DON’T SETTLE FOR AVERAGE, GO FOR THE MAX:
FUZZY SETS AND MAX-POOLED WORD VECTORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent literature suggests that averaged word vectors followed by simple post-processing outperform many deep learning methods on semantic textual similarity tasks. Furthermore, when averaged word vectors are trained supervised on large corpora of paraphrases, they achieve state-of-the-art results on standard STS benchmarks. Inspired by these revelations, we push the limits of word embeddings even further. We propose a novel fuzzy bag-of-word (FBoW) representation for text that contains all the words in the vocabulary simultaneously but with different degrees of membership, which are derived from similarities between word vectors. We show that max-pooled word vectors are only a special case of fuzzy BoW and should be compared via fuzzy Jaccard index rather than cosine similarity. Finally, we propose DynaMax, a completely unsupervised and non-parametric similarity measure that dynamically extracts and max-pools good features depending on the sentence pair. This method is both efficient and easy to implement, yet outperforms current baselines on STS tasks by a large margin when word vectors are trained unsupervised. When the word vectors are trained supervised to directly optimise cosine similarity, our measure is still comparable in performance despite being unrelated to the original objective.

1 INTRODUCTION

Natural languages are able to encode sentences with similar meanings using very different vocabulary and grammatical constructs, which makes determining the semantic similarity between pieces of text a challenge. It is common to cast semantic similarity between sentences as the proximity of their vector representations. More than half a century since it was first proposed, the Bag-of-Words (BoW) representation (Harris, 1954; Salton et al., 1975; Manning et al., 2008) remains a popular baseline across machine learning (ML), natural language processing (NLP), and information retrieval (IR) communities. In recent years, however, BoW was largely eclipsed by representations learned through neural networks, ranging from shallow (Le & Mikolov, 2014; Hill et al., 2016) to recurrent (Kiros et al., 2015; Conneau et al., 2017; Subramanian et al., 2018a), recursive (Socher et al., 2013; Tai et al., 2015), convolutional (Kalchbrenner et al., 2014; Kim, 2014), self-attentive (Vaswani et al., 2017; Cer et al., 2018), and hybrid architectures (Gan et al., 2017; Tang et al., 2017; Zhelezniak et al., 2018).

Interestingly, Arora et al. (2017) showed that averaged word vectors (Mikolov et al., 2013a; Pennington et al., 2014; Bojanowski et al., 2016; Joulin et al., 2017) weighted with the Smooth Inverse Frequency (SIF) scheme and followed by a Principal Component Analysis (PCA) post-processing procedure were a formidable baseline for Semantic Textual Similarity (STS) tasks, outperforming deep representations. Furthermore, Wieting et al. (2015; 2016) and Wieting & Gimpel (2018) showed that averaged word vectors trained supervised on large corpora of paraphrases achieve state-of-the-art results, outperforming even the supervised systems trained directly on STS.

Inspired by these revelations we push the boundaries of word vectors even further. We propose a novel fuzzy bag-of-word (FBoW) representation for text. Unlike classical BoW, fuzzy BoW contains all the words in the vocabulary simultaneously but with different degrees of membership, which are derived from similarities between word vectors.

Next, we show that max-pooled word vectors are only a special case of fuzzy BoW. Max-pooling significantly outperforms averaging on standard benchmarks when word vectors are trained unsupervised. Since max-pooled vectors are just a special case of fuzzy BoW, we show that the fuzzy
Jaccard index is a much better alternative to cosine similarity for comparing these representations. By contrast, the fuzzy Jaccard index completely fails for averaged word vectors as there is no connection between the two. Max-pooling has been successfully used in neural networks (Collobert et al., 2011; Kim, 2014; Shen et al., 2018), however, to the best of our knowledge, the present work is the first to study max-pooling of pre-trained word embeddings in isolation as well as suggest theoretical underpinnings behind this operation.

Finally, we propose DynaMax, a completely unsupervised and non-parametric similarity measure that dynamically extracts and max-pools good features depending on the sentence pair. DynaMax outperforms averaged word vector with cosine similarity on every benchmark STS task when word vectors are trained unsupervised. When the word vectors are trained supervised to directly optimise cosine similarity, as in Wieting & Gimpel (2018), our measure is still comparable in performance despite being unrelated to the original objective. We believe this makes DynaMax a strong baseline that future algorithms should aim to beat in order to justify more complicated approaches to semantic similarity.

2 Sentences as Fuzzy Sets

The bag-of-words (BoW) model of representing text remains a popular baseline across ML, NLP, and IR communities. BoW, in fact, is an extension of a simpler set-of-words (SoW) model. SoW treats sentences as sets, whereas BoW treats them as multisets (bags) and so additionally captures how many times a word occurs in a sentence. Just like with any set, we can immediately compare SoW/BoW using set similarity measures (SSMs), such as

\[
\text{Jaccard}(A, B) = \frac{|A \cap B|}{|A \cup B|}, \quad \text{Otsuka}(A, B) = \frac{|A \cap B|}{|A| \times |B|}, \quad \text{and} \quad \text{Dice}(A, B) = \frac{2|A \cap B|}{|A| + |B|}.
\]

These coefficients usually follow the pattern \(\frac{\text{# shared elements}}{\text{# total elements}}\). From this definition, it is clear that sets with no shared elements have a similarity of 0, which is undesirable in NLP as sentences with completely different words can still share the same meaning. But can we do better?

For concreteness, let’s say we want to compare two sentences corresponding to the sets \(A = \{\text{‘he’, ‘has’, ‘a’, ‘cat’}\}\) and \(B = \{\text{‘she’, ‘had’, ‘one’, ‘dog’}\}\). The situation here is that \(A \cap B = \emptyset\) and so their similarity according to any SSM is 0. Yet, both \(A\) and \(B\) describe pet ownership and should be at least somewhat similar. If a set contains the word ‘cat’, it should also contain a bit of ‘pet’, a bit of ‘animal’, and a little bit of ‘tiger’ but perhaps not too much of an ‘airplane’. If both \(A\) and \(B\) contained ‘pet’, ‘animal’, etc. to some degree, they would have a non-zero similarity.

This intuition is the main idea behind fuzzy sets: a fuzzy set includes all words in the vocabulary simultaneously, just with different degrees of membership. This generalises classical sets where a word either belongs to a set or it doesn’t.

We can easily convert a singleton set such as \{‘cat’\} into a fuzzy set using a similarity function \(\text{sim}(w_i, w_j)\) between words. We simply compute the similarities between ‘cat’ and all the words \(w_j\) in the vocabulary and treat those values as membership degrees. As an example, the set \{‘cat’\} really becomes \{‘cat’: 1, ‘pet’: 0.9, ‘animal’: 0.85, ..., ‘airplane’: 0.05, ...\}.

Fuzzifying singleton sets is straightforward, but how do we go about fuzzifying the entire sentence \{‘he’, ‘has’, ‘a’, ‘cat’\}? Just as we use the classical union operation \(\cup\) to build bigger sets from smaller ones, we use the fuzzy union to do the same but for fuzzy sets. The membership degree of a word in the fuzzy union is determined as the maximum membership degree of that word among each of the fuzzy sets we want to unite. This might sound somewhat arbitrary: after all, why max and not, say, sum or average? We explain the rationale in Section 2.1 and in fact, we use the max for the classical union all the time without ever noticing it. Indeed, \{‘cat’\} \(\cup\) \{‘cat’\} = \{‘cat’\} and not \{‘cat’: 2\}. This is simply because we computed \(\max(1, 1) = 1\) and not \(\sum(1, 1) = 2\). Similarly \{‘cat’\} \(\cup\) \(\emptyset\) = \{‘cat’\} since \(\max(1, 0) = 1\) and not \(\avg(1, 0) = 1/2\).

The key insight here is the following. An object that assigns the degrees of membership to words in a fuzzy set is called the membership function. Each word defines a membership function, and even though ‘cat’ and ‘dog’ are different, they are semantically similar and as such give rise to very similar membership functions. This functional proximity will propagate into the SSMs, thus rendering them a
much more realistic model for capturing semantic similarity between sentences. To actually compute the fuzzy SSMs, we need just a few basic tools from fuzzy set theory, all of which we briefly cover in the next section.

2.1 Fuzzy Sets: The Bare Minimum

Fuzzy set theory [Zadeh, 1965] is a well-established formalism that extends the classical set theory by incorporating the idea that elements can have degrees of membership in a set. Constrained by space, we define the bare minimum needed to compute the fuzzy set similarity measures and refer the reader to [Klir et al., 1997] for a much richer introduction.

Definition: A set of all possible terms \(V = \{w_1, w_2, \ldots, w_N\} \) that occur in a certain domain is called a universe.

Definition: A function \(\mu : V \to L \subseteq \mathbb{R} \) is called a membership function.

Notice how the above definition covers all the set-like objects we discussed so far. If \(L = \{0, 1\} \), then \(A \) is simply a classical set and \(\mu \) is its indicator (characteristic) function. If \(L = \mathbb{N}^{\geq 0} \) (non-negative integers), then \(A \) is a multiset (a bag) and \(\mu \) is called a count (multiplicity) function. In literature, \(A \) is called a fuzzy set when \(L = [0, 1] \). However, we make no restrictions on the range and call \(A \) a fuzzy set even when \(L = \mathbb{R} \), i.e. all real numbers.

Definition: Let \(A = (V, \mu) \) and \(B = (V, \nu) \) be two fuzzy sets. The union of \(A \) and \(B \) is a fuzzy set \(A \cup B = (V, \max(\mu, \nu)) \). The intersection of \(A \) and \(B \) is a fuzzy set \(A \cap B = (V, \min(\mu, \nu)) \).

The max-min is not the only pair for the union and intersection, but it is perhaps the most common choice satisfying the necessary axioms. The axioms ensure that fuzzy set theory is compatible with the classical set theory, i.e. \(A \cup A = A, A \cap A = A, A \cup \emptyset = A \), and so on. It is easy to verify that both sum and average break this compatibility.

Definition: Let \(A = (V, \mu) \) be a fuzzy set. The number \(|A| = \sum_{w \in V} \mu(w) \) is called the cardinality of a fuzzy set.

Fuzzy set theory provides a powerful framework for reasoning about sets with uncertainty, but the specification of membership functions depends heavily on the domain. In practice these can be designed by experts or learned from data; below we describe a way of generating membership functions for text from word embeddings.

2.2 Fuzzy Bag-of-Words

From the algorithmic point of view any bag-of-words is just a row vector. The \(i \)-th term in the vocabulary has a corresponding \(N \)-dimensional one-hot encoding \(e^{(i)} \). The vectors \(e^{(i)} \) are orthonormal and in totality form the standard basis of \(\mathbb{R}^N \). The BoW vector for a sentence \(S \) is simply \(b^S = \sum_{i=1}^N c_i e^{(i)} \), where \(c_i \) is the count of the word \(w_i \) in \(S \).

The first step in creating the fuzzy BoW representation is to convert every term vector \(e^{(i)} \) into a membership vector \(\mu^{(i)} \). It really is the same as converting a singleton set \(\{w_i\} \) into a fuzzy set. We call this operation ‘word fuzzification’, and in the matrix form it is simply written as

\[
\mu^{(i)} = e^{(i)} W U^T. \tag{1}
\]

Here \(W \in \mathbb{R}^{N \times d} \) is the word embedding matrix and \(U \in \mathbb{R}^{K \times d} \) is the ‘universe’ matrix. Let us dissect the above expression. First, we convert a one-hot vector into a word embedding \(\mathbf{w}^{(i)} = e^{(i)} W \).

This is just an embedding lookup and is exactly the same as the embedding layer in neural networks. Next, we compute a vector of similarities \(\mu^{(i)} = \mathbf{w}^{(i)} U^T \) between \(\mathbf{w}^{(i)} \) and all the \(K \) vectors in the universe. The most sensible choice for the universe matrix is the word embedding matrix itself, i.e. \(U = W \). In that case, the membership vector \(\mu^{(i)} \) has the same dimensionality as \(e^{(i)} \) but contains similarities between the word \(w_i \) and every word in the vocabulary (including itself).
Algorithm 1 DynaMax-Jaccard

Input: Word embeddings for the first sentence \(x^{(1)}, x^{(2)}, \ldots, x^{(k)} \in \mathbb{R}^{1 \times d} \)

Input: Word embeddings for the second sentence \(y^{(1)}, y^{(2)}, \ldots, y^{(l)} \in \mathbb{R}^{1 \times d} \)

Input: A vector with all zeros \(z \in \mathbb{R}^{1 \times d} \)

Output: Similarity score \(DMJ \)

\[
X \leftarrow \text{STACK_ROWS}(x^{(1)}, x^{(2)}, \ldots, x^{(k)})
\]

\[
Y \leftarrow \text{STACK_ROWS}(y^{(1)}, y^{(2)}, \ldots, y^{(l)})
\]

\[
U \leftarrow \text{STACK_ROWS}(X, Y)
\]

\[
x \leftarrow \text{MAX_POOL_ELEMENTWISE}(x^{(1)}U^T, x^{(2)}U^T, \ldots, x^{(k)}U^T, z)
\]

\[
y \leftarrow \text{MAX_POOL_ELEMENTWISE}(y^{(1)}U^T, y^{(2)}U^T, \ldots, y^{(l)}U^T, z)
\]

\[
r \leftarrow \text{MIN_POOL_ELEMENTWISE}(x, y)
\]

\[
q \leftarrow \text{MAX_POOL_ELEMENTWISE}(x, y)
\]

\[
DMJ \leftarrow \frac{\sum_{i=1:(k+l)} r_i}{\sum_{i=1:(k+l)} q_i}
\]

The second step is to combine all \(\mu^{(i)} \) back into a sentence membership vector \(\mu^s \). At this point, it’s very tempting to just sum or average over all \(\mu^{(i)} \), i.e. compute \(\frac{1}{N} \sum_{i=1}^{N} c_i \mu^{(i)} \). But we remember: in fuzzy set theory the union of the membership vectors is realised by the element-wise max-pooling. In other words, we don’t take the average but max-pool instead:

\[
\mu^s = \max_{i=1}^{N} c_i \mu^{(i)}. \tag{2}
\]

Here the \text{max} returns a vector where each dimension contains the maximum value along that dimension across all \(N \) input vectors. In NLP this is also known as max-over-time pooling \cite{Collobert2011}. Note that any given sentence \(S \) usually contains only a small portion of the total vocabulary and so most word counts \(c_j \) will be 0. If the count \(c_j \) is 0, then we have no need for \(\mu^{(i)} \) and can avoid a lot of useless computations, though we must remember to include the zero vector in the max-pooling operation.

We call the sentence membership vector \(\mu^s \) the fuzzy bag-of-words (FBoW) and the procedure that converts classical BoW \(b^S \) into fuzzy BoW \(\mu^s \) the ‘sentence fuzzification’.

2.2.1 THE FUZZY JACCARD INDEX

Suppose we have two fuzzy BoW \(\mu^A \) and \(\mu^B \). How can we compare them? Since FBoW are just vectors, we can use the standard cosine similarity \(\cos(\mu^A, \mu^B) \). On the other hand, FBoW are also fuzzy sets and as such can be compared via fuzzy SSMs. We simply copy the definitions of fuzzy union, intersection and cardinality from Section 2.1 and write down the fuzzy Jaccard index:

\[
\text{Jaccard}(A, B) = \frac{|A \cap B|}{|A \cup B|} \quad \text{fuzzy} \quad \text{Flaccard}(\mu^A, \mu^B) = \frac{\sum_{i=1}^{K} \min(\mu^A_i, \mu^B_i)}{\sum_{i=1}^{K} \max(\mu^A_i, \mu^B_i)}
\]

Exactly the same can be repeated for other SSMs. In practice we found their performance to be almost equivalent but always better than standard cosine similarity.

2.2.2 SMALLER UNIVERSES AND MAX-POOLED WORD VECTORS

So far we considered the universe and the word embedding matrix to be the same, i.e. \(U = W \). This means any FBoW \(\mu^S \) contains similarities to all the words in the vocabulary and has exactly the same dimensionality as the original BoW \(b^S \). Unlike BoW, however, FBoW is almost never sparse. This motivates us enough to choose the matrix \(U \) with fewer rows that \(W \). For example, the top principal axes of \(W \) could work. Alternatively, we could cluster \(W \) into \(k \) clusters and keep the centroids. Of course, the rows of such \(U \) are no longer word vectors but instead some abstract entities.

A more radical but completely non-parametric solution is to choose \(U = I \), where \(I \in \mathbb{R}^{d \times d} \) is just the identity matrix. Then the word fuzzifier reduces to a word embedding lookup:
\[\mu^{(i)} = e^{(i)} W U^T = e^{(i)} W I^T = e^{(i)} W = w^{(i)}. \] (3)

The sentence fuzzifier then simply max-pools all the word embeddings found in the sentence:

\[\mu^S = \max_{w_i \in S} c_i w^{(i)}. \] (4)

From this we see that max-pooled word vectors are only a special case of fuzzy BoW. Remarkably, when word vectors are trained unsupervised, this simple representation combined with the fuzzy Jaccard index is already a stronger baseline for semantic textual similarity than the averaged word vector with cosine similarity, as we will see in Section 4.

More importantly, the fuzzy Jaccard index works for max-pooled word vectors but completely fails for averaged word vectors. This empirically validates the connection between fuzzy BoW representations and the max-pooling operation described above.

2.2.3 THE DynaMAX Algorithm

From the linear-algebraic point of view, fuzzy BoW is really the same as projecting word embeddings on a subspace of \(\mathbb{R}^d \) spanned by the rows of \(U \), followed by max-pooling of the features extracted by this projection. A fair question then is the following. If we want to compare two sentences, what subspace should we project on? It turns out that if we take word embeddings for the first sentence and the second sentence and stack them into matrix \(U \), this seems to be a sufficient space to extract all the features needed for semantic similarity. We noticed this empirically, and while some other choices of \(U \) do give better results, finding a principled way to construct them remains future work.

The matrix \(U \) is not static any more but instead changes dynamically depending on the sentence pair. We call this approach Dynamic Max or DynaMax and provide pseudocode in Algorithm 1.

2.2.4 Practical Considerations

Just as SoW is a special case of BoW, we can build the fuzzy set-of-words (FSoW) where the word counts \(c_i \) are binary. The performance of FSoW and FBoW is comparable, with FBoW being marginally better. For simplicity, we implement FSoW in Algorithm 1 and in all our experiments.

As evident from Equation (1), we use dot product as opposed to (scaled or clipped) cosine similarity for the membership functions. This is a reasonable choice as most unsupervised and some supervised word vectors maximise dot products in their objectives.

3 RELATED WORK

Any method that casts semantic similarity between sentences as the proximity of their vector representations is related to our work. Among those, the ones that strengthen bag-of-words by incorporating the sense of similarity between individual words are the most relevant.

The standard Vector Space Model (VSM) basis \(e^{(i)} \) is orthonormal and so the BoW model treats all words as equally different. [Sidorov et al., 2014] proposed the ‘soft cosine measure’ to alleviate this issue. They build a non-orthogonal basis \(f^{(i)} \) where \(\cos(f^{(i)}, f^{(j)}) = \text{sim}(w_i, w_j) \), i.e. the cosine similarity between the basis vectors is given by similarity between words. Next, they rewrite BoW in terms of \(f^{(i)} \) and compute cosine similarity between transformed representations. However, when \(\cos(f^{(i)}, f^{(j)}) = \cos(w_i, w_j) \), where \(w_i \), \(w_j \) are word embeddings, their approach is equivalent to cosine similarity between averaged word embeddings, i.e. the standard baseline.

[Kusner et al., 2015] consider L1-normalised bags-of-words (nBoW) and view them as a probability distributions over words. They propose the Word Mover’s Distance (WMD) as a special case of the Earth Mover’s Distance (EMD) between nBoW with the cost matrix given by pairwise Euclidean distances between word embeddings. As such, WMD does not build any new representations but puts a lot of structure into the distance between BoW.

[Zhao & Mao, 2017] proposed an alternative version of fuzzy BoW that is conceptually similar to ours but executed very differently. They use clipped cosine similarity between word embeddings to
Figure 1: Each plot shows the mean Pearson correlation on STS tasks for a different flavour of word vectors, comparing different combinations of fuzzy BoW representation (either averaged or max-pooled, or the DynaMax approach) and similarity measure (either cosine or Jaccard). The bolded methods are ones proposed in the present work. Note that averaged vectors with Jaccard similarity are not included in these plots, as they consistently perform 20-50 points worse than other methods; this is predicted by our analysis as averaging is not an appropriate union operation in fuzzy set theory. In virtually every case, max-pooled with cosine outperforms averaged with cosine, which in turn outperformed by max-pooled and DynaMax with Jaccard. An exception to the trend is STS13, for which the SMT subtask dataset is no longer publicly available; this may have impacted the performance when averaged over different types of subtasks.

compute the membership values in the word fuzzification step. We use dot product not only because it is theoretically more general but also because dot product leads to significant improvements on the benchmarks. More importantly, however, their sentence fuzzification step uses sum to aggregate word membership vectors into a sentence membership vector. We argue that max-pooling is a better choice because it corresponds to the fuzzy union. Had we used the sum, the representation would have really reduced to a (projected) summed word vector. Lastly, they use FBoW as features for a supervised model but stop short of considering any fuzzy similarity measures, such as fuzzy Jaccard index.

Jimenez et al. (2010; 2012; 2013; 2014; 2015) proposed and developed soft cardinality as a generalisation to the classical set cardinality. In their framework set membership is crisp, just as in classical set theory. However, once the words are in a set, their contribution to the overall cardinality depends on how similar they are to each other. The intuition is that the set \(A = \{ \text{‘lion’}, \text{‘tiger’}, \text{‘leopard’} \} \) should have cardinality much less than 3, because \(A \) contains very similar elements. Likewise, the set \(B = \{ \text{‘lion’}, \text{‘airplane’}, \text{‘carrot’} \} \) deserves a cardinality closer to 3. We see that the soft cardinality framework is very different from our approach, as it “does not consider uncertainty in the membership of a particular element; only uncertainty as to the contribution of an element to the cardinality of the set” (Jimenez et al., 2010).

4 Experiments

To evaluate the proposed similarity measures we set up a series of experiments on the unsupervised STS tasks, part of the SemEval shared task series 2012-2016 (Agirre et al., 2012; 2013; 2014; 2015). Our implementation wraps the SentEval toolkit (Conneau & Kiela, 2018) and is available on GitHub.

We also rely on the following publicly available word embeddings: GloVe (Pennington et al., 2014) trained on Common Crawl (840B tokens); fastText (Bojanowski et al., 2016) trained on Common Crawl (600B tokens); word2vec (Mikolov et al., 2013b; 2013c) trained on Google News, CoNLL (Zeman et al., 2017), and Book Corpus (Zhu et al., 2015); and several types of supervised paraphrastic vectors – PSL (Wieting et al., 2015), PP-XXL (Wieting et al., 2016), and PNMT (Wieting & Gimpel, 2018).

We estimated word frequencies on an English Wikipedia dump dated July 1st 2017 and calculated word weights using the same approach and parameters as in Arora et al. (2017). Note that these weights can in fact be derived from word vectors and frequencies alone rather than being inferred.
Figure 2: Each plot shows the mean Pearson correlation on STS tasks for a different flavour of word vector, comparing other BoW-based methods to ones using fuzzy Jaccard similarity. The bolded methods are ones proposed in the present work. We observe that even classical crisp Jaccard is a fairly reasonable baseline, but it is greatly improved by the fuzzy set treatment. Both max-pooled word vectors with Jaccard and DynaMax outperform the other methods by a comfortable margin, and the max-pooled version in particular performs astonishingly well given its great simplicity.

from the validation set [Ethayarajh, 2018], making our techniques fully unsupervised. Finally, as the STS’13 SMT dataset is no longer publicly available, the mean Pearson correlations reported in our experiments involving this task have been re-calculated accordingly.

We first ran a set of experiments validating the insights and derivations described in Section 2. These results are presented in Figure 1. The main takeaways are the following:

- Max-pooled word vectors outperform averaged word vectors in most tasks.
- Max-pooled vectors with cosine similarity perform worse than max-pooled vectors with fuzzy Jaccard similarity. This supports our derivation of max-pooled vectors as a special case of fuzzy BoW, which thus should be compared via fuzzy set similarity measures and not cosine similarity (which would be an arbitrary choice).
- Averaged vectors with fuzzy Jaccard similarity completely fail. This is because fuzzy set theory tells us that the average is not a valid fuzzy union operation, so a fuzzy set similarity is not appropriate for this representation.
- DynaMax shows the best performance across all tasks, possibly thanks to its superior ability to extract and max-pool good features from word vectors.

Next we ran experiments against some of the related methods described in Section 3, namely WMD (Kusner et al., 2015) and soft cardinality (Jimenez et al., 2015) with clipped cosine similarity as an affinity function and the softness parameter \(p = 1 \). From Figure 2, we see that even classical Jaccard index is a reasonable baseline, but fuzzy Jaccard especially in the DynaMax formulation handily outperforms comparable methods.

For context and completeness, we also compare against other popular sentence representations from the literature in Table 1. We include the following methods: BoW with ELMo embeddings (Peters et al., 2018), Skip-Thought (Kiros et al., 2015), InferSent (Conneau et al., 2017), Universal Sentence Encoder with DAN and Transformer (Cer et al., 2018b), and STN multitask embeddings (Subramanian et al., 2018b). These experiments lead to an interesting observation:

- PNMT embeddings are the current state-of-the-art on STS tasks. PP-XXL and PNMT were trained supervised to directly optimise cosine similarity between average word vectors on very large paraphrastic datasets. By contrast, DynaMax is completely unrelated to the training objective of these vectors, yet has an equivalent performance.

Finally, another well-known and high-performing simple baseline was proposed by Arora et al. (2017). However, as noted by Mu & Viswanath (2018), this method is still offline because it computes the sentence embeddings for the entire dataset, then performs PCA and removes the top principal component. While their method makes more assumptions than ours, nonetheless we make a head-to-head comparison with them in Table 2 using the same word vectors as in Arora et al. (2017), showing that DynaMax is still quite competitive.
Table 1: Mean Pearson correlation on STS tasks for a variety of methods in the literature. Bolded values indicate best results per task and word vector where applicable, while underlined values indicate overall best per task. All previous results are taken from Perone et al. (2018) (only two significant figures provided) and Subramanian et al. (2018b). Note that avg-cos refers to taking the average word vector and comparing by cosine similarity, and word2vec refers to the Google News version. Clearly more sophisticated methods of computing sentence representations do not shine on the unsupervised STS tasks when compared to these simple BoW methods with high-quality word vectors and the appropriate similarity metric. † indicates the only STS13 result (to our knowledge) that includes the SMT subtask.

<table>
<thead>
<tr>
<th>Approach</th>
<th>STS12</th>
<th>STS13</th>
<th>STS14</th>
<th>STS15</th>
<th>STS16</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELMo (BoW)</td>
<td>55</td>
<td>53</td>
<td>63</td>
<td>68</td>
<td>60</td>
</tr>
<tr>
<td>Skip-Thought</td>
<td>41</td>
<td>29</td>
<td>40</td>
<td>46</td>
<td>52</td>
</tr>
<tr>
<td>InferSent</td>
<td>61</td>
<td>56</td>
<td>68</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td>USE (DAN)</td>
<td>59</td>
<td>59</td>
<td>68</td>
<td>72</td>
<td>70</td>
</tr>
<tr>
<td>USE (Transformer)</td>
<td>61</td>
<td>64</td>
<td>71</td>
<td>74</td>
<td>74</td>
</tr>
<tr>
<td>STN (multitask)</td>
<td>60.6</td>
<td>54.7†</td>
<td>65.8</td>
<td>74.2</td>
<td>66.4</td>
</tr>
<tr>
<td>GloVe avg-cos</td>
<td>52.1</td>
<td>49.6</td>
<td>54.6</td>
<td>56.1</td>
<td>51.4</td>
</tr>
<tr>
<td>GloVe DynaMax</td>
<td>58.2</td>
<td>53.9</td>
<td>65.1</td>
<td>70.9</td>
<td>71.1</td>
</tr>
<tr>
<td>fastText avg-cos</td>
<td>58.3</td>
<td>57.9</td>
<td>64.9</td>
<td>67.6</td>
<td>64.3</td>
</tr>
<tr>
<td>fastText DynaMax</td>
<td>60.9</td>
<td>60.3</td>
<td>69.5</td>
<td>76.7</td>
<td>74.6</td>
</tr>
<tr>
<td>word2vec avg-cos</td>
<td>51.6</td>
<td>58.2</td>
<td>65.6</td>
<td>67.5</td>
<td>64.7</td>
</tr>
<tr>
<td>word2vec DynaMax</td>
<td>53.7</td>
<td>59.5</td>
<td>68.0</td>
<td>74.2</td>
<td>71.3</td>
</tr>
<tr>
<td>PSL avg-cos</td>
<td>52.9</td>
<td>51.4</td>
<td>59.5</td>
<td>61.3</td>
<td>54.8</td>
</tr>
<tr>
<td>PSL DynaMax</td>
<td>58.5</td>
<td>54.2</td>
<td>66.1</td>
<td>72.5</td>
<td>66.5</td>
</tr>
<tr>
<td>PP-XXL avg-cos</td>
<td>61.3</td>
<td>65.6</td>
<td>72.7</td>
<td>77.0</td>
<td>71.1</td>
</tr>
<tr>
<td>PP-XXL DynaMax</td>
<td>63.6</td>
<td>62.2</td>
<td>72.8</td>
<td>77.6</td>
<td>70.8</td>
</tr>
<tr>
<td>PNMT avg-cos</td>
<td>65.6</td>
<td>68.9</td>
<td>76.3</td>
<td>79.4</td>
<td>77.2</td>
</tr>
<tr>
<td>PNMT DynaMax</td>
<td>66.0</td>
<td>65.7</td>
<td>75.9</td>
<td>80.1</td>
<td>76.7</td>
</tr>
</tbody>
</table>

Table 2: Mean Pearson correlations on STS tasks comparing DynaMax against Arora et al. (2017)’s avg-SIF+PCA method. Bolded values indicate best results per task and word vectors (both methods can be applied to any word vectors). All methods use SIF word weights as described in Arora et al. (2017); in this case average word vector with cosine similarity (avg-SIF in the table) is equivalent to the Arora et al. (2017)’s method without PCA, so we include it for additional context. Note that removing the first principal component requires computation on the entire test set (see Algorithm 1 in Arora et al. (2017)), whereas DynaMax is completely independent of the test set. Even with this distinction, avg-SIF+PCA and DynaMax perform comparably, and both generally outperform avg-SIF although use of PSL vectors closes the gap considerably.

<table>
<thead>
<tr>
<th>Vectors</th>
<th>Similarity</th>
<th>STS12</th>
<th>STS13</th>
<th>STS14</th>
<th>STS15</th>
<th>STS16</th>
</tr>
</thead>
<tbody>
<tr>
<td>avg-SIF</td>
<td>59.2</td>
<td>59.9</td>
<td>62.9</td>
<td>62.8</td>
<td>63.0</td>
<td></td>
</tr>
<tr>
<td>GloVe avg-SIF+PCA</td>
<td>58.5</td>
<td>65.5</td>
<td>69.3</td>
<td>70.2</td>
<td>69.6</td>
<td></td>
</tr>
<tr>
<td>DynaMax-SIF</td>
<td>61.1</td>
<td>61.5</td>
<td>69.3</td>
<td>73.1</td>
<td>71.7</td>
<td></td>
</tr>
<tr>
<td>avg-SIF</td>
<td>61.5</td>
<td>66.7</td>
<td>71.5</td>
<td>72.8</td>
<td>69.7</td>
<td></td>
</tr>
<tr>
<td>PSL avg-SIF+PCA</td>
<td>60.9</td>
<td>67.8</td>
<td>72.9</td>
<td>75.8</td>
<td>71.9</td>
<td></td>
</tr>
<tr>
<td>DynaMax-SIF</td>
<td>63.2</td>
<td>64.8</td>
<td>72.8</td>
<td>77.6</td>
<td>73.3</td>
<td></td>
</tr>
</tbody>
</table>

5 Conclusion

In this work we combine word embeddings with classic BoW representations using fuzzy set theory. We show that max-pooled word vectors are a special case of the FBoW, which implies that they should be compared via the fuzzy Jaccard index rather than the more standard cosine similarity. We also present a simple and novel algorithm, DynaMax, which corresponds to projecting word vectors onto a subspace dynamically generated by the given sentences before max-pooling over the features. DynaMax outperforms averaged word vectors compared with cosine similarity on every benchmark.
Under review as a conference paper at ICLR 2019

STS task when word vectors are trained unsupervised. It even performs comparably to supervised vectors that directly optimise cosine similarity between paraphrases, while our approach is completely unrelated to that objective.

Both max-pooled vectors and DynaMax constitute strong baselines for further studies in the area of sentence representations. Yet, these methods are not limited to NLP and word embeddings, but can in fact be used in any setting where one needs to compute similarity between sets of elements that have rich vector representations. We hope to have demonstrated the benefits of experimenting more with similarity metrics based on the building blocks of meaning such as words, rather than complex representations of the final objects such as sentences.

REFERENCES

Dinghan Shen, Guoyin Wang, Wenlin Wang, Martin Renqiang Min, Qinliang Su, Yizhe Zhang, Chunyuan Li, Ricardo Henao, and Lawrence Carin. Baseline needs more love: On simple word-embedding-based models and associated pooling mechanisms. ACL, 2018.

