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Abstract
Medical ultrasound (US) is a widespread imaging modality owing its popularity to cost efficiency,
portability, speed, and lack of harmful ionizing radiation. In this paper, we demonstrate that replac-
ing the traditional ultrasound processing pipeline with a data-driven, learnable counterpart leads to
significant improvement in image quality. Moreover, we demonstrate that greater improvement can
be achieved through a learning-based design of the transmitted beam patterns simultaneously with
learning an image reconstruction pipeline. We evaluate our method on an in-vivo first-harmonic
cardiac ultrasound dataset acquired from volunteers and demonstrate the significance of the learned
pipeline and transmit beam patterns on the image quality when compared to standard transmit and
receive beamformers used in high frame-rate US imaging. We believe that the presented method-
ology provides a fundamentally different perspective on the classical problem of ultrasound beam
pattern design.
Keywords: Ultrasound Imaging, Deep Learning, Beamforming

1. Introduction

Recently, there has been a surge of interest in applying learning-based techniques to improve ul-
trasound imaging. In (Senouf et al., 2018) and (Vedula et al., 2018), we demonstrated that con-
volutional neural networks (CNNs) can be employed to reconstruct high-quality images acquired
through high-framerate ultrasound acquisition protocols. Similarly, in (Gasse et al., 2017), the au-
thors proposed that CNNs could be used as a means to perform plane-wave compounding requiring
significantly lesser number of plane-waves to reconstruct a high-quality image. (Simson et al., 2018)
proposed to approximate time-consuming beamformers such as minimum-variance beamforming
using CNNs. In (Luchies and Byram, 2018), the authors proposed to use process time-delayed and
phase-rotated signals using fully connected networks showing to improve ultrasound image recon-
struction. Apart from ultrasound image formation, CNNs were used in ultrasound post-processing
for real-time despeckling and CT-quality image reconstruction (Vedula et al., 2017), for speed-of-
sound estimation (Feigin et al., 2018) and for ultrasound segmentation directly from the raw-data
(Nair et al., 2018).
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Contributions. Viewing US imaging as an inverse problem, in which a latent image is recon-
structed from a set of measurements, the above mentioned studies focused on learning (parts of) the
inverse operator producing an image from the measurements. The scope of the present paper dif-
fers sharply in the sense that we propose to learn the parameters of the forward model, specifically,
the transmitted patterns. We propose to jointly learn the end-to-end transmit (Tx) and receive (Rx)
beamformers optimized for the task of high-framerate ultrasound imaging, in which the number
of measurements per image has a direct impact on the frame rate. We demonstrate a significant
improvement in the image quality compared to the standard patterns used in this setting.

Unlike our previous works (Senouf et al., 2018; Vedula et al., 2018) that train separate networks
for the in-phase (I) and quadrature (Q) components of the demodulated received ultrasound data,
we propose a unified dual-pathway network that trains jointly I and Q minimizing for the loss de-
fined on the final envelope image (Figure 1). We also propose a new beamforming layer inspired by
(Jaderberg et al., 2015), that implements beamforming as a differentiable geometric transformation
between pre-beamformed Rx signal and the beamformed one. This results in a fully-differentiable
end-to-end Rx beamforming and signal processing pipeline that can be easily generalized to a vari-
ety of imaging settings. By rendering the end-to-end Rx pipeline differentiable, we demonstrate that
the Tx protocols can be optimized together with the Rx beamforming and reconstruction pipeline,
leading to significant improvement in image quality. To the best of our knowledge, this is the first
time simultaneous end-to-end learning of hardware parameters and signal processing algorithms are
used in US imaging.

2. Methods

Traditionally, a US imaging pipeline consists of the following stages: Tx beamforming, acqui-
sition, Rx beamforming, and image formation. In Tx beamforming, depending on the desired
frame-rate and quality, a suitable number of transmissions and their corresponding beam profile
are chosen and the piezo-electric transducers are programmed accordingly to transmit the beams.
Post-transmission, the echoes are received by the same transducer array; these signals are demodu-
lated and focused by applying the appropriate time-delays and phase-rotations to produce the beam-
formed signal. The beamformed signal is further processed to correct the artifacts (if acquired
through high frame-rate transmit modes) and apodized to suppress the side-lobes. We refer to these
stages of processing the demodulated signals collectively as Rx beamforming (Figure 1). After Rx
beamforming, the envelope is extracted from the complex signal, followed by a log-compression
and scan-conversion to produce the final ultrasound image.

2.1. Learned end-to-end Rx pipeline

In our previous studies (Senouf et al., 2018; Vedula et al., 2018), we have used a symmetric encoder-
decoder multi-resolution neural network in order to fix the distorted received US signal and get the
higher quality undistorted signal. Two networks were trained separately for the I and Q signals,
mostly due to computational and technical difficulties to train one network for both. In this paper,
we present an architecture that comprises two separate paths for I and Q followed by a layer forming
the envelope signal, on which the loss is calculated. ΘI and ΘQ in Figure 2 denote the parameters
of the two encoder-decoder networks with an architecture similar to that of a U-Net (Ronneberger
et al., 2015). Moreover, in our previous works we have trained and applied the networks to the
time-delayed and phase rotated signals, which would not allow us to perform manipulations on
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Figure 1: The ultrasound imaging pipeline

transmission (Tx) patterns. In this work, we have implemented a time-delays and phase rotation
stage (referred to as dynamic focusing) in the network architecture, which allows to work on the
pre-Rx-beamformed signals directly, as described in Figure 2.

Performing time-delays and phase-rotations through convolutions is not trivial because it would
require a very large support of surrounding data points. This, in turn would require a computation-
ally intractable number of arithmetic operations to approximate the delays. In order to overcome
this problem, we propose to perform time-delays and phase-rotations as a differentiable geometric
transformation of the pre-beamformed signal. We introduce a spatial transformation layer inspired
by the works of (Jaderberg et al., 2015) and (Skafte Detlefsen et al., 2018), in which the authors
proposed a differentiable sampling and interpolation method in order to train and apply affine and,
more generally, diffeomorphic transformations to the input. Here, we apply the explicit time delays
and phase-rotation (dynamic focusing) in a similar fashion. Given the raw signal φm(t,α) corre-
sponding to focused beams direction α read out from the m-th array element at location δm and time
t, we construct the time-delayed signal as φ̂m(t,α) = φm(t̂,α), where

t̂ =
t
2
+

√
t2

4
− t sinα

δm

c
+

(
δm

c

)2

,

and c is the speed of sound in the tissue, assumed to be 1540 m/s. In addition, in order to eliminate
phase error, phase rotation is applied to the complex signal in its explicit form, as described in
(Chang et al., 1993):(

ℜ IQ
ℑ IQ

)
=

(
cos(ω0(t̂− t)) −sin(ω0(t̂− t))
sin(ω0(t̂− t)) cos(ω0(t̂− t))

)(
ℜ φ̂m(t,α)

ℑ φ̂m(t,α)

)
,

where ω0 is the modulation frequency and ℜ and ℑ denote, respectively, the real and imaginary
parts of a complex number.

The dynamic focusing is placed after the Tx beamformer layer and before the reconstruction
network, as depicted in Figure 2. While in our implementation, all the parameters defining the time
delay and phase rotation transformations are fixed, they can be trained as well.
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Figure 2: Learned end-tco-end Tx-Rx pipeline. The stages: dyanamic focusing, reconstruction
network, apodization and envelope formation are together referred to as Rx beamforming.

2.2. Learning optimal transmit patterns

The problem of learning optimal transmitted patterns together with Rx beamforming and recon-
struction can be formulated as a simultaneous learning of the forward model and its (approximate)
inverse. Ultrasound imaging can be viewed end-to-end as a process that given a latent image x
(the object being imaged) generates a set of measurements y thereof by sampling from a parametric
conditional distribution y∼ pψ(y|x). This conditional distribution is known as the likelihood in the
Bayesian jargon, and can be viewed as a stochastic forward model. The set of parameters ψ denotes
collectively the settings of the imaging hardware, including the patterns transmitted to obtain the
measurements.

The goal of the signal processing pipeline is to produce the an estimate x̂ of the latent image x
given the measurements y. We denote the estimator as x̂θ (y) and refer to it as the inverse operator,
implying that it should invert the action of the forward model. The set of parameters θ denotes the
trainable degrees of freedom of the reconstruction pipeline; in our case, these are the weights of
the reconstruction neural network. We propose to simultaneously learn the parameters of both the
forward model and the inverse operator such as to optimize performance in a specific task. This can
be carried out by minimizing the expected loss,

min
θ ,ψ

Ex∼p(x)Ey∼pψ (y|x) L (x̂θ (y),x),

where L (x̂,x) measures the discrepancy between the ground truth image x and its estimate x̂. In
practice, the expectations are replaced by finite-sample approximation on the training set. Note that
the expectation taken over y ∼ pψ(y|x) embodies the parametric forward model whose parameters
ψ (reflecting the transmission pattern) are optimized simultaneously with the parameters of the
inverse operator (i.e., the computational process applied to the measurement y to recover the latent
signal), in our case, the reconstruction network. This training regime resembles in spirit the training
of autoencoder networks; in our case, the architecture of the encoder is fixed as dictated by the
imaging hardware, and only parameters under the user’s control can be trained.

The idea of simultaneously training a signal reconstruction process and some parameters of
the signal acquisition forward model has been previously corroborated in computational imaging,
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including compressed tomography (Menashe and Bronstein, 2014), phase-coded aperture extended
depth-of-field and range image sensing (Haim et al., 2018). In all the mentioned cases, a significant
improvement in performance was observed both in simulation and in real systems.

In our current work, we refer only to first harmonic ultrasound imaging, whose forward model
is linear. This means that applying manipulations to the received signal is equivalent to applying
them on the transmitted signal, as has been shown in (Prieur et al., 2013). This way the forward
model is parameterized by a set of linear combinations of the original received beam,

y j =
L

∑
i=1

ψi jxi, {y j}M
j=1

where L is the number of the original received beams, M is the number of new learned beams,
and the matrix ψ encodes the transmit beam patterns. It has been shown (Prieur et al., 2013) that
this approach can faithfully emulate measurements that would be formed from a more complex
excitation.

3. Experiments and discussion

3.1. Data acquisition

The FOV was scanned by 140/140 Tx/Rx lines, each of them covered a sector of 0.54◦. We re-
fer to this baseline acquisition scenario as single-line acquisition (SLA) and consider it to be the
ground truth in all reduced transmission experiments. In order to assess the generalization per-
formance of our method, we used a cine loop from a patient whose data were excluded from the
training/validation set.

3.2. Settings

In order to evaluate the contribution of the joint training of the transmit pattern and the received
signal reconstruction, we have designed a two-stage experiment. First, we trained only the recon-
struction network and fixed the Tx beamforming parameters. Second, we used a pre-convergence
checkpoint of the reconstruction network as a starting point for the joint training. At this stage, we
also trained the Tx parameters. In order to factor out the influence of the optimization algorithm, we
trained the reconstruction network in both stages with the same optimizer (Adam, initial learning
rate = 0.005). The Tx parameters were trained using the momentum optimizer with a decaying
learning rate (initial learning rate = 0.005). The loss function, L (x̂,x), was set to the L1 error.

Different initializations. We performed the two-stage experiment with different initializations
for the Tx parameters using known reduced transmission methods as well as random initialization.
We fixed the decimation factor to 10, meaning that instead of the 140 original acquisitions, only
14 measurements were emulated and provided to the reconstruction network. One initialization
method was the multi-line acquisition (MLA) in which for every wide transmitted beam, 10 (as the
decimation factor) Rx narrow beams are reconstructed. Each 10−MLA acquisition is emulated by
averaging over 10 consecutive single-line acquisition (SLA) Rx signals (as depicted in Figure 12 in
the Appendix) (Rabinovich et al., 2013). Another initialization method is the multi-line transmission
(MLT) in which a comb of uniformly spaced narrow beams is transmitted simultaneously. Each
10−MLT acquisition is emulated by summing over 10 uniformly spaced received Rx signals from
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Figure 3: Convergence plots. Depicted from left to right are the validation error plots of 7−, 10−
and 20−MLA. The red and blue lines indicate the learning Rx and learning Tx-Rx set-
tings, respectively.

SLA (as presented in Figure 12, in the Appendix) (Rabinovich et al., 2015). Finally, a random
initialization was used to emulate, in a way, a plane wave excitation (Montaldo et al., 2009), in
which there is no directivity to the beam pattern. In this experiment, mentioned in this paper as
10−random, 14 acquisitions of distinct random patterns were emulated.

Different decimation rates. In this experiment, we fixed the initialization to MLA and performed
the above described two-stage experiment over different decimation rates 7, 10, and 20.

3.3. Results and discussion

Notation. For all the experiments presented within the paper, Learned Rx refers to the setting
where the transmission is fixed and the reconstruction network alone is trained and Learned Tx-Rx
refers to the setting in which the transmission patterns are jointly learned with with the reconstruc-
tion network. Fixed Tx – DAS refers to the setting where the fixed transmissions are beamformed
using a standard delay-and-sum (DAS) beamformer, and Learned Tx – DAS is the setting where
learned transmissions are beamformed using a delay-and-sum Rx beamformer.

Convergence. Figure 3 displays the validation error plot of the two stages training for the different
decimation rates experiment. Each iteration corresponds with a mini-batch, which in our settings its
size has been set to one. The error gap between the the learned-Rx and the jointly learned Tx-Rx,
in favour of the latter, supports our claim for the superiority of joint learning of forward and inverse
models in the case of US acquisition. A similar behaviour was observed for other initializations.

Train + test split. We generated a dataset for training the network using cardiac data from six
patients; each patient contributed 4− 5 cine loops containing 32 frames each. The networks were
trained on the cineloops of five patients and the testset consists of the cineloops from the patient
that was excluded from the trainset. The total trainset consisted of 745 frames, while the testset
consisted of 160 frames.

Quantitative results. We present the quantitative evaluation of the first cineloop (32 frames) in
Table 1, the quantitative results for the rest of the cineloops are summarized in the supplementary
material1. Table 1 (top), summarizing the average quality measures for the different decimation

1. Supplementary material: available here.
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7-MLA 10-MLA 20-MLA
PSNR SSIM L1-error PSNR SSIM L1-error PSNR SSIM L1-error

Fixed Tx – DAS 33.76 0.955 – 32.34 0.941 – 29.6 0.91 –
Learned Tx – DAS 34.03 0.96 – 32.73 0.95 – 29.87 0.916 –
Learned Rx 42.56 0.987 19.14 39.56 0.975 24.31 35.02 0.924 38.36
Learned Tx-Rx 43.4 0.99 15.94 39.98 0.98 22.19 35.32 0.95 36.24

10-MLA 10-MLT 10-random
PSNR SSIM L1-error PSNR SSIM L1-error PSNR SSIM L1-error

Fixed Tx – DAS 32.34 0.941 – 24.39 0.855 – 24.26 0.865 –
Learned Tx – DAS 32.73 0.95 – 25.22 0.878 – 25.34 0.88 –
Learned Rx 39.56 0.975 24.31 33.66 0.92 47.99 34.7 0.935 46.7
Learned Tx-Rx 39.58 0.98 22.19 35.04 0.92 41 36.52 0.95 38

Table 1: Comparison of average PSNR, SSIM and L1 error measures between different decimation
rates of transmissions (top) and different initializations (bottom). First and second rows
indicate the performance of fixed and learned transmissions with a standard delay-and-sum
(DAS) beamformer, respectively. Third and fourth rows indicate the results corresponding
to learned Rx and learned Tx-Rx experiment settings, respectively.

rates, shows improved performance in the sense of the L1 error used to train the models, and in the
sense of the peak signal-to-noise ratio (PSNR), which is correlated to the L1 loss. It is interesting to
observe that an improvement was also observed in the sense of the structure-similarity (SSIM) mea-
sure, for which the models were not trained. In Tables 1 and 2, we can observe that the learned Rx
pipeline performs significantly better than the fixed Tx with a DAS beamformer. Similar behavior
can be observed in all the experiments. More interestingly, one can see that the learned transmis-
sions perform better than the fixed ones even with the DAS beamformer. The best performance,
with a significant margin, is achieved when the transmit patterns and the Rx beamformer are jointly
learned, in all settings. Comparison between different initializations of transmission patterns for
a fixed decimation factor is presented in Table 1 (bottom). Observe that the transmission pattern
initialized with MLA performs better than MLT and random initializations, also by a significant
margin.

Visual inspection of the results of the two-stage training experiment for both different rates
and different initializations settings, on one of the test frames is displayed in Figures 10, 11 in the
Appendix, along with the corresponding difference images (compared to SLA) and contrast (Cr),
and contrast-to-noise (CNR) ratios (Tables 3, 4). These results suggest a better interpretability of
the images generated from the jointly trained Tx-Rx models, especially for higher decimation rates
(as displayed for the 20−MLA initialization in Figure 4) and the less-directed initalizations (MLT
and random).

Generalization to phantom dataset. A phantom dataset consisting of 46 frames was acquired
with the same acquisition setup as of the cardiac dataset from a tissue mimicking phantom (GAM-
MEX Ultrasound 403GS LE Grey Scale Precision Phantom). In order to evaluate the generalization
performance of the proposed approach, we test all the networks that were originally trained on the
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cardiac samples on the phantom dataset. Results in Table 2 suggest that the proposed methodology
while being trained on the cardiac data, generalizes well to the phantom, which is also consistent
with the observations we made in our previous works (Vedula et al., 2018; Senouf et al., 2018).
Firstly, this indicates that our reconstruction CNN does not overfit to the anatomy it was trained on.
Secondly, and more interestingly, we can observe that the Learned Tx-Rx setting consistently out-
performs the Learned Rx setting, which indicates that the transmit patterns learned over the cardiac
data also transfer well to the phantoms.

7-MLA 10-MLA 20-MLA
PSNR SSIM L1-error PSNR SSIM L1-error PSNR SSIM L1-error

Learned Rx 40.92 0.978 5.3 32.09 0.911 9.91 30.23 0.901 12.94
Learned Tx-Rx 43.73 0.989 3.35 31.14 0.92 7.62 31.92 0.903 10.53

10-MLA 10-MLT 10-random
PSNR SSIM L1-error PSNR SSIM L1-error PSNR SSIM L1-error

Learned Rx 32.09 0.911 9.91 31.05 0.624 15.91 31 0.667 16.34
Learned Tx-Rx 31.14 0.92 7.62 32.098 0.711 13.765 31 0.76 14.276

Table 2: Generalization to phantom dataset. Comparison of average PSNR, SSIM and L1 error
measures between different decimation rates of transmissions (top) and different initial-
izations (bottom). Top and bottom rows indicate the results corresponding to learned Rx
and learned Tx-Rx experiment settings, respectively.

Learned beam patterns. A visualization of the learned beam profiles for 7−, 10− and 20−MLA
initializations as presented in the Appendix in Figures 5, 6 and 7, respectively. These profiles
suggest that the general trend of the beam transformation is towards higher directivity. The wider
the initialized beams are (higher MLA rates), the greater is the increase in the directivity, such that
for the very wide 20−MLA initialization (as depicted in Figure 4), the beam pattern converges into
two splitted narrower beams. The visualization of the beam profiles of the 10− MLT and 10−
random initializations, as displayed in the Appendix in Figures 8 and 9, respectively, suggest that
there is a trade-off between the directivity of the beam and the field of view it covers. The 10−MLT
profile displays a trend towards widening the simultaneously transmitted narrow beams, whereas
for the random initialization, some of the beams stays un-directed and some of them approach the
MLT pattern.

4. Conclusion and future directions

We have demonstrated, as a proof-of-concept, that jointly learning the transmit patterns with the
receive beamforming provides greater improvements to the image quality. It should be mentioned
that since the beam patterns trained from the MLA initialization displayed the optimal results, we
can assume the models have not reached the globally optimal configuration – otherwise, all pat-
terns would have converged to similar performance. This calls for better optimization techniques
which are more robust to initialization in regression problems in general and in imaging in par-
ticular. It should be noted that in all the experiments mentioned within this paper, delay-and-sum
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Figure 4: Visual comparison of Learned-Rx and Learned Tx-Rx settings of 20−MLA on a test
frame. The first row depicts (a) the ground truth SLA image, (b) reconstruction obtained
from the Learned Rx setting and (c) the reconstruction obtained from the Learned Tx-Rx
setting. The second row depicts the corresponding difference frames (with respect to the
SLA image). The bottom row depicts the initial (red) and learned beampatterns (blue) of
the 7 acquisitions in the 20−MLA setting.

beamformed SLA was considered as the ground truth reference to the neural network. However,
the presented methodology can be simply extended to more sophisticated beamformers such as
minimum-variance beamforming by modifying the reference envelope ultrasound image appropri-
ately (Simson et al., 2018), or to other tasks such as estimating the speed-of-sound (Feigin et al.,
2018) or the scatterer maps of the tissues (Vedula et al., 2017). It would be particularly interesting to
explore such learning-based beam pattern designs to combat the frame-rate vs. resolution tradeoffs
in the case of 2D ultrasound probes and to enable efficient computational sonography (Göbl et al.,
2018).

An interesting insight observed from the 10−random experiment is that the learned beam pro-
files perform significantly better than transmitting random undirected beam patterns both with the
delay-and-sum and the learned beamformers. This makes us wonder whether transmitting planar
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waves is really optimal with a learned receive pipeline. Lastly, in the proposed work, the learned
transmit patterns are fixed during post-training. It would be interesting to explore how to design
transmit protocols, that are scene or anatomy adaptive, and extend the proposed methodology to the
non-linear second-harmonic imaging. We believe that all these directions would initiate a new line
of research towards building efficient learning-driven ultrasound imaging.
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Single-line acquisition (SLA) Multi-line acquisition (MLA) Multi-line transmission (MLT)

Figure 12: SLA/SLT vs. MLA, MLT

7-MLA 10-MLA 20-MLA
Cr CNR Cr CNR Cr CNR

Learned Rx -30.4463dB 1.3432 -33.2432dB 1.3453 -28.3764dB 1.32
Learned Tx-Rx -33.2593dB 1.3495 -31.6148dB 1.3891 -32.6599dB 1.3214

Table 3: Comparison of average contrast-to-noise ratio (CNR) and contrast(Cr) measures between
different decimation rates of the transmits. Top and bottom rows indicate the results cor-
responding to learned Rx and learned Tx-Rx experiment settings respectively.CNR and
Cr are calculated for the regions marked within yellow and pink circles drawn in Figure
5,1.1(a).

10-MLA 10-MLT 10-random
Cr CNR Cr CNR Cr CNR

Learned Rx -33.2432dB 1.3453 -28.3089 dB 1.6155 -30.3793dB 1.3452
Learned Tx-Rx -31.6148dB 1.3891 -28.8051 dB 1.4528 -31.4859dB 1.3418

Table 4: Comparison of average contrast-to-noise ratio (CNR) and contrast(Cr) measures between
different initializations of the transmit patterns. Top and bottom rows indicate the results
corresponding to learned Rx and learned Tx-Rx experiment settings respectively. CNR and
Cr are calculated for the regions marked within yellow and pink circles drawn in Figure
5,2.1(a).
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