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Abstract

Pneumothorax is a critical condition that requires timely communication and immediate
action in order to prevent significant morbidity or patient death. Thus, early detection is
crucial. For the task of pneumothorax detection, we measured the performance of three
different deep learning techniques: convolutional neural networks, fully convolutional net-
works, and multiple-instance learning. In a five-fold cross-validation with ROC analysis on
a dataset consisting of 1003 chest X-Ray images we measured AUCs of 0.96, 0.92, and 0.93
for the three methods, respectively. We discuss the classification as well as localization
performance of these approaches as well as an ensemble of aforementioned techniques.

1. Introduction

In many clinical institutions, the ability to prioritize specific imaging exams is made possible
by use of stat or emergent labeling. However, because of overuse and misuse of these labels, a
radiologist often has difficulties prioritizing exams with more medically significant findings.
As a result, an automated system to triage relevant critical findings should improve the
management of patients. In order to prevent significant morbidity or patient death, the
timely communication of Category 1 findings, e.g. pneumothorax, is even endorsed by the
American College of Radiology (ACR) (Yarmus and Feller-Kopman, 2012; Larson et al.,
2014). In this paper, we investigate and evaluate three deep learning architectures for the
detection and localization of pneumothorax in chest X-ray images.

2. Methods

CNN Convolutional Neural Networks (CNNs) are the most commonly employed type of
neural network for image classification. They have been successfully used in a broad range
of applications from computer vision to medical image processing (He et al., 2016; Wang
et al., 2017) and can be optimized in an end-to-end fashion.

In the following, a variant of the ResNet-50 (He et al., 2016) is employed, which was
developed explicitly for the analysis of X-ray images (Baltruschat et al., 2018). In order to
leverage the higher spatial resolution of X-ray data, e.g. for the detection of small structures,
an additional pooling layer was introduced after the first bottleneck block, increasing the
input size to 448 × 448 pixels using one input channel. The network was pre-trained using
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the NIH ChestX-ray14 dataset (Wang et al., 2017) with 112 120 images from 30 806 patients
and annotations for 14 pathologies. For the task-specific training, the existing dense layer
for the prediction of the pathologies was replaced by a new dense layer and a softmax layer
providing binary pneumothorax classification.

FCN CNNs are considered state of the art for image classification, however, they do
not provide any localized information, e.g. position of the pathology in the image. Fully
Convolutional Neural Networks (FCNs) allow for a semantic segmentation, i.e. pixel-level
classification, and thus, a localization of a pathology. Therefore, as a second approach, a
U-Net (Ronneberger et al., 2015) with attention gates (Oktay et al., 2018) and a receptive
field of 448× 448 pixels was considered. A U-Net consists of a contracting path resembling
a CNN, for the integration of context information, and a corresponding expanding path.

In contrast to CNN, the FCN approach requires pixel-level annotations during the train-
ing and predicts probability values for each pixel during the application phase. In the scope
of this study, we define the area of the detected pneumothorax as a classification mea-
sure. Although such measure is biased towards the detection of large pneumothorax, it is
conceptually simple and favors the detection of reliable candidates.

MIL Multiple-Instance Learning (MIL) could be seen as an intermediate approach be-
tween CNN and FCN, in terms of localization and ground truth training labels. MIL
(Dietterich et al., 1997; Maron and Ratan, 1998), provides a joint classification and local-
ization, while only requiring the image-level labels for training. To produce local predictions
in the image, the full resolution chest X-ray images are partitioned into overlapping image
patches of 448 × 448 pixels. Using the image-level labels, all of the patches in a non-
pneumothorax image will necessarily be negative, whereas at least one of the patches in a
pneumothorax image must contain the pathology and therefore be a positive patch. Us-
ing only label information at image-level during the training, MIL attempts to learn the
fundamental characteristics of the local pathology by automatically differentiating between
normal and abnormal parts of the chest X-ray. During inference, the maximum patch score
of the patch-level predictions is used to derive the image-level classification.

3. Experiments and Results

The data used in the following experiments consists of DICOM X-ray images, obtained from
the University of Washington Medical Center and affiliated institutions. Scanning radiology
reports from the last three years, 437 images with pneumothorax and 566 with a different or
no abnormality detected were identified. Image-level labels were derived from reports using
NLP and pixel-level pneumothorax annotations for 305 of the positive cases were generated
manually. For training and evaluation, we divided the dataset into five (patient stratified)
cross-validation splits and applied data augmentation to increase the variability of the data.

For CNN and FCN the images were rescaled to 480×480, for MIL we used a resolution of
1120×1120. For all methods we cropped patches of 448×448. In training, we used the Adam
optimizer with default parameters, a batch size of 16, and exponentially decreasing learning
rate (LR). We performed ROC analysis to assess the model performance (cf. Figure 1).
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Figure 1: Averaged ROC curves over five splits for
all methods as well as an ensemble.

(a) image (b) manual

(c) FCN (d) MIL

Figure 2: Localization examples for
a pneumothorax case.

CNN The pre-trained ResNet-50 was fine-tuned with an initial LR of 10−4 for 40 epochs.
For testing, a center crop was used for the classification purpose. High and stable AUC
values of 0.96±0.03 can be reported.

FCN As pixel-level ground truth annotations were available only for a subset of the
images, 871 images in total were used for training the FCN for 400 epochs. As a loss
function, a weighted cross-entropy was employed at pixel-level with an initial LR of 10−4.
With an average AUC of 0.92±0.02, the overall performance of this method is slightly
worse than the CNN. On the other hand, the FCN generates pixel-level probabilities, which
indicate the location of the pneumothorax (cf. Figure 2 (c)).

MIL The pre-trained ResNet-50 was also employed as the patch-level classifier within the
MIL approach. We chose the binary cross-entropy between the maximum patch score and
the image-level label as the loss function. The batch size was selected as the number of 16
patches per image. We trained with an initial LR of 10−5 for 30 epochs and achieved an
average AUC of 0.93±0.01 using this method. High patch scores (indicated by thicker red
frames) give a hint on the location of the pneumothorax (cf. Figure 2 (d)).

Ensemble Learning As the errors made by different architectures do not necessarily
coincide, we formed an ensemble of the three constituent methods by linear combination of
the individual methods’ scores. Here, an AUC of 0.96±0.01 is achieved, where especially
working points for very low false positive rates are improved.

4. Conclusion

The three presented techniques provide promising options for the detection and localization
of pneumothorax in chest X-ray images. We achieved the best performance in terms of AUC
using a CNN, whereas the FCN and MIL provided higher confidence in terms of localization.
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This could guide radiologists and simultaneously increase the trust in the proposed deep
learning architecture. Future work could elaborate on other techniques to combine the three
approaches, e.g. by cascading or merging the architectures into one multi-task network.
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