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ABSTRACT

We first pose the Unsupervised Progressive Learning (UPL) problem: learning
salient representations from a non-stationary stream of unlabeled data in which
the number of object classes increases with time. If some limited labeled data is
also available, those representations can be associated with specific classes, thus
enabling classification tasks. To solve the UPL problem, we propose an archi-
tecture that involves an online clustering module, called Self-Taught Associative
Memory (STAM). Layered hierarchies of STAM modules learn based on a combi-
nation of online clustering, novelty detection, forgetting outliers, and storing only
prototypical representations rather than specific examples. The goal of this paper
is to introduce the UPL problem, describe the STAM architecture, and evaluate
the latter in the UPL context.

1 INTRODUCTION

We start by posing a challenging problem, referred to as Unsupervised Progressive Learning (UPL)
(see Figure 1). In the UPL problem, the agent observes a sequence (or stream) of unlabeled data
vectors {xt}t∈N with xt ∈ Rn. Each vector xt is associated with a class k(xt) and the vectors
of class k follow a distribution Fk. The class information, however, is hidden from the agent.
Occasionally, the agent may be given a small number of labeled examples of one or more classes.
These examples are meant to associate “names” (i.e., class labels) with the learned representations
enabling classification tasks in which the set of output classes stays constant (“persistent tasks”) or
increases (“expanding tasks”).

We denote asLt the set of class labels the agent has seen up to time t. This set is gradually increasing,
meaning that the agent progressively learns about more classes. In the UPL context, the goal is to
learn in an online manner salient representations of the unlabeled input stream so that the agent can,
at any point in time t, classify a given set of test data based on the set of classes Lt it knows about
so far. We require an online learner for pragmatic reasons: it would not be possible or desirable in
practice to store and/or process all previously seen data and learn a new model offline every time
there is a change in Lt. The online nature of the problem constraints the solution space: methods
that require multiple passes over the training data and/or randomly sampled minibatches are not
applicable in the UPL context.

We assume that the distribution Fk associated with class k may also change with time – but this is a
slow and gradual process so that an online learner can track changes in Fk. Abrupt changes would
require that the agent forgets what was previously learned about class k – we do not consider that
possibility in this paper.

We do not add any further constraints on the structure of the data sequence. For instance, it is possi-
ble that the learner first observes a labeled example of class k at time t (and so k ∈ Lt) even though
it has not seen any unlabeled examples of that class prior to t – this would require a transfer-learning
capability so that the learner can classify k based on representations it has previously learned from
other classes. Another interesting scenario is when the unlabeled data arrive in separated class
phases, which are unknown to the agent, so that each phase includes data from only few new classes
– this is a challenging task from the perspective of catastrophic forgetting because the learner should
not forget previously learned classes for which it does not see any new examples. We consider such
UPL scenarios in Section 3.
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Figure 1: In the UPL problem, the agent observes a stream of unlabeled data in which the number of classes
increases with time. The agent has to learn representations that distinguish the classes seen so far, without
catastrophic forgetting and without the replay of previously seen data. If some limited labeled data is also
available, the agent can associate the learned representations with classes, enabling persistent and expanding
classification tasks.

It is plausible that UPL represents how animals learn, at least in the case of perceptual learning
(Goldstone, 1998): they observe their environment, which is predominantly “unlabeled”, and so
they learn to gradually distinguish between a growing number of different object categories even
when they do not have a way yet to name them. Later, some of those classes may be associated with
words (in the case of humans) (Ashby and Maddox, 2005), or more generally, with a specific taste,
odor, reward, fear, etc. (Watanabe et al., 2001).

1.1 UPL VERSUS SIMILAR LEARNING PARADIGMS

1. Unsupervised and self-supervised learning: There have been great strides recently in learn-
ing data representations (Bengio et al., 2013) via clustering (Caron et al., 2018), generative mod-
els (Jiang et al., 2017; Eslami et al., 2016; Kosiorek et al., 2018; 2019), and information theory
(Hjelm et al., 2019; Ji et al., 2019). While these methods can learn representations without data
labels, they still require prior information about the number of classes present in a given dataset (to
set the number of cluster centroids or class outputs) and, in the continual learning case, they suffer
from catastrophic forgetting unless some form of replay is used.

2. Few-shot learning (FSL) and Meta-learning: Such methods attempt to recognize object classes
not seen in a training set with only a single (or handful) of labeled examples (Fei-Fei et al., 2006;
Snell et al., 2017; Finn et al., 2017; Ren et al., 2018). FSL requires labeled data to learn good rep-
resentations - whereas UPL only requires labeled data to associate already learned representations
with new classes.

3. Semi-supervised learning (SSL): SSL addresses scarcity of available labeled data for model
training by leveraging large amounts of unlabeled training data to boost performance (Springenberg,
2015; Oliver et al., 2018; Miyato et al., 2018; Kingma et al., 2014). SSL requires both labeled and
unlabeled data during the training process and in most cases it needs to store and process the labeled
data repeatedly during the training process.

4: Continual learning (CL): Most CL methods rely on labeled data and knowledge of which tasks
are learned or performed at any point in time(Hsu et al., 2018; Parisi et al., 2019; Kemker et al.,
2018; van de Ven and Tolias, 2019; Lopez-Paz and Ranzato, 2017). Further, the most effec-
tive CL mechanisms address catastrophic forgetting using stored examples or generative replay
(Gepperth and Karaoguz, 2017; Shin et al., 2017).
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5. Transfer learning (TL): Such methods require pre-training on a large labeled dataset and so they
are not applicable to UPL (Yosinski et al., 2014).

6. Progressive learning/networks: In (labeled) progressive learning, a supervised classification
model must be able to learn in an online manner without prior knowledge of the number of classes
(Venkatesan and Er, 2016; Rusu et al., 2016). However, the existing approaches in this area require
supervision when a new class appears, and they suffer from catastrophic forgetting if they do not see
data from a previous class for long periods of time.

2 STAM ARCHITECTURE AND LEARNING ALGORITHM

The learning approach that we pursue in this work is based on online clustering, novelty detec-
tion, two separate short-term and long-term memories, and storing only prototypical representations
rather than specific examples. In the following, we describe the STAM architecture as a sequence of
its seven major components.

The notation is summarized in Appendix A. The image preprocessing pipeline is minimal and is de-
scribed in Appendix B. The reasons we decided to not pursue a deep learning approach are discussed
in Appendix C.

1. Hierarchy of increasing receptive fields: An input vector xt ∈ Rn (an image in all subsequent
examples) is analyzed through a hierarchy of Λ layers. Instead of neurons or hidden-layer units, each
layer consists of STAM units – in its simplest form a STAM unit functions as an online clustering
module. Each STAM processes one ρl × ρl patch (subvector) of the input at that layer. The patches
are overlapping, with a small stride (set to one pixel in our experiments), to accomplish translation
invariance (similar to CNNs). The patch dimension ρl increases in higher layers – the idea is that
the first layer learns the smallest and most elementary patterns while the top layer learns the largest
and most complex patterns.

2. Online clustering: Every patch of each layer is clustered, in an online manner, to a set of
centroids. These time-varying centroids form the prototypical patterns that the STAM architecture
gradually learns at that layer. All STAM units of layer l share the same set of centroids Cl(t) – again
for translation invariance.1 Given the m’th input patch xl,m at layer l, the nearest centroid of Cl

selected for xl,m is
cl.j = arg min

c∈Cl

d(xl,m, c) (1)

where d(xl,m, c) is the Euclidean distance between the patch xl,m and centroid c.2 The selected
centroid is updated based on a learning rate parameter α, as follows:

cl,j = αxl,m + (1− α)cl,j, 0 < α < 1 (2)
A higher α value makes the learning process faster but less predictable. We do not use a decreasing
value of α because the goal is to keep learning in a non-stationary environment rather than conver-
gence to a stable centroid. If the centroid cl,j is selected by more than one patches of the same input,
the centroid is updated based on the closest patch to that centroid.

An online clustering algorithm that is similar to our approach (and asymptotically equivalent to
k-means) can be implemented with a simple recurrent neural network of excitatory and inhibitory
spiking neurons using strictly Hebbian learning, as shown recently (Pehlevan et al., 2017).

3. Novelty detection: When an input patch xl,m at layer l is significantly different than all centroids
at that layer (i.e., its distance to the nearest centroid is a statistical outlier), a new centroid is created
in Cl based on xl,m. We refer to this event as Novelty Detection (ND). This function is necessary
so that the architecture can learn centroids associated with new classes after they appear in the
unlabeled data stream.

To do so, we estimate in an online manner the distribution of the Euclidean distance between input
patches and their nearest centroid (separately for each layer). We sample a randomly chosen patch
from each input vector, only considering the last 1000 inputs. The novelty detection threshold at
layer l is denoted by D̂l and it is defined as the 95-th percentile (β = 0.95) of the distance distribution.

1We drop the time index t from this point on but it is still implied that the centroids are dynamically learned
over time.

2We have also experimented with the L1 distance metric with only minimal differences.
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Figure 2: A hypothetical pool of STM and LTM centroids visualized at seven time instants. From ta to tb,
a centroid is moved from STM to LTM after it has been selected θ times. At time tb, unlabeled examples
from classes ‘2’ and ‘3’ first appear, triggering novelty detection and new centroids are created in STM. These
centroids are moved into LTM by td. From td to tg , the pool of LTM centroids remains the same because no
new classes are seen. The pool of STM centroids keeps changing when we receive “outlier” inputs of previously
seen classes. Those centroids are later replaced (Least-Recently-Used policy) due to the limited capacity of the
STM pool.

4. Dual-memory organization: New centroids are stored temporarily in a Short-Term Memory
(STM) of limited capacity ∆ (separate for each layer). Every time a centroid is selected as the
nearest neighbor of an input patch, it is updated based on (2). If an STM centroid cl,j is selected
sl,j > θ times, it is copied to the Long-Term Memory (LTM) for that layer. We refer to this event as
memory consolidation. The LTM has (practically) unlimited capacity and the learning rate is much
smaller (in our experiments, set to zero).

This memory organization is inspired by the Complementary Learning Systems framework
(Kumaran et al., 2016), where the STM role is played by the hippocampus and the LTM role by
the cortex. This dual-memory scheme is necessary to distinguish between infrequently seen patterns
that can be forgotten, and new patterns that are frequently seen after they first appear.

We initialize the pool of STM centroids at each layer using randomly sampled patches from the
unlabeled stream (a single patch from each image to maximize diversity).

When the STM pool of centroids at a layer is full, the introduction of a new centroid (created through
novelty detection) causes the removal of an earlier centroid. We use the Least-Recently Used (LRU)
policy to remove atypical centroids that have not been recently selected by any input. Figure 2
illustrates this dual-memory organization.

5. Associating centroids with classes: Suppose that we have seen some labeled examples XL(t)
from a set of classes L(t) up to time t. In the UPL context, we only use such labeled examples
to associate existing LTM centroids at time t (learned strictly from unlabeled data) with the set of
classes in L(t).

Given a labeled example of class k, suppose that there is a patch x in that example for which the
nearest centroid is c. That patch contributes the following association between centroid c and class
k:

fx,c(k) = e−d(x,c)/D̄l (3)

where D̄l is a normalization constant (calculated as the average distance between input patches and
centroids).
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Figure 3: An example of the classification process. Every patch (at any layer) that selects a CIN centroid votes
for the single class that has the highest association with. These patch votes are first aggregated at each layer.
The final inference is the class with the highest vote across all layers.

The class-association vector gc between centroid c and any class k is computed aggregating all such
associations, across all labeled examples in XL:

gc(k) =

∑
x∈XL(k) fx,c(k)∑

k′∈L(t)

∑
x∈XL(k′) fx,c(k′)

, k = 1 . . . L(t) (4)

Note that
∑

k gc(k)=1.

6. Class informative centroids: If a centroid is associated with only one class k (gc(k) = 1), only
labeled examples of that class select that centroid. At the other extreme, if a centroid is equally likely
to be selected by examples of any labeled class, (gc(k) ≈ 1/|L(t)|), the selection of that centroid
does not provide any significant information for the class of the corresponding input.

We identify the centroids that are Class INformative (CIN) as those that are associated with at least
one class more than expected by chance. Specifically, a centroid c is CIN if

max
k∈L(t)

gc(k) >
1

|L(t)|
+ γ (5)

where 1
|L(t)| is the chance term and γ is an additional significance term.

7. Classification using a hierarchy of centroids: At test time, we are given an input x of class
k(x) and infer its class as k̂(x). The classification task is a “biased voting” process in which every
patch of x, at any layer, votes for a single class as long as that patch selects a CIN centroid.

Specifically, if a patch xl,m of layer l selects a CIN centroid c, then that patch votes vl,m(k) =
maxk∈L(t) gc(k) for the class k that has the highest association with c, and zero for all other classes.
If c is not a CIN centroid, the vote of that patch is vl,m(k) = 0 for all classes.

The vote of layer l for class k is the average vote across all patches in layer l (as illustrated in
Figure 3):

vl(k) =

∑
m∈Ml

vl,m(k)

|Ml|
(6)

where Ml is the set of patches in layer l. The final inference for input x is the class with the highest
cumulative vote across all layers:

k̂(x) = arg max
k′

Λ∑
l=1

vl(k) (7)
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Figure 4: Incremental UPL evaluation for MNIST (row-1), SVHN (row-2), and EMNIST (row-3). Per-class
and average classification accuracy (left); number of LTM centroids over time (center); fraction of CIN cen-
troids over time (right). The task is expanding classification, i.e., recognize all classes seen so far.

3 EVALUATION

To evaluate the STAM architecture in the UPL context, we consider two different scenarios: Incre-
mental UPL and Uniform UPL. In the Incremental UPL case, small groups of classes appear in
successive phases. In the following results, new classes are introduced two at a time in each phase,
and they are only seen in that phase. STAMs must be able to both recognize new classes when they
are first seen in the stream, and to also remember all previously learned classes without catastrophic
forgetting. In the Uniform UPL case, all classes appear with equal probability in the stream. The
Uniform UPL scenario is more relevant when the distribution Fk of each class k may gradually
change over time. The results for the Uniform scenario are presented in Appendix D.

The classification task that we focus on in the Incremental UPL case is expanding, meaning that
in each phase we need to classify all classes seen so far. Given a few labeled examples for the
classes that have been present in the stream up to time t, the algorithm is asked to perform object
classification on a 1000-image test dataset. The datasets we evaluate on are MNIST (Lecun et al.,
1998), EMNIST (balanced split with 47 classes) (Cohen et al., 2017), and SVHN (Netzer et al.,
2011).

For each classification task, we average results over five trials (different unlabeled data streams). In
each trial, we have a randomly sampled hold-out set of 1500 images. Then, we sample from the
remaining data to form the unlabeled stream. We perform each classification task five times, using
randomly sampled test inputs from the hold-out set. So, each result is the average of 25 classification
evaluations.

We use a 3-layer STAM hierarchy – all hyperparameters values are reported in Appendix A. The
robustness of the results as we vary these hyperparameter values is shown in Appendix E.

3.1 INCREMENTAL UPL

As we introduce new classes to the incremental UPL stream (see Figure 4), the architecture rec-
ognizes previously learned classes without any major degradation in classification accuracy (left
column). The average accuracy per phase is decreasing, which is due to the increasingly difficult
expanding classification task. For EMNIST, we only show the average accuracy because there are
47 total classes. In all datasets, we observe that layer-3 (corresponding to the largest receptive field)
contains the highest fraction of CIN centroids (center column). The ability to recognize new classes
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Figure 5: Ablation study: A STAM architecture without LTM (left), a STAM architecture in which the LTM
centroids are adjusted with the same learning rate α as in STM (center), and a STAM architecture with removal
of layers (right)

Figure 6: The effect of vary-
ing the amount of unlabeled data
in the entire stream (left) and la-
beled data per class (right).

is perhaps best visualized in the LTM centroid count (right column). During each phase the LTM
count stabilizes until a sharp spike occurs at the start of the next phase when new classes are intro-
duced. This reinforces the claim that the LTM pool of centroids (i) is stable when there are no new
classes, and (ii) is able to recognize new classes via novelty detection when they appear. In the EM-
NIST experiment, as the number of classes increases towards 47, we gradually see fewer “spikes” in
the LTM centroids for the lower receptive fields, which is expected given the repetition of patterns
at that small patch size. However, the highly CIN layer-3 continues to recognize new classes and
create centroids, even when the last few classes are introduced.

3.2 ABLATIONS

Several ablations are presented in Figure 5. On the left, we remove the LTM capabilities and only
use STM centroids for classification. During the first two phases, there is little (if any) difference
in classification accuracy. However, we see a clear dropoff during phases 3-5. This suggests that,
without the LTM mechanisms, patterns from classes that are no longer seen in the stream are for-
gotten over time, and STAMs can only successfully classify classes that have been recently seen.
We also investigate the importance of having static LTM centroids rather than dynamic centroids
(center). Specifically, we replace the static LTM with a dynamic LTM in which the centroids are ad-
justed with the same learning rate parameter α, as in STM. The accuracy suffers drastically because
the introduction of new classes “takes over” LTM centroids of previously learned classes, after the
latter are removed from the stream. Similar to the removal of LTM, we do not see the effects of
“forgetting” until phases 3-5. Note that the degradation due to a dynamic LTM is less severe than
that from removing LTM completely. Finally, we look at the effects of removing layers from the
STAM hierarchy (right). We see a small drop in accuracy after removing layer 3, and a large drop
in accuracy after also removing layer 2. The importance of having a deeper hierarchy would be
more pronounced in datasets with higher-resolution images or videos, potentially showing multiple
objects in the same frame. In such cases, CIN centroids can appear at any layer, starting from the
lowest to the highest.

3.3 EFFECT OF UNLABELED AND LABELED DATA

We next examine the effects of unlabeled and labeled data on the STAM architecture (Figure 6). As
we vary the length of the unlabeled data stream (left), we see that STAMs can actually perform well
even with much less unlabeled data. This suggests that the STAM architecture may be applicable
even where the datastream is much shorter than in the experiments of this paper. A longer stream
would be needed however if there are many classes and some of them are infrequent. The accuracy
“saturation” observed by increasing the unlabeled data from 20000 to 60000 can be explained based
on the memory mechanism, which does not update centroids after they move to LTM. As showed in
the ablation studies, this is necessary to avoid forgetting classes that no longer appear in the stream.
The effect of varying the number of labeled examples per class (right) is much more pronounced.
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We see that the STAM architecture can perform well above chance even in the extreme case of only
a single (or small handful of) labeled examples per class.

4 RELATED WORK AND DISCUSSION

Even though clustering has been used successfully in the past as a representation learning scheme
(Coates et al., 2011; Coates and Ng, 2012), its effectiveness gradually drops as the input dimension-
ality increases (Hinneburg et al., 2000; Beyer et al., 1999). In the STAM architecture, we avoid this
issue by clustering smaller subvectors (patches) of the input data. If those subvectors are still of high
dimensionality, another approach is to reduce the intrinsic dimensionality of the input data at each
layer by reconstructing that input using representations (selected centroids) from the previous layer
– we have experimented with this approach but not included it here because it is not required in the
datasets and tasks we work with in this paper.

This paper does not compare the performance of STAMs with other methods because, to the extent
of our knowledge, none of the existing approaches in the literature are directly applicable to the UPL
problem. In a follow-up study, we plan to adapt the most relevant approaches so that they can be
applied in the UPL context. One of these approaches is Incremental Classifier and Representation
Learning (iCaRL) (Rebuffi et al., 2017), which learns representations and classifiers from a progres-
sive stream of labeled data and stores training examples for each class. In (Huang et al., 2019),
the goal is to do unsupervised few-shot classification and the authors evaluate various methods in a
similar manner to UPL but without learning from a non-stationary stream. FearNet (Kemker et al.,
2018) replaces the storage of training examples with a generative model but still processes a labeled
stream for both the classifier and generator. Bayesian Gradient Descent (BGD) (Zeno et al., 2018)
is a method for preventing catastrophic forgetting when the learner is unaware of the task schedule
and so it cannot take any special action when the input data distribution changes. A comparison
of methods for continuous online sequence learning, including the Hierarchical Temporal Memory
model, was conducted by Cui et al. (Cui et al., 2016) – those methods do not address the UPL
problem however.

We firmly believe that in order to mimic human intelligence, learning methods should be able to
learn in a streaming manner and in the absence of supervision. Animals do not “save off” labeled
examples to train in parallel with unlabeled data, they do not know how many classes exist in their
environment, and they do not have to replay/dream periodically all their past experiences to avoid
forgetting them. The proposed STAM architecture addresses the desiderata that is often associated
with Lifelong Learning:

1. Online learning: STAMs constantly update their centroids with every example. There is no
separate training stage, and there is no specific task for which the network optimizes the features it
learns. Any tasks that require classification will of course require one or few labeled examples so
that the corresponding clusters that were formed previously are now associated with the name of a
class. However, STAMs do not need these labeled examples to learn efficient data representations.

2. Transfer learning: The hierarchical nature of the proposed architecture means that features
learned (in an unsupervised manner) at lower-level STAMs can be reused in different tasks that
higher-level STAMs perform.

3. Resistance to catastrophic forgetting: The introduction of a new class or prototype will lead to
the creation of new clusters at some STAMs in the hierarchy (e.g., layer-1 STAMs will learn new
elementary visual features if we start feeding them natural images instead of MNIST examples –
while a STAM at a higher-level would create a new cluster when it first starts seeing examples of
scooters but without affecting the cluster associated with bicycles).

4. Expanding learning capacity: The learning capacity of a STAM architecture depends on two
factors: the number of STAMs and the maximum number of centroids that each STAM can store in
STM and LTM. The limited capacity constraint in the STM pool requires to forget recently created
centroids that have not been recently updated with new examples. The unlimited capacity of the
LTM pool of centroids, on the other hand, allows the system to gradually learn an unlimited number
of classes, even if it does not see examples of all classes learned earlier.
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5. No direct access to previous experience: A STAM only needs to store the centroids of the clusters
it has learned so far. Those centroids correspond to prototypes, allowing the STAM to generalize.
All previously seen exemplars are discarded.
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A STAM NOTATION AND HYPERPARAMETERS

Table 1: STAM Notation

Symbol Description

x input vector.
n dimensionality of input data
Ml number of patches at layer l (index: m = 1 . . .Ml)
xl,m m’th input patch at layer l
Cl set of centroids at layer l
cl,j centroid j at layer l
d(x, c) distance between an input vector x and a centroid c
ĉ(x) index of nearest centroid for input x
d̃l novelty detection distance threshold at layer l
U(t) the set of classes seen in the unlabeled data stream up to time t
L(t) the set of classes seen in the labeled data up to time t
k index for representing a class
gl,j(k) association between centroid j at layer l and class k.
D̄l average distance between a patch and its nearest neighbor centroid at

layer l.
vl,m(k) vote of patch m at layer l for class k
vl(k) vote of layer l for class k
k(x) true class label of input x
k̂(x) inferred class label of input x

Table 2: STAM Hyperparameters

Symbol Default Description

Λ 3 number of layers (index: l = 1 . . .Λ)
α 0.1 centroid learning rate
β 0.95 percentile for novelty detection distance threshold
γ 0.15 used in definition of class informative centroids
∆ see below STM capacity
θ 30 number of updates for memory consolidation
ρl see below patch dimension

Table 3: MNIST/EMNIST Architecture

Layer ρl
∆

(incremental)
∆

(uniform)

1 8 400 2000
2 13 400 2000
3 20 400 2000

Table 4: SVHN Architecture

Layer ρl
∆

(incremental)
∆

(uniform)

1 10 2000 10000
2 14 2000 10000
3 18 2000 10000

B IMAGE PREPROCESSING

Given that each STAM operates on individual image patches, we perform patch normalization rather
than image normalization. We chose a normalization operation that helps to identify similar patterns
despite variations in the brightness and contrast: every patch is transformed to zero-mean, unit
variance before clustering.At least for the datasets we consider in this paper, grayscale images result
in higher classification accuracy than color.

We have also experimented with ZCA whitening and Sobel filtering. ZCA whitening did not work
well because it requires estimating a transformation from an entire image dataset (and so it is not
compatible with the online nature of the UPL problem). Sobel filtering did not work well because
STAM clustering works better with filled shapes rather than the fine edges produced by Sobel filters.
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C WHY NOT USE DEEP LEARNING?

Given that deep neural networks have become the new orthodoxy in machine learning, we need to
address the question: why not use a deep learning approach to solve the UPL problem? Why to rely
on online clustering instead?

1) With few exceptions, deep learning approaches have a fixed architecture and capacity (measured
in terms of their hidden unit parameters) and so they are not able to automatically grow as the
network is presented with new classes or tasks. Methods such as Progressive Networks (Snell et al.,
2017) allow the network to grow but only when instructed that a new task/class is given – and by
a pre-determined growth factor. The STAM architecture, on the other hand, grows by creating new
centroids only when needed and by a growth factor that is determined in a self-supervised manner
by the “degree of novelty” in the data.

2) Deep learning approaches require multiple passes over the training data, and thus they would need
to either store and replay previously seen data or to learn a generative model that synthesizes realistic
data when needed. Especially in semi-supervised methods such as VAT (Miyato et al., 2018), it is
critical that the limited given labeled data are processed repeatedly. In the STAM architecture, data
is never stored both because that may be impractical and because the data distribution in the UPL
context may gradually shift – storing old data can be misleading.

3) A neural network (deep or shallow) learns a nonlinear embedding of the input data in a low-
dimensional continuous space in which it is more efficient, presumably, to perform classification,
clustering, generative modeling, or other tasks. This compression of the input dimensionality how-
ever comes at a high cost: the latent features learned by a neural net are not interpretable, they may
be derived from properties that are unrelated to the causal/defining properties of the correspond-
ing classes (Geirhos et al., 2019), and they can make the network susceptible to adversarial attacks.
STAMs, on the other hand, use clustering to learn common patterns at a hierarchy of increasing re-
ceptive fields. These patterns can be easily interpreted by humans because they represent prototypes
(common patterns) at each layer.

4) The embedding that a neural network learns is typically assumed to be time-invariant. This is
problematic in the UPL context because the number of classes or tasks increases with time, without
external supervision whenever that happens. It is not clear how to gradually adjust an embedding in
an online manner without any external supervision when the classes/tasks change.

5) Learning in deep neural networks requires iterative nonconvex optimization processes, such as
SGD, that can get stuck in local minima. Online clustering is a much simpler computation in which
we only need to compute a certain distance metric between the input vector and all existing centroids
– and then to update the nearest centroid based on the corresponding input.

D UNIFORM UPL

Figure 7: Uniform UPL evaluation for MNIST (row-1) and SVHN (row-2). Per-class/average classification
accuracy is given at the left; the number of LTM centroids over time is given at the center; the fraction of CIN
centroids over time is given at the right.
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In order to examine if the STAM architecture can learn all classes simultaneously, but without know-
ing how many classes exist, we also evaluate the STAM architecture in a uniform UPL scenario
(Figure 5). Note that LTM centroids converge to a constant value, at least at the top layer, Each
class is recognized at a different level of accuracy, depending on the similarity between that class
and others.

E ADDITIONAL HYPERPARAMETER SWEEPS AND ABLATIONS

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: Hyperparameter sweeps for α, γ, θ, β, and ∆.

We examine the effects of STAM hyperparameters in Figure 8. (a) As we decrease the rate of α,
we see a degradation in performance. This is likely due to the static nature of the LTM centroids
- with low α values, the LTM centroids will primarily represent the patch they were intialized as.
(b) As we vary the rates of γ, there is little difference in our final classification rates. This suggests
that the maximum gl,j(k) values are quite high, which may not be the case in other datasets besides
SVHN. (c) We observe that STAM is robust to changes in Θ. (d,e) The STM size ∆ has a major
effect on the number of learned LTM centroids and on classification accuracy. (e) The accuracy in
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phase-5 for different numbers of layer-3 LTM centroids (and correspnding ∆ values). The accuracy
shows diminishing returns after we have about 1000 LTM centroids at layer-3. (g,h) As β increases
the number of LTM centroids increases (due to a lower rate of novelty detection); if β ≥ 0.9 the
classification accuracy is about the same.

F COMPARISON WITH AUTO-ENCODER APPROACH

Even though the goal of this paper is not to present an extensive comparison between STAM and
deep-learning methods, in this section we perform a limited such comparison with a simple autoen-
coder. Specifically, we train a convolutional autoencoder (CAE) with the images from the unlabeled
data stream. The number of training epochs and the batch size are both set to 1, so that each un-
labeled example is only used once. The encoder consists of three convolution layers with ReLU
activations, embedding inputs into a 64-dimension latent space. The decoder consists of three trans-
posed convolution layers with ReLU activations. The final layer uses linear activations and the net-
work is trained to optimize Euclidean reconstruction error. The representations at the 64-dimension
latent space are used to perform K nearest-neighbor (KNN) classification. The CAE architecture,
given in Figure 10, is trained using Adam optimization (Kingma and Ba, 2014) with a learning rate
of 1−4 and no decay.

The STAM architecture outperforms the CAE approach by a large margin (Figure 9, Incremental
UPL, SVHN dataset). In follow-up work we plan to develop more sophisticated deep learning
approaches for solving the UPL problem and compare them with STAMs under different conditions.

Figure 9: STAM versus a CAE-based baseline

G MEMORY FOOTPRINT ANALYSIS

The memory requirement of the STAM model can be calculated as:

M =

Λ∑
l=1

ρ2
l · (|Cl|+ ∆) (8)

For the 3-layer SVHN architecture with |Cl| ≈ 3000 LTM centroids in every layer and ∆ = 2000,
the memory footprint is 5, 064, 000 pixels, equivalent to roughly 5000 grayscale SVHN digits. This
memory requirement can be significantly reduced however. Figure 8(f) shows that the accuracy
remains almost the same when ∆ = 500 and |Cl| ≈ 1000. With these values the memory footprint
reduces to about 950,000 pixels, equivalent to roughly 930 grayscale SVHN digits.

By comparison, the CAE architecture has 4, 683, 425 trainable parameters, which should be stored at
floating-point precision. With four bytes per weight, then STAM model would require 950000

4683425×4 ≈
5% of the CAE’s memory footprint. Future work can decrease the STAM memory requirement
further by merging similar LTM centroids.
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Figure 10: CAE architecture
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