with the optimal
convergence rate for standard single machine optimization.
Theorem 1 (Smooth lower bounds). Let G = (V, E) be a directed acyclic graph of n nodes and
depth ∆. There exists functions fi for i ∈ J1, nK such that fG is convex and β-smooth and reaching a
precision ε > 0 with any pipeline parallel optimization procedure requires at least

Ω

(√
βR2

ε
∆

)
. (9)

Similarly, there exists functions f ′i for i ∈ J1, nK such that f ′G is non-convex and β-smooth and
reaching a precision ε > 0 with any pipeline parallel optimization procedure requires at least

Ω

(
βD

ε2
∆

)
. (10)

The proof of Theorem 1 relies on splitting the worst case function for smooth convex and non-convex
optimization [19, 18, 20] so that it may be written as the composition of two well-chosen functions.
Then, we show that any progress on the optimization requires to perform forward and backward
passes throughout the entire computation graph, thus leading to a ∆ multiplicative factor. The full
derivation is available in the supplementary material.

The multiplicative factor ∆ in these two lower bounds imply that, for smooth objective functions and
under perfect load-balancing, there is nothing to gain from pipeline parallelization, in the sense that
it is impossible to obtain sublinear convergence rates with respect to the depth of the computation
graph, even when the computation of each layer is performed in parallel.
Remark 1. Note that our setting is rather generic and does not make any assumption on the form
of the objective function. In more restricted settings (e.g. empirical risk minimization and objective
functions that are averages of multiple functions, see Section 5), pipeline parallel algorithms may yet
achieve substantial speedups (see for example GPipe for the training of deep learning architectures
on large datasets [1]).

3.2 Optimal algorithm

Considering the form of the first and second lower bound in Theorem 1, naïve sequential extensions
of, respectively, Nesterov’s accelerated gradient descent for the convex setting and gradient descent
for the non-convex setting lead to optimal algorithms [19]. Of course, this optimality is to be taken in
a minimax sense, and does not imply that realistic functions encountered in machine learning cannot
benefit from pipeline parallelization. However, this shows that one cannot prove better convergence
rates for the class of smooth convex and smooth non-convex objective functions without adding
additional assumptions. In the following section, we will see that non-smooth optimization leads to a
more interesting behavior of the convergence rate and non-trivial optimal algorithms.

4

Algorithm 1 Pipeline Parallel Random Smoothing

Input: iterations T , samples K, gradient step η, acceleration µt, smoothing parameter γ .
Output: optimizer yT

1: x0 = 0, y0 = 0, t = 0
2: for t = 0 to T − 1 do
3: Use pipelining to compute gk = ∇f(xt + γXk), where Xk ∼ N (0, I) for k ∈ J1,KK
4: Gt = 1

K

∑
k gk

5: yt+1 = xt − ηGt
6: xt+1 = (1 + µt)yt+1 − µtyt
7: end for
8: return yT

4 Non-smooth optimization problems

For non-smooth objective functions, acceleration is possible, and we now show that the dependency
on the depth of the computation graph only impacts a second order term. In other words, pipeline
parallel algorithms can reduce the computation time and lead to near-linear speedups.

4.1 Lower bound

Theorem 2 (Convex non-smooth lower bound). Let G = (V, E) be a directed acyclic graph of n
nodes and depth ∆. There exists functions fi for i ∈ J1, nK such that fG is convex and L-Lipschitz,
and any pipeline parallel optimization procedure requires at least

Ω

((
RL

ε

)2

+
RL

ε
∆

)
(11)

to reach a precision ε > 0.

The proof of Theorem 2 relies on combining two worst-case functions of the non-smooth optimization
literature: the first leads to the term in ε−2, while the second gives the term in ∆ε−1. Similarly to
Theorem 1, we then split these functions into a composition of two functions, and show that forward
and backward passes are necessary to optimize the second function, leading to the multiplicative term
in ∆ for the second order term. The complete derivation is available in the supplementary material.

Note that this lower bound is tightly connected to that of non-smooth distributed optimization, in
which the communication time only affects a second order term [7]. Intuitively, this effect is due
to the fact that difficult non-smooth functions that lead to slow convergence rates are not easily
separable as sums or compositions of functions, and pipeline parallelization can help in smoothing
the optimization problem and thus improve the convergence rate.

4.2 Optimal algorithm

Contrary to the smooth setting, the naïve sequential extension of gradient descent leads to the
suboptimal convergence rate of O

((
RL
ε

)2
∆
)
, which scales linearly with the depth of the computation

graph. Following the distributed random smoothing algorithm [7], we apply random smoothing [6]
to take advantage of parallelization and speedup the convergence. Random smoothing relies on the
following smoothing scheme, for any γ > 0 and real function f , fγ(θ) = E [f(θ + γX)], where
X ∼ N (0, I) is a standard Gaussian random variable. This function fγ is a smooth approximation
of f , in the sense that fγ is L

γ -smooth and ‖fγ − f‖∞ ≤ γL
√
d (see Lemma E.3 of [6]). Using an

accelerated algorithm on the smooth approximation fγG thus leads to a fast convergence rate. Alg. 1
summarizes our algorithm, denoted Pipeline Parallel Random Smoothing (PPRS), that combines
randomized smoothing [6] with a pipeline parallel computation of the gradient of fG similar to
GPipe.1 A proper choice of parameters leads to a convergence rate within a d1/4 multiplicative factor
of optimal.

1GPipe (with GD/AGD) may be seen as a special case of PPRS, with γ,K = 0 (i.e., no randomized
smoothing).

5

(a) Forward pass. (b) Backward pass.

Figure 2: Bubbling scheme used at each iteration of PPRS in the case of a sequential neural network.
Cell (i, k) indicates the computation of the forward pass (resp. backward pass) for∇fi(θ + γXk).

Theorem 3. Let fG be convex and L-Lipschitz. Then, Alg. 1 with K =
⌈
(T + 1)/

√
d
⌉

, η =

Rd−1/4

L(T+1) and µt = λt−1
λt+1

, where λ0 = 0 and λt =
1+
√

1+4λ2
t−1

2 , achieves an approximation error
E [fG(θT)]− fG(θ∗) of at most ε > 0 in a time upper-bounded by

O

((
RL

ε

)2

+
RL

ε
∆d1/4

)
. (12)

More specifically, Alg. 1 with K gradient samples at each iteration and T iterations achieves an
approximation error of

E [fG(θT)]− min
θ∈Rd

fG(θ) ≤ 3LRd1/4

T + 1
+
LRd−1/4

2K
, (13)

where each iteration requires a time 2(K + ∆− 1). When K = T/
√
d, we recover the convergence

rate of Theorem 3 (the full derivation is available in the supplementary material).

Randomized smoothing. The PPRS algorithm described in Alg. 1 uses Nesterov’s accelerated
gradient descent [19] to minimize the smoothed function fγG. This minimization is achieved in a
stochastic setting, as the gradient ∇fγG of the smoothed objective function is not directly observable.
PPRS thus approximates this gradient by averaging multiple samples of the gradient around the
current parameter∇fG(θ + γXk), where Xk are K i.i.d Gaussian random variables.

Gradient computation using pipeline parallelization. As the random variables Xk are indepen-
dent, all the gradients∇fG(θ+γXk) can be computed in parallel. PPRS relies on a bubbling scheme
similar to the GPipe algorithm [1] to compute these gradients (step 3 in Alg. 1). More specifically, K
gradients are computed in parallel by sending the noisy inputs θ+ γXk sequentially into the pipeline,
so that each computing unit finishing the computation for one noisy input will start the next (see
Figure 2). This is first achieved for the forward pass, then a second time for the backward pass, and
thus leads to a computation time of 2(K + ∆− 1) for all the K noisy gradients at one iteration of the
algorithm. Note that a good load balancing is critical to ensure that all computing units have similar
computing times, and thus no straggler effect can slow down the computation.

Non-convex case. When the objective function is non-convex, randomized smoothing can still be
used to smooth the objective function and obtain faster convergence rates. Unfortunately, the analysis
of non-convex non-smooth first-order optimization is not yet fully understood, and the corresponding
optimal convergence rate is, to our knownledge, yet unknown. We thus evaluate the non-convex
version of PPRS in two ways:

1. We provide convergence rates for the averaged gradient norm used in [15], and prove
that randomized smoothing can, as in the convex case, accelerate the convergence rate of
non-smooth objectives to reach a smooth convergence rate in ε−2.

6

2. We evaluate PPRS experimentally on the difficult non-smooth non-convex task of finding
adversarial examples on CIFAR10 [21] with respect to the infinite norm (see Section 6).

While smooth non-convex convergence rates focus on the gradient norm, this quantity is ill-suited to
non-smooth non-convex objective functions. For example, the function f(x) = |x| leads to a gradient
norm always equal to 1 (except at the optimum), and thus the convergence to the optimum does not
imply a convergence in gradient norm. To solve this issue, we rely on a notion of average gradient
used in [15] to analyse the convergence of non-smooth non-convex algorithms. We denote as ∂̄rf(x)
the Clarke r-subdifferential, i.e. the convex hull of all gradients of vectors in a ball of radius r around
x, that is ∂̄rf(x) = conv ({∇f(y) : ‖y − x‖2 ≤ r}), where conv(A) is the convex hull of A. Then,
we say that an algorithm reaches a gradient norm ε > 0 if the Clarke r-subdifferential contains a
vector of norm inferior to ε, and Tr,ε = min

{
t ≥ 0 : ∂̄rfG(θt) ∩Bε 6= ∅

}
, where Bε is the ball of

radius ε centered on 0. Informally, Tr,ε is the time necessary for an algorithm to reach a point θt at
distance r from an ε-approximate optimum. With this definition of convergence, PPRS converges
with an accelerated rate of ε−2(∆ + ε−2) (see supplementary material for the proof).
Theorem 4. Let fG be non-convex and non-smooth. Then, Alg. 1 with γ = r√

4 log(3L/ε)+2 log(2e)d
,

η = γ/L, µ = 0, K = 18L2/ε2 and T = 36L(D + 2γL
√
d)/(γε2) reaches a gradient norm ε > 0

in a time upper-bounded by

Tr,ε ≤ O
(
DL

rε2

(
L2

ε2
+ ∆

)√
d+ log

(
L

ε

))
. (14)

While the convergence rate in ε−2 is indeed indicative of smooth objective problems, lower bounds
are still lacking for this setting, and we thus do not know if ε−4 is optimal for non-smooth non-
convex problems. However, our experiments show that the method is efficient in practice on difficult
non-smooth non-convex problems.

5 Finite sums and empirical risk minimization

A classical setting in machine learning is to optimize the empirical expectation of a loss function on a
dataset. This setting, known as empirical risk minimization (ERM), leads to an optimization problem
whose objective function is a finite sum

min
θ∈Rd

1

m

m∑
i=1

fG(θ, xi) , (15)

where {xi}i∈J1,mK is the dataset. The main advantage of this formulation is that, to compute the
gradient of the objective function, one must parallelize the computation of all the per sample gradients
∇θfG(θ, xi). GPipe takes advantage of this to parallelize the computation with respect to the
examples [1]. While the naïve sequential extension of gradient descent achieves a convergence rate of
O
((

RL
ε

)2
m∆

)
, GPipe can reduce this by turning the product ofm and ∆ into a sum: O

((
RL
ε

)2
(m+

∆)
)
. Applying the PPRS algorithm of Alg. 1 and parallelizing the gradient computations both with

respect to the number of samples K and the number of examples m leads to a convergence rate of

O

((
RL

ε

)2

m+
RL

ε
∆d1/4

)
, (16)

which accelerates the term depending on the depth of the computation graph. This result implies that
PPRS can outperform GPipe for ERM when the second term dominates the convergence rate, i.e.
the number of training examples is smaller than the depth m� ∆ and d� (RL/ε)4. While these
conditions are seldom seen in practice, they may however happen for few-shot learning and the fine
tuning of pre-trained neural networks using a small dataset of task-specific examples.

6 Experiments

In this section, we evaluate PPRS against standard optimization algorithms for the task of creating
adversarial examples. As discussed in Section 4, pipeline parallelization can only improve the

7

Figure 3: Comparison with GD and AGD. Increasing the number of samples increases the stability
of PPRS and allows for faster convergence rates. Depth: (left) moderate, ∆ = 20. (right) high,
∆ = 200.

convergence of non-smooth problems. Our objective is thus to show that, for particularly difficult and
non-smooth problems, PPRS can improve on standard optimization algorithms used in practice. We
now describe the experimental setup used in our experiments on adversarial attack.

Optimization problem: We first take one image from one class of CIFAR10 dataset, change its class
to another one and consider the minimization of the multi-margin loss with respect to the new class.
We then add an l∞-norm regularization term to the noise added to the image. In other words, we
consider the following optimization problem for our adversarial attack:

min
x̃

∑
i6=y

max {0, 1− f(x̃)y + f(x̃)i}+ λ‖x̃− x‖∞ , (17)

where ‖x‖∞ = maxi |xi| is the l∞-norm, x is the image to attack, x̃ is the attacked image, y is
the target class and f is a pre-trained AlexNet [22]. The choice of the l∞-norm instead of the
more classical l2-norm is to create a difficult and highly non-smooth problem to better highlight the
advantages of PPRS over more classical optimization algorithms.

Parameters: For all algorithms, we choose the best learning rates in lr ∈
{10−3, 10−4, 10−5, 10−6, 10−7}. For PPRS, we consider the following smoothing parame-
ters γ ∈ {10−3, 10−4, 10−5, 10−6, 10−7} and investigate the effect of the number of samples by
using K ∈ {2, 10, 100}. Following the analysis of Section 4.2, we do not accelerate the method and
thus always choose µ = 0 for our method. In practice, the accelerated version of the algorithm (with
µ = 0.99) did not improve the results. Hence, to improve the readability of the figures, we only
focus on the (non-convex) theoretical version of the algorithm. We set λ = 300 and evaluate our
algorithm in two parallelization settings: moderate (∆ = 20) and high (∆ = 200). Parallelization
is simulated using a computation time of 2T (K + ∆ − 1) for an algorithm of T iterations and K
gradients per iteration.

Competitors: We compare our algorithm with the standard gradient descent (GD) and Nesterov’s
accelerated gradient descent (AGD) with a range of learning rates and the standard choice of
acceleration parameter µ = 0.99.

Figure 3 shows the results of the minimization of the loss in Eq. (17) w.r.t. the number of epochs,
averaged on 100 pairs of initial image and destination class. With a proper smoothing, PPRS
significantly outperforms both GD and AGD. Moreover, increasing the number of samples increases
the stability of PPRS and allows for faster convergence rates. For example, PPRS with a learning
rate of 10−3 diverges for K = 2 but converges for K = 10 (the best learning rates are 10−4 for
K = 2 and 10−3 for K ∈ {10, 100}). Moreover, GD and AGD require a smaller learning rate (10−5

and 10−7, respectively) to converge, which leads to slow convergence rates. Note that, while the
non-convexity of the objective function implies that multiple local minimums may exists and all
algorithms may not converge to the same value, the speed of convergence of PPRS is higher than
its competitors. Convergence to better local minimums due to a smoothing effect of the method are
interesting research directions that are left for future work.

8

7 Conclusion

This work investigates the theoretical limits of pipeline parallel optimization by showing that, in such
a setting, only non-smooth problems may benefit from parallelization. These hard problems can be
accelerated by smoothing the objective function. We show both theoretically and in practice that such
a smoothing leads to accelerated convergence rates, and may be used for settings where the sample
size is limited, such as few-shot or adversarial learning. The design of practical implementations of
PPRS, as well as adaptive methods for the choice of parameters (K, γ, η, µ) are left for future work.

References
[1] Yanping Huang, Yonglong Cheng, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le,

and Zhifeng Chen. Gpipe: Efficient training of giant neural networks using pipeline parallelism.
CoRR, abs/1811.06965, 2018.

[2] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josifovski,
James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the
parameter server. In 11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14), pages 583–598, 2014.

[3] Alain Petrowski, Gerard Dreyfus, and Claude Girault. Performance analysis of a pipelined
backpropagation parallel algorithm. IEEE Transactions on Neural Networks, 4(6):970–981,
1993.

[4] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine
translation system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

[5] Chi-Chung Chen, Chia-Lin Yang, and Hsiang-Yun Cheng. Efficient and robust parallel dnn
training through model parallelism on multi-gpu platform. arXiv preprint arXiv:1809.02839,
2018.

[6] John C. Duchi, Peter L. Bartlett, and Martin J. Wainwright. Randomized smoothing for
stochastic optimization. SIAM Journal on Optimization, 22(2):674–701, 2012.

[7] Kevin Scaman, Francis Bach, Sebastien Bubeck, Laurent Massoulié, and Yin Tat Lee. Opti-
mal algorithms for non-smooth distributed optimization in networks. In Advances in Neural
Information Processing Systems 31, pages 2740–2749. 2018.

[8] Leslie G Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, 1990.

[9] Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv
preprint arXiv:1404.5997, 2014.

[10] Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho, Garth A Gibson, and Eric P Xing. On
model parallelization and scheduling strategies for distributed machine learning. In Advances in
neural information processing systems, pages 2834–2842, 2014.

[11] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
landscape of neural nets. In Advances in Neural Information Processing Systems 31, pages
6389–6399. 2018.

[12] Yize Chen, Yuanyuan Shi, and Baosen Zhang. Optimal control via neural networks: A convex
approach. In International Conference on Learning Representations, 2019.

[13] Brandon Amos, Lei Xu, and J. Zico Kolter. Input convex neural networks. In Proceedings of
the 34th International Conference on Machine Learning, volume 70, pages 146–155, 2017.

[14] Yoshua Bengio, Nicolas L. Roux, Pascal Vincent, Olivier Delalleau, and Patrice Marcotte.
Convex neural networks. In Advances in Neural Information Processing Systems 18, pages
123–130. 2006.

9

[15] James V Burke, Adrian S Lewis, and Michael L Overton. A robust gradient sampling algorithm
for nonsmooth, nonconvex optimization. SIAM Journal on Optimization, 15(3):751–779, 2005.

[16] Xiaocun Que. Randomized algorithms for nonconvex nonsmooth optimization. 2016.

[17] Tal Ben-Nun and Torsten Hoefler. Demystifying Parallel and Distributed Deep Learning: An
In-Depth Concurrency Analysis. arXiv e-prints, 2018.

[18] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends
in Machine Learning, 8(3-4):231–357, 2015.

[19] Yurii Nesterov. Introductory lectures on convex optimization : a basic course. Kluwer Academic
Publishers, 2004.

[20] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower Bounds for Finding
Stationary Points I. arXiv e-prints, 2017.

[21] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems, pages
1097–1105, 2012.

10

	Introduction
	Pipeline parallel optimization setting
	Smooth optimization problems
	Lower bounds
	Optimal algorithm

	Non-smooth optimization problems
	Lower bound
	Optimal algorithm

	Finite sums and empirical risk minimization
	Experiments
	Conclusion

