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Abstract

We present an end-to-end trainable approach for optical character recognition
(OCR) on printed documents. It is based on predicting a two-dimensional character
grid (chargrid) representation of a document image as a semantic segmentation task.
To identify individual character instances from the chargrid, we regard characters as
objects and use object detection techniques from computer vision. We demonstrate
experimentally that our method outperforms previous state-of-the-art approaches
in accuracy while being easily parallelizable on GPU (therefore being significantly
faster), as well as easier to train.

1 Introduction

Optical Character Recognition (OCR) on documents is an age-old problem for which numerous
open-source (e.g. [14]) as well as proprietary solutions exist. Especially in the sub-domain of printed
documents, it is often regarded as being solved. However, current state-of-the-art document-level
OCR solutions (as far as the published research goes) consist of a complicated pipeline of steps, each
one either a hand-optimized heuristic or requiring intermediate data and annotations to train.

Deep neural networks have been proven very successful in object detection tasks [8]. In this work, we
build on top of these developments and treat OCR as a semantic segmentation and object detection
task for detecting and recognizing character instances on a page.2 We introduce a new end-to-
end trainable OCR pipeline for (but not limited to) printed documents that is based on deep fully
convolutional neural networks. Our main contribution is to frame the OCR problem as an ultra-dense
instance-segmentation task [5] for characters over the full input document image. We do not rely
on any pre-processing stages like binarization, deskewing, layout analysis. Instead, our model
learns directly from the raw document pixel data. At the core of our method, we predict a chargrid
representation [6] of the input document - a 1-hot encoded grid of characters. Thus, we call our
method Chargrid-OCR. Additionally, we introduce two novel post-processing steps, both of which
are crucial to performing fast and accurate dense OCR. We show that our method can outperform
line-based pipelines like e.g. Tesseract 4 [13] that rely on a combination of deep convolutional and
recurrent networks with CTC loss [14, 1] while being significantly simpler to train.

∗ Equal contribution
2A related task of recognizing text in natural images, referred to as Scene Text Recognition (STR), has

been faster in adopting techniques from object detection in computer vision [3]. However, compared to STR,
document OCR deals with much denser text and very high accuracy requirements [2].
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Figure 1: Schematic representation of the Chargrid-OCR network architecture with its input and
outputs. Parameters nC and d denote the number of channels and strides per convolution filter. C is
referred to as base channels. Colors in S encode the predicted character class for each pixel.

2 Chargrid-OCR: OCR as an ultra-dense object detection task

Chargrid-OCR method is a lexicon-free (only character-based), end-to-end trainable approach for
OCR. Given a document image, chargrid-OCR predicts character segmentation mask together with
object bounding boxes for characters in one single step (see Fig 1). Both, semantic segmentation and
object detection are common tasks in computer vision, e.g. [11, 8, 7]. The character segmentation
mask classifies each pixel into a character class and the character bounding box detects a bounding
box around each character.

Both, our semantic segmentation and box detection (sub-)networks are fully convolutional and consist
of only a single stage (like [8] and unlike [9]). Being single-stage is especially important as there
may be thousands of characters (i.e. objects) on a single page which yields an ultra-dense object
detection task.

2.1 Chargrid-OCR architecture

The chargrid representation of a document image maps each pixel that is occupied by a single
character on the input document to a unique index that corresponds to that character [6].

Given an input document, our model predicts the chargrid representation of the complete document.
This is accomplished by using the chargrid as target for a semantic segmentation network. Since
the chargrid does not allow one to delineate character instances, we further use class agnostic object
detection to predict individual character boxes. We are thus solving an instance segmentation task.

Concretely, the input to our model is an image with text, e.g. a scanned document. The output is a
segmentation mask (chargrid) and a set of bounding boxes. The segmentation mask, S, classifies
each pixel in the input image into characters (Fig. 1). The bounding boxes are predicted in a similar
way as standard object detection methods [8] with (i) a box mask (Bc) whose confidence denotes the
presence of a box at that pixel, (ii) box centers (Xc, Yc), which denote the offset from the location of
the predicting pixel to the center of the box and (iii) the box widths and the heights (Wc, Hc). Finally,
for grouping characters into words, we also predict offsets to word centers (Xw, Yw). The architecture
of the model is based on a fully-convolutional encoder-decoder structure, with two decoders (one
for semantic segmentation, one for bounding box detection) branching out of the common encoder.
Fig. 1 illustrates the architecture with an example input and its corresponding outputs. The model is
trained using categorical cross-entropy for the segmentation outputs (S,Bc) and using Huber loss for
the regression output (Xc, Yc,Wc, Hc, Xw, Yw) [8].

2.2 Post-processing

The character candidate boxes are those that have confidence surpassing a certain threshold (e.g.
50%) in the box mask, Bc. This gives multiple boxes around the same character. In order to delete
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redundantly predicted box proposals of the same character instance, non-maximum suppression
(NMS) is applied [8]. However, in our scenario, the number of proposals can be of the order of 105.
As NMS runs in quadratic time, this can become a computational bottleneck.

To speed up the process, we introduce a preliminary step before NMS, which we call GraphCore.
Recall that each candidate pixel predicts the offset to the center of its box. We construct a directed
graph where each vertex is a candidate pixel and we add a directed edge going from pixel A to pixel
B if pixel A predicts pixel B as the center of its bounding box. By taking the k-core, with k=1, of
the resulting graph (i.e. only the loops in the graph, which can be done efficiently in linear time) only
pixels towards the center of a bounding box (typically, one or two candidate boxes per character) are
selected as candidates for NMS.

Another necessary post-processing step is to construct word boxes from character boxes. To do so,
we cluster characters together based on their predicted word centers, which even allows us to predict
rotated words.

3 Experiments

3.1 Data and metric

For each document input image, we require ground-truth data in the form of character bounding
boxes. (WIKI dataset) We generated a dataset by synthetically rendering pages in A4 format using
English Wikipedia content and applied common data augmentation. We generated 66,486 pages; the
page layout and font specifications (type, height and color) were sampled randomly. This enabled
to synthesize input images and perfect ground truth labels. (EDGAR dataset) We converted a vast
set of publicly available scanned financial reports [4] into images and sampled 42,918 pages with
a non-repetitive layouts. We processed the images with Tesseract4 and thereby obtained noisy (i.e.
including OCR errors) ground truth.

We evaluated the model on both, a held-out dataset from our training data (EDGAR77: 77 pages and
22,521 words ; Wiki200: 200 pages; 76,738 words) as well as benchmark OCR dataset, i.e. Business
letters (179 pages; 48,639 words; [10]) and UNLV. (383 pages; 133,245 words; [12]).

We use Word Recognition Rate to measure the accuracy of OCR which can be computed by the
Nm

Nu+Nm
, with Nm and Nu being the number of matched and unmatched words respectively. A

predicted word matches a ground truth if and only if contents agree (i.e. identical string) and they
intersect (IoU > 1%). If multiple predictions match the same ground truth, only one prediction is
considered a match. The remaining unmatched predictions and unmatched ground truth words are
added to obtain Nu.

3.2 Results

We train various versions of our new model on the datasets described in Sec. 3.1 and report results in
Table 1. As baseline, we compare against Tesseract, v3 and v4, with v4 [14] (released Oct 2018) being
the publicly available state-of-the-art.3 Tesseract v4 comes with an LSTM-based line recognition
engine and achieves much higher accuracy than v3. Unfortunately, re-training Tesseract on our
datasets is not possible due to needing intermediate annotations to train Tesseract. We, therefore,
use off-the-shelf Tesseract without any retraining or fine tuning. However, we use test data that
are domain-independent from training and/or validation data and serve as an indicator for model
generalizability.

Our baseline is denoted by “ChargridOCR-32”, consists of 32 convolutional base channels (C = 32
in Fig. 1), and was trained on the Wiki dataset. This model outperforms Tesseract v3, but not
Tesseract v4. The same model trained on Wiki+EDGAR is competitive with, and typically superior
to, Tesseract4 on validation and test data. Finally, a model with twice as many convolutional channels
“ChargridOCR-64” and thus with higher capacity trained on Wiki+EDGAR outperforms Tesseract on
all datasets, however with significant computational overhead (rightmost column in Tab. 1). In Fig. 2,
we show some crops exemplifying incorrect predictions from our model.

3Commercial solutions were excluded as Trial License Agreements prevent us from analyzing their results.
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Model Training Data Validation data Test Data Time
Wiki200 EDGAR77 Letters UNLV 1000 pages

Tesseract3 Unknown 86.3% 83.4% 87.7% 72.4% 5600s
Tesseract4 Unknown 94.6% 91.0% 92.6% 76.8% 14800s
ChargridOCR-32 Wiki 97.3% 86.4% 89.4% 75.3% 241s
ChargridOCR-32 Wiki+EDGAR 97.2% 91.4% 92.3% 80.4% 241s
ChargridOCR-64 Wiki+EDGAR 98.8% 91.6% 93.5% 81.6% 550s

Table 1: Results, reported in terms of Word Recognition Rate. Tesseract run-times are obtained using
1 Xeon E5-2698 CPU core and Chargrid-OCR’s on 1 V100 GPU.
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Figure 2: Three faulty example crops (top, middle, bottom row) from the validation set. From left to
right: original image, predicted segmentation mask, predicted character boxes (after postprocessing),
and resulting extracted words (blue if they match ground truth, red otherwise).

4 Conclusion

We presented a new end-to-end trainable optical character recognition pipeline that is based on
state-of-the-art computer vision approaches using object detection and semantic segmentation. Our
pipeline is significantly simpler compared to other sequential and line-based approaches, especially
those used for document-level optical character recognition such as Tesseract 4. We empirically show
that our model outperforms Tesseract 4 on a number of diverse evaluation datasets by a large margin
both in terms of accuracy and run-time.
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