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Abstract

Curiosity as a means to explore during reinforce-
ment learning problems has recently become very
popular. However, very little progress has been
made in utilizing curiosity for learning control. In
this work, we propose a model-based reinforce-
ment learning (MBRL) framework that combines
Bayesian modeling of the system dynamics with
curious iLQR, a risk-seeking iterative LQR ap-
proach. During trajectory optimization the cu-
rious iLQR attempts to minimize both the task-
dependent cost and the uncertainty in the dynam-
ics model. We scale this approach to perform
reaching tasks on 7-DoF manipulators, to perform
both simulation and real robot reaching experi-
ments. Our experiments consistently show that
MBRL with curious iLQR more easily overcomes
bad initial dynamics models and reaches desired
joint configurations more reliably and with less
system rollouts.

1. Introduction
Curiosity has repeatedly been recognized as a fundamental
building block of human behaviour (Loewenstein, 1994).
Some researchers go as far as considering curiosity essential
for the development of autonomous behaviour in humans
(White, 1959). The concept of intrinsically motivated, curi-
ous, behavior has also been explored within the reinforce-
ment learning literature from various angles. For example,
a first attempt towards intrinsically motivated agents con-
sisted in rewarding agents to minimize prediction errors of
sensory events (Barto, 2004; Singh et al., 2004; 2010). This
initial work on curiosity-driven agents was designed for low-
dimensional and discrete state-and-action spaces. Recently,
curiosity as a means to better explore was also investigated
for high-dimensional continuous state spaces (Bellemare
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Figure 1. An overview of our approach for model-based reinforce-
ment learning. We start with motor babbling data to initialize
the dynamics model, followed by an iterative loop of learning the
model and updating an iLQR policy.

et al., 2016; Pathak et al., 2017). Most of this work, includ-
ing recent efforts towards curiosity driven robot learning
(Laversanne-Finot et al., 2018; Tanneberg et al., 2019), has
defined curiosity as a function of model prediction error. In
this work, we take inspiration from Kagan (Kagan, 1972),
who define curiosity as motivation to resolve uncertainty
in the environment. Following this definition, our goal is
to develop a model-based reinforcement learning (MBRL)
algorithm that is aware of its model uncertainty, and op-
timizes action sequences to not only maximize a reward
but also to reduce model uncertainty. MBRL comes with a
lot of promise for sample-efficient learning on real robots
(Atkeson & Santamaria, 1997). However, one of the key
challenges centers around making use of a bad model to
generate useful data to improve the model and eventually
achieve the task. We believe, that curiosity can help with this
challenge. Our MBRL algorithm uses a Gaussian process
(Williams & Rasmussen, 2006) to represent the dynamics
and a curious version of the iterative Linear Quadratic Reg-
ulator (iLQR)(Tassa et al., 2014) for trajectory optimization,
as summarized in Figure 1. In a nutshell, our curious iLQR
aims at optimizing trajectories that minimize the cost as well
as the uncertainty in the dynamics model. The contributions
of this work are as follows: We combine curious iLQR with
Gaussian process regression into a model-based RL loop
that learns a model of the system dynamics from scratch,
while trying to achieve a task. We demonstrate that such
optimal control algorithms can be scaled to seven Degree
of Freedom (DoF) manipulation platform and show that
curiosity helps to achieve the task faster, and more reliably,
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when starting from a bad model of the dynamics.

2. MBRL via Curious iLQR
In this section we present how we can incorporate curious
behaviour into a robot’s learning control loop and how it
can affect it’s capability of achieving a task. Rooted in
the literature (Kagan, 1972), we believe that by seeking
out uncertainties, a robot is able to solve a reinforcement
learning task faster and therefore gain higher rewards sooner
compared to a non curious robot. We design an approach
that explores while optimizing a trajectory. The exploration
should reduce uncertainty about the robots dynamics model,
while staying close to the task trajectory. More concretely,
having high uncertainty in the model means high variance
in an optimized state sequence. In our work we want to seek
out actions that reduce this variance.

2.1. Background: risk sensitive iLQR

To include stochastic processes when optimizing a trajectory,
it is necessary to consider a nonlinear optimal control prob-
lem where the system dynamics are defined by the following
stochastic differential equation

xk+1 = xk + f (xk,uk) ∆t+ g (xk, uk) ∆ω (1)

where f represents the dynamics of the system and g the
stochasticity of the problem. ∆ω is a Brownian motion with
zero mean and covariance (Σ ·∆t). Following the idea of
(Jacobson, 1973) to include higher order momenta of the
cost function, the objective function takes the form of an
exponential transformation of the performance criteria J :

J = min
π

E {exp[σJ (π)]} (2)

where J (π) is the performance index, which is a random
variable, and a functional of the policy π. σ ∈ R accounts
for the sensitivity of the cost to higher order moments (vari-
ance, skewness, etc). Notably from (Farshidian & Buchli,
2015), the cost is

1

σ
log(J) = E(J ∗) +

σ

2
var(J ∗) +

σ2

6
sk(J ∗) + · · · (3)

where var and sk stand for variance and skewness and J ∗

is the optimal task cost.

2.1.1. ALGORITHM DERIVATION

The algorithm begins with a nominal state and control input
trajectory xn and un. The dynamics are linearized and
the cost is quadratized along un

k, xn
k in terms of state and

control deviations, together with the following quadratic
approximation of the value function Ψ:

Ψ(δxk,k) =
1

2
δxT

k Skδx + δxT
k sk + sk (4)

and solving for the optimal control, we get δuk = kk +
Kkδxk, kk = −H−1

k gk and Kk = −H−1
k Gk where Hk,

gk, Gk are given by

Hk = Rk + BT
k SkBk + σBT

k STCΣCTSkBk

gk = rk + BT
k sk + σBT

k ST
k CΣCTsk

Gk = PT
k + BT

k SkAk + σBT
k ST

k CΣCTSkAk

(5)

the corresponding backward recursions are

sk = qk + AT
k sk+1 + GT

k kk + KT
k Hkkk+

σAT
k ST

k+1CΣCTsk+1

(6)

Sk = Qk + AT
k Sk+1Ak + KT

k HkKk + GT
k Kk+

KT
k Gk + σAT

k ST
k+1CΣCTSk+1Ak

(7)

With σ = 0 the recursions revert to the usual Ricatti recur-
sions for iLQR (Tassa et al., 2014).

2.2. Curious iLQR via model uncertainty

We now describe the details of our instantiation of a curious
iLQR approach. The optimizer presented in Section 2.1
works with the assumption that a known dynamics model is
disturbed by a stochastic noise process. In our work, we do
not assume this but learn and improve the dynamics model
as we are trying to achieve a task. The quality of our current
model affects the quality of the solution an optimizer can
find. This can lead to MBRL loops getting stuck in ‘local
optima’ or converging very slowly. Our hypothesis is that,
by trying to explore uncertainties in the model, our MBRL
loop can escape these local minima and find better solutions
faster. On a high level our optimizer reasons about uncer-
tainties in the probabilistic dynamics model to find solutions
to a nonlinear optimal control problem. The algorithm alter-
nates between improving the probabilistic dynamics of the
robot model from the recently unrolled trajectory, optimiz-
ing the trajectory using the current model, and rolling out
the current locally optimal policy on the system. See Figure
1 for an overview of the approach.

2.2.1. LEARNING A BAYESIAN DYNAMICS MODEL

Because of their intuitive uncertainty behavior, the Bayesian
dynamics model is implemented as a Gaussian Process (GP).
Let xk denote the state of the system at time step k, where
xk = [θk, θ̇k] and θk, θ̇k are joint positions and veloci-
ties respectively. Furthermore, let uk denote commanded
torques uk = [τ1, τ2, ..., τN ] where N = DoF. Then tuples
of states and actions (xk,uk) ∈ RF+A are used as training
inputs and θ̈k+1 ∈ RF , joint accelerations at the next time
step, as training outputs. Once trained, the GP delivers one
step predictions of the form

p(θ̈k+1|xt,ut) = N (θ̈k+1|f (xk,uk) ∆t,Σk+1) (8)
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where f is the mean vector and Σk+1 the covariance matrix
of the predictive distribution evaluated at (xk, uk). The GP
outputs the acceleration at the next time step θ̈t+1 which is
numerically integrated to velocity θ̈k+1∆t + θ̇k = θ̇k+1

and position θ̇k+1∆t+ θk = θk+1.

2.2.2. SEEKING OUT UNCERTAINTIES

When referring back to equation (1), our system dynamics
can be defined as

xk+1 ∼ N (xk+1|h (xk,uk) ,Σ) (9)

where xk+1 is a random variable, h is the mean predic-
tion of the GP integrated to the future state xk+1. Σ is
the covariance matrix of the posterior distribution of the
GP predictions. When linearising our dynamics around a
nominal trajectory

δxk+1 = Akδxk + Bkδuk + Ckωk (10)

we have Ak = ∆t ∂f∂xk
, Bk = ∆t ∂f∂uk

and ωk ∼
N (ωk|0,Σk+1), where Ak and Bk are the analytical gra-
dients of the GP prediction at each time step. Ck represents
how the uncertainty propagates through the system. For
our formulation, the covariance matrix is of particular in-
terest, as it provides the information that is essential for
our algorithm to explore. The uncertainty of the Gaussian
process model when evaluating the posterior distribution
at (xk,uk) is the notion of uncertainty that can be used in
order to encourage the agent to choose actions such that the
uncertainty of the model will be resolved in the future. It
is important to note now that Σk+1 in equations (5) and
(6) represents the uncertainty of the model when predicting
xk+1 from (xk,uk). As can be seen from equations (6)
and (7), with a negative σ value, the cost explicitly favors
for the uncertainty in the dynamics. As a result, the agent
is encouraged to select actions that include some level of
uncertainty while still trying to reduce the task specific error.
With σ = 0 the agent will ignore any uncertainty in the envi-
ronment and therefore not explore around the trajectory that
should be optimized. In this case the optimizer ignores any
higher order statistics of the cost function and only resolves
the optimal control problem by minimizing the expectation
over the cost.

3. Illustration: Curious iLQR
In this section, we show some toy examples that illustrate
the advantages of using curiosity – the motivation to resolve
uncertainty – as an exploration tool. The objectives of these
toy experiments are twofold (1) they should provide an
analysis of whether it is possible to escape local minima with
curiosity, that a locally optimal optimizer, can potentially
get stuck in (Tassa et al., 2014). And (2) if by trying to
resolve the uncertainty in the model, the agent explores

Figure 2. Explored states of the environment in the mountain car
problem by risk-averse, normal and curious iLQR.

parts of the state space that are less known but contain
relevant information for solving potential future tasks and
is therefore able to transfer easier. In the following, and
throughout the paper, we will refer to the agent that tries to
resolve the uncertainty in its environment as curious and the
one that is not following the uncertainty as normal.

3.1. Mountain Car Example

In this experiment, we analyze the benefit of including
model uncertainty during trajectory planning to find a glob-
ally optimal solution, instead of converging to a local opti-
mal solution, when using a locally optimal feedback con-
troller. The mountain car problem (Moore, 1990) consists
of an under-actuated car that should be parked at the top of
a steep hill when starting from the valley. The car cannot
simply accelerate to drive up the hill and must gain mo-
mentum by driving up the opposite hill. This problem is
representative for how an optimizer, that finds locally opti-
mal solutions, is not able to compute a trajectory to actually
solve the task. Locally the best action would always be
to drive up the goal hill and not drive away from the goal,
to leverage potential energy, and finally reach the desired
goal position. We learn a probabilistic model of the system
dynamics and a policy as presented in Section 2. Fig. 2
shows that the behaviour of driving away from the goal is
only observed in the curious agent, and thus this agent is the
only one receiving a reward by the end of the episode.

3.2. Learning model faster by following its own
uncertainty

The second experimental platform is the OpenAI gym
Reacher environment (Brockman et al., 2016), a two de-
grees of freedom arm attached at the center of the scene.
The goal of the task is to reach a target placed in the envi-
ronment. In the experiments presented below, actions were
optimized as described in section 2. The intuition behind
this experiment is that, if an agent is driven to resolve un-
certainty in its model, by exploring less known states, a
better model of the system dynamics can be learned and
therefore used to optimize a control sequence more reliably.
Our hypothesis is that the model learned by the curious
agent is more certain by the end of learning. As it was
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driven to resolve uncertainties in the environment we expect
it to be more robust when solving the reaching task for new
targets. In Figure 3 the end-effector position in euclidean
space shows the behaviour of the 2D arm of the curious and
normal agent. Each row depicts a different target position.
The curious agent tries to resolve the uncertainty within the
model. For the first target position the normal agent seem-
ingly reaches the target after the second learning iteration,
the curious agent only manages to reach the target during the
third iteration. Interestingly, the exploration of the curious
agent leverages the arm to reach the second target position
immediately and continues to reach it consistently thereafter.

Figure 3. End-effector position of curious and not curious agent
for 4 learning iterations on 2 different targets. The targets are
represented by the black dots.

4. Experiments on high-dimensional problems
Lastly the goal of this work is to perform experiments on
torque-controlled manipulator. Our first experimental plat-
form is a 7 degrees of freedom Kuka iiwa7 simulation in
the PyBullet physics simulator (Pybullet). The goal of these
experiments is to reach a desired target joint configuration.
The dynamics are learned with Gaussian process regression.
We believe that curiosity (on average) helps the optimizer
to find better solutions faster, because it helps escape local
optima within the MBRL loop. Curiosity also means we
explore more and because of that we learn more about the
dynamics which helps when using the model for new targets.
In simulation, we performed three different kinds of experi-
ments that we will describe in detail below. Throughout all
of the simulation experiments the trajectory was 0.625s long
at a sampling rate of 240 Hz. Motor babbling was performed
at the beginning for 0.5s by commanding sine-trajectories
in each joint.

4.1. Reaching task from scratch

During the first set of experiments, we wanted to compare
the performance of both controllers when learning to reach
a given target configuration from scratch. For a given target

Figure 4. Final performance in end-effector space after learning to
reach one target position using MBRL with (left) normal, (right)
curious iLQR. Solid lines represent targets, dashed lines actual
trajectories in x, y, z. The mean and the standard deviation are
computed across 10 different trials.

joint configuration, 20 MBRL with the curious iLQR loops
for 3 different target joint configurations were performed.
For each target we run 10 trials, where the variability be-
tween trials is caused by the random initial torque trajectory,
and by small perturbations to the starting configuration. Fig-
ure 4 visualizes the mean and variance of the end-effector
trajectories across the 10 trials on the first target. We ob-
serve that MBRL with the curious iLQR reaches the target
end-effector position, by the end of learning, more consis-
tently then with normal iLQR. Most notably is the variance
of the final trajectories when using MBRL with regular
iLQR. This suggests, that at least for a few trials MBRL
with normal iLQR failed to converge to the target within 20
learning iterations.

4.2. Optimizing towards new targets after model
learning

To confirm the hypothesis that the models learned by MBRL
with curious iLQR generalize better, because they have ex-
plored the state space better, we decided to evaluate the
learned dynamics models on a second set of experiments
in which the robot tries to reach new, unseen targets. Thus,
in this experiment with take the GP models learned during
experiment 1 in Section 4.1 and use them to optimize trajec-
tories to reach new targets that were not seen during training
of the model. The results are shown in Figure 5, where
three randomly chosen targets where set and the trajectory
was optimized with regular iLQR. Note, that here we use
regular iLQR to optimize for the trajectory so that we can
better compare the models learned with/without curiosity in
the previous set of experiments. The results are averaged
across 10 trials. Here, the 10 trials correspond to using
one of the 10 dynamics models at the end of Experiment 1
in Section 4.1. For each trial, the initial torque trajectory
was initialized randomly, and the initial joint configuration
slightly perturbed. The mean trajectories and standard de-
viation of the end-effector trajectories across the 10 trials
are shown. We see that MBRL with curious iLQR results
in a model that performs better when presented with a new
target. The new targets are reached more reliably and pre-
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cisely. Here, we chose the new target location to be close to
the initial target (from Experiment 1 in Section 4.1) because
we assume that the MBRL runs in the previous Section only
learned reliable dynamics models locally.

Figure 5. Optimizing to reach new targets with regular iLQR after
dynamics models were learned. 3 different targets (one per row)
are evaluated and the final end-effector trajectories presented. The
mean and the standard deviation of the optimized trajectories are
computed across the 10 models learned via MBRL with normal
iLQR (left col) and MBRL with curious iLQR (right col).

5. Real hardware experiments
The experimental platform for our hardware experiments
is the Sawyer Robot (Sawyer), again a 7 DoF manipula-
tor. The purpose of the experiments was to demonstrate
the applicability and the benefits of our algorithm on real
hardware. We perform reaching experiments for 4 different
target locations. Each experiment is started from scratch
with no prior data. The results are summarized in Table 1
and show the number of learning iterations needed in order
to reach the target together with the precision in end-effector
space. If the target was reached with a precision of below

Target Learning Iterations Distance to Target
Curious Normal Curious Normal

1 6 2 3 3.67 8 3 8 7.0 0.05 0.09 0.09 0.07 0.37 0.08 0.18 0.21
2 3 4 4 3.67 8 3 5 5.3 0.05 0.09 0.09 0.09 0.20 0.08 0.09 0.12
3 6 4 3 4.33 8 8 8 8.0 0.09 0.09 0.09 0.09 0.17 0.16 0.11 0.15
4 3 2 2 2.33 3 3 3 3.0 0.04 0.07 0.07 0.06 0.04 0.08 0.05 0.06

3.5 5.9 0.07 0.14

Table 1. Results on a reaching task on the Sawyer robot. The
experiment for each target was repeated three times, the number of
learning iterations and the final end-effector distance to the target
is reported.
10 cm, we would consider the task as achieved. Running
the experiment on hardware was a lengthy process, as the
GP training and the rollout would happen iteratively and GP
training time increases with growing amount of data. For
this reason we decided to terminate our experiments after
eight iterations and consider the last end-effector position.
We repeated each experiment three times to demonstrate the

repeatability of our method as we expected measurement
noise to affect solutions. From the table we can see that
MBRL with curious iLQR would reach a target on average
after 3.5 iterations with a average precision of 7 cm com-
pared to MBRL with regular iLQR that needed 5.9 iterations
(often not ever reaching the target after eight iterations with
the desired precision), with a precision of 14cm on average.
As in simulation, similar to Experiment 4.2 we wanted to
evaluate the quality of the learned models on new target
positions. The results are summarized in Table 2 and are
similar to what we observe in simulation, the models learned
with curiosity, when used to optimize for new targets can
achieve higher precision then when using the models learned
without curiosity.

Reaching Precision (m)
Target Curious Normal
1 0.20 0.67
2 0.26 0.61
3 0.25 1.06
4 0.24 0.67
5 0.37 0.49

0.26 0.7

Table 2. Results on optimizing to reach a new target not seen during
training. The distance of the endeffector to the target is reported in
meters.

6. Conclusion and future work
In this work, we presented a model-based reinforcement
learning algorithm that uses an optimal control framework
to trade-off between optimizing for a task specific cost, and
exploring around a locally optimal trajectory. Our algorithm
explicitly rewards actions that seek out uncertainties in our
model, by incorporating them into the cost. By doing so, we
are able to learn a model of the dynamics that achieves the
task faster than MBRL with standard iLQR, and also trans-
fers well to other tasks. We present experiments on Kuka
iiwa7 arm in simulation, and a Sawyer robot on hardware.
In both sets of experiments, our approach not only learns
to achieve the specified task faster, but also generalizes to
new tasks and initial conditions. All this points towards
the conclusion that resolving dynamics uncertainty during
model-based reinforcement learning is indeed a powerful
tool. As (Loewenstein, 1994) states, curiosity is a superficial
affection, it can arise, diverge and end promptly. We were
able to observe similar behaviour as well in our experiments.
Once the task was achieved, the robot would explore and de-
viate slightly from the task, and go back to exploiting once
its fairly certain about the dynamics. In the future, we would
like to explore this direction by considering how to maintain
exploration strategies and potentially reuse them later, espe-
cially on new tasks. This could be helpful if the robot is still
certain about a task, even though the environment or task
has changed. Furthermore, we noticed that, with increas-
ing amount of high dimensional data, the scalability of the
Gaussian processes was reaching its limits. Therefore we
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would want to investigate the potential of Bayesian neural
networks in our MBRL framework in the future.

References
Atkeson, C. G. and Santamaria, J. C. A comparison of direct

and model-based reinforcement learning. In Proceedings
of International Conference on Robotics and Automation,
volume 4, pp. 3557–3564. IEEE, 1997.

Barto, A. G. Intrinsically motivated learning of hierarchical
collections of skills. International Conference on Devel-
opmental Learning and Epigenetic Robotic, pp. 112–119,
2004. doi: 10.1.1.117.6436.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying count-based explo-
ration and intrinsic motivation. In Advances in Neural
Information Processing Systems, pp. 1471–1479, 2016.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Farshidian, F. and Buchli, J. Risk sensitive, nonlinear
optimal control: Iterative linear exponential-quadratic
optimal control with gaussian noise. arXiv preprint
arXiv:1512.07173, 2015.

Jacobson, D. H. Optimal Stochastic Linear Systems with
Exponential Performance Criteria and Their Relation to
Deterministic Differential Games. IEEE Transaction on
Automatic Control, 18, 1973.

Kagan, J. Motives and development. Journal of Personality
and Social Psychology, 22(1):51–66, 1972.
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