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ABSTRACT

This paper proposes a set of criteria to evaluate the objectiveness of explanation
methods of neural networks, which is crucial for the development of explainable
AI, but it also presents significant challenges. The core challenge is that people
usually cannot obtain ground-truth explanations of the neural network. To this
end, we design four metrics to evaluate the explanation result without ground-truth
explanations. Our metrics can be broadly applied to nine benchmark methods of
interpreting neural networks, which provides new insights of explanation methods.

1 INTRODUCTION

Nowadays, many methods are proposed to explain the logic of a deep neural network (DNN) in
a post-hoc manner. In this research, we limit our attention to existing methods of estimating the
importance/attribution/saliency of input pixels or intermediate-layer neural units w.r.t. the network
output (Shrikumar et al., 2016; Lundberg & Lee, 2017; Ribeiro et al., 2016; Binder et al., 2016),
which present the mainstream of explaining neural networks. To avoid ambiguity, the estimated
importance/saliency/attribution maps are all termed “attribution maps” in this paper.

However, some methods usually pursue attribution maps which look reasonable from the perspective
of human users, instead of objectively reflecting the true logic of information processing in the DNN.
A trustworthy evaluation of the objectiveness of attribution maps is crucial for the development of
deep learning and proposes significant challenges to state-of-the-art algorithms.

Existing metrics (Cui et al., 2019; Arras et al., 2019; Vu et al., 2019; Yang & Kim, 2019; Kim et al.,
2017; Adebayo et al., 2018; Ghorbani et al., 2019; Alvarez-Melis & Jaakkola, 2018) of evaluating
explanation methods have certain shortcomings.

Issue 1, evaluation of the accuracy of a DNN 6= evaluation of the objectiveness of attribution
maps: Some methods only evaluate whether a DNN encodes a correct logic, instead of examining
whether an attribution map objectively reflects the true logic of a DNN. (Cui et al., 2019) used
human cognition to evaluate the explanation result. (Yang & Kim, 2019; Kim et al., 2017) aimed to
construct a specific dataset with ground-truth explanations for evaluation. For example, they added
an irrelevant object into the image. Pixels from the irrelevant object are expected to be assigned with
zero attributions.

However, strictly speaking, it is impossible to religiously annotate ground-truth explanations for
a DNN. Currently, the ground-truth explanation is constructed under the assumption that a DNN
cannot learn irrelevant objects for classification with the purpose of evaluating the logic of the DNN,
instead of examining whether an explanation method mistakenly generates attribution maps with
seemingly correct logic for an incorrectly learned DNN.

Issue 2, broad applicability: We aim to design an evaluation metric that can be broadly applied to
various tasks. In aforementioned methods (Yang & Kim, 2019; Kim et al., 2017), the requirement
for constructing a new testing dataset limits the applicability of the evaluation.

Issue 3, quantification of the objectiveness: Some methods quantitatively evaluate the accuracy
and robustness of attribution maps. However, there is no strict mechanism to ensure the objectiveness
of each numerical value in the attribution map. I.e., if the attribution value of a pixel is twice of that
of another pixel, then the first pixel is supposed to contribute twice numerical values to the prediction
w.r.t. the second pixel.
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Table 1: Review of explanation methods
Method What to explain Quantitative evaluation of limitations in ap-

plication
CAM

(Zhou et al., 2016) Attribution distribu-
tion at intermediate
layer

1. Requirement for global average pooling.
2. Usually explain features at high layers

Grad CAM
(Selvaraju et al., 2017) Attribution distribu-

tion at intermediate
layer

Usually explain features at high layers

Grad
(Simonyan et al., 2013) Pixel-wise attribution –

GI
(Shrikumar et al., 2016) Pixel-wise attribution –

GB
(Springenberg et al., 2014) Pixel-wise attribution Requirement for using ReLU as non-linear

layers
Shapley Value
(Shapley, 1953) Pixel-wise attribution NP-complete problem

DeepSHAP
(Lundberg & Lee, 2017) Pixel-wise attribution Similar to LRP, DeepLIFT (Shrikumar et al.,

2016) with a designed backward rule
LIME

(Ribeiro et al., 2016) Pixel-wise attribution Attribution maps at the super-pixel level,
rather than at the pixel level

LRP
(Binder et al., 2016) Pixel-wise attribution Relevance propagation rules of every layer

should be defined
Pert

(Fong & Vedaldi, 2017) Pixel-wise attribution -

Except for the objectiveness, previous studies mainly conducted the evaluation from other perspec-
tives. (Arras et al., 2019; Vu et al., 2019) evaluated attribution maps from the perspective of adver-
sarial attacks by adding random noise. (Adebayo et al., 2018; Ghorbani et al., 2019; Alvarez-Melis
& Jaakkola, 2018) proposed methods to evaluate the robustness of explanation methods w.r.t. the
perturbation. (Adebayo et al., 2018) randomized the layer of DNN from the top to the bottom and
visualized the change of attribution maps.

Note that in most applications, people cannot faithfully obtain the ground-truth logic of a DNN.
Therefore, considering the above three issues, in this study, we aim to fairly evaluate the objective-
ness and robustness of attribution maps from the following four perspectives without ground-truth
explanations.

Perspective 1, bias of the attribution map at the pixel level: In order to evaluate the bias of the
attribution map, we first need to propose a standard metric to evaluate the accuracy of explanation
methods. The Shapley value is the unique solution to model the attribution value of each pixel that
satisfies desirable properties including efficiency, symmetry and monotonicity (Lundberg & Lee,
2017). However, the computation of the Shapley value is an NP-complete problem, and previous
studies (Lundberg & Lee, 2017) showed that the accurate estimation of the Shapley value is still a
significant challenge. To this end, we extend the theory of Shapley sampling (Castro et al., 2009)
and design a new evaluation metric, which achieves high accuracy without significantly boosting the
computational cost.

We use the new evaluation metric to quantify the bias of the attribution map. Note that this evaluation
has no partiality to the Shapley-value-based explanation methods. For example, experimental results
showed that LRP (Binder et al., 2016) exhibited significant lower bias than DeepSHAP (Lundberg
& Lee, 2017).

Perspective 2, quantification of unexplainable feature components: Given an input image and
its attribution map, we revise the input image to generate a new image that reflects the logic of the
attribution map. We then compare the intermediate-layer feature of the original image with that of
the generated image, so as to disentangle feature components that can and cannot be explained by
the attribution map.

Perspective 3, robustness of the explanation: Robustness of the explanation means whether the
attribution map is robust to spatial masking of the input image. When we randomly mask a certain
region of the input image, we admit that spatial masking destroys global contexts and affects pixel-
wise attribution value to some extent. The quantification of the robustness of the explanation is an
important perspective of evaluating an explanation method.
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Perspective 4, mutual verification: The mutual verification means whether different explanation
methods can verify each other. Methods generating similar attribution maps are usually believed
more reliable.

In this paper, we used our metrics to evaluate nine widely used explanation methods listed in Table 1.
We conducted experiments using the LeNet, VGG and ResNet on different benchmark datasets in-
cluding the CIFAR-10 (Krizhevsky & Hinton, 2009) dataset and the Pascal VOC 2012 (Everingham
et al., 2010) dataset. Our experimental results proved the effectiveness of the proposed evaluation
methods and provided an insightful understanding of various explanation methods.

The contribution of our work can be concluded as follows.
1. In this study, we invent a set of standard metrics to evaluate the objectiveness and the robustness
of the attribution map without knowing ground-truth explanations.
2. The metric of evaluating the pixel-wise bias of the attribution map can be estimated with a rela-
tively low computational cost, which avoids falling into the computational bottleneck of estimating
accurate pixel-wise attributions.
3. Since our metrics do not need any annotations of ground-truth explanations, our metrics can be
applied to different neural networks trained on different datasets.

2 RELATED WORK

Explainable AI is an emerging direction in artificial intelligence, and different explanation methods
have been proposed. In this section, we briefly review the Shapley value and limit our discussions
to existing methods of evaluating methods of extracting attribution/importance/saliency maps to
simplify the story. Appendix C discusses other research directions of explainable AI.

The Shapley value: The Shapley value (Shapley, 1953) was proposed to compute the attribution
distribution over all players in a particular cooperative game. However, it is an NP-complete problem
to compute the accurate Shapley value. The Shapley value approximated by sampling strategy could
be very inaccurate due to the high variance. We extend the theory of the Shapley value to obtain an
evaluation metric with a high accuracy but a low computational cost.

Qualitative evaluation: Some studies used a qualitative criterion for evaluation. (Cui et al., 2019)
qualitatively defined basic concepts in the evaluation of explanation results, including the complexity
of the explanation, the correlation, and the completeness. In contrast, this paper aims to evaluate the
methods quantitatively, which makes our metrics more objective and reliable.

Accuracy evaluation: To evaluate the accuracy of attribution maps, (Arras et al., 2019; Vu et al.,
2019) used the noise/occlusion to perturb the original image according to the attribution value. There
was no mechanism to ensure the prediction result objectively reflected the logic of a DNN. (Yang
& Kim, 2019; Kim et al., 2017) built a dataset to help them generate ground-truth explanations.
Essentially, these methods tried to obtain the “correct” logic for an input image. However, a rigorous
study should not assume that the DNN encodes the correct logic. As a result, this paper proposes to
evaluate the objectiveness of explanation results without knowing ground-truth explanations.

Stability evaluation: (Adebayo et al., 2018; Ghorbani et al., 2019; Alvarez-Melis & Jaakkola,
2018) mainly paid attention to the attribution map change when the model input was perturbed.
(Adebayo et al., 2018) visualized the change in the attribution map when the weights of the model
were destroyed from the top to the bottom. (Ghorbani et al., 2019; Alvarez-Melis & Jaakkola,
2018) used the adversarial image to alter the attribution map. In comparison, we propose a metric to
evaluate the robustness to spatial masking.

3 ALGORITHM

3.1 PRELIMINARIES: THE SHAPLEY VALUE

The Shapley value measures the instancewise feature importance ranking problem. Let Ω be the set
of all pixels of an image I . IP denotes an image that replaces all pixels in set Ω \ P with average
pixel value over images. F (IP ) denotes the scalar output of a DNN based on a subset of pixels
P ⊂ Ω. To compute the Shapley value of the i-th feature, (Shapley, 1953) considered all subsets of
Ω not containing the i-th feature and defined the Shapley value A∗i as follows:

3



Under review as a conference paper at ICLR 2020

A∗i =
∑

P⊂Ω\{i}

|P |!(|Ω| − |P | − 1)!

|P |!
[
F (IP∪{i})− F (IP )

]
(1)

It is the unique solution that satisfies desirable properties to assign attribution value to each feature
dimension in the input (Chen et al., 2018). Appendix A shows properties of the Shapley value.

3.2 EVALUATING THE BIAS OF THE ATTRIBUTION MAP AT THE PIXEL LEVEL

In this section, we design a metric to accurately evaluate the objectiveness of the attribution map.
Given an image I ∈ I, let us consider the DNN F with a single scalar output y = F (I). For
DNNs with multiple outputs, existing methods usually explain each individual output dimension
independently. Let {ai} denote the pixel-wise attribution map estimated by a specific explanation
method. We aim to evaluate the bias of {ai}. People usually formulate the network output as the
sum of pixel-wise attribution value, i.e. the output y can be decomposed as follows.

y = b+
∑
i∈Ω

Ai, s.t. Ai = λai (2)

b denotes the bias; i denotes the index of each pixel in the input image; Ω denotes the set of all pixels
in the image. Aforementioned {A∗i } can be considered as the ground-truth of {Ai} (Lundberg &
Lee, 2017). Since many explanation methods (Selvaraju et al., 2017; Simonyan et al., 2013) mainly
compute relative values of attributions {ai}, instead of a strict attribution map {Ai}. We use λ
to bridge {Ai} and {ai}. λ is a constant for normalization, which can be eliminated during the
implementation of the evaluation.

The estimated attribution of each pixel can be assumed to follow a Gaussian distribution Ai ∼
N (µi, σ

2
i ) (Castro et al., 2009). Attribution distributions of different pixels can be further assumed

to share a unified variance, i.e. σ2
1 ≈ σ2

2 ≈ ... ≈ σ2
n. The evaluation of the attribution distribution

{ai} has two aspects, i.e.
1. the sampling of pixels whose attributions that are more likely to have large deviations;
2. the evaluation of the bias of the sampled attributions.

First, for the sampling of attributions of interest, we sample the set of pixels S with top-ranked
high (or low) attributions. Attribution values of pixels in S are sampled as those with the highest
(or the lowest) values, and these pixels are supposed to be more likely to be significantly biased
towards high (or low) attribution values. Meanwhile, from another perspective, the distribution of
the sampled attribution values is close to the Gumbel distribution.

Second, although the Shapley value can be considered as a standard formulation of the pixel-wise
attribution, it usually cannot be accurately computed because of its high computational cost. In order
to accurately evaluate the sampled attribution values without significantly increasing the computa-
tional cost, we applied the Shapley value approximated by the sampling method. Just like the target
attribution distribution Ai, the approximated Shapley value Ashapi is assumed to follow a normal
distribution N (A∗i , (σ

shap)2). Ashapi is an unbiased approximation of the true Shapley value A∗i ,

Thus, the average value over different pixels in S satisfies
∑

i∈S A
shap
i

|S| ∼ N (
∑

i∈S A
∗
i

|S| , (σshap)2

|S| ).

We can prove that the measurement of the average attribution among all sampled pixels
∑

i∈S A
shap
i

|S|
is of much higher accuracy than the raw Shapley value with the same computational cost. The
difference between the highest (or lowest) values and its true values

∣∣∣∑i∈S A
shap
i

|S|‖Ashap‖ −
∑

i∈S Ai

|S|‖A‖

∣∣∣ can
reflect the system bias, as follows.

Mpixel = EI

[∣∣∣∑i∈S A
shap
i

|S|‖Ashap‖ −
∑
i∈S Ai

|S|‖A‖

∣∣∣] = EI

[
1

|S|

∣∣∣∑i∈S A
shap
i

‖Ashap‖ −
∑
i∈S ai

‖a‖

∣∣∣]
s.t. ∀i ∈ S, j ∈ Ω \ S, ai ≥ aj or ∀i ∈ S, j ∈ Ω \ S, ai ≤ aj

(3)

where Ω is the set of all pixels in an image. ‖Ashap‖ and ‖a‖ are used for normalization. A small
value of Mpixel indicates the low bias of the attribution map.

Analysis of the high computational efficiency: Suppose that the computational complexity of
processing one sample is O(N), then the computational complexity of sampling m times is O(mN).
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If the raw Shapley value needs to obtain the same accuracy, it needs significantly more samples, and
the computational complexity is O(|S|mN). Please see Appendix B for the theoretical analysis of
the save of computational cost.

In addition, the proposed metric can also be used to evaluate the attribution of neural activations
in the intermediate layer, such as those generated by Grad-CAM. In this case, we can regard the
target intermediate-layer feature as the input image to compute attributions, so as to implement the
evaluation. For each image, we need to sample multiple times to increase the accuracy. We compute
the average performance over different images for evaluation. We need to sample multiple times with
different images to increase the accuracy of the evaluation. Note that although the metric is designed
based on the Shapley value, experimental results showed that LRP outperforms DeepSHAP.

3.3 QUANTIFICATION OF UNEXPLAINABLE FEATURE COMPONENTS

We propose another metric to quantify unexplainable feature components. Given an image I and its
attribution map {ai}, we generate a new image, which reflects the logic of the attribution map. In
this way, we can consider the feature of the newly generated image f̃ as feature components that
can be explained. Let f denote the feature of the original image I . Then, f − f̃ corresponds to the
unexplainable feature components.

To generate the new image, we mask specific pixels in the original image I , which have the lowest
attributions. We select and mask a set of pixels S with the lowest absolute attributions, and the
number of the selected points is determined subjects to

∑
i∈S |ai| = 0.1

∑
i∈Ω |ai| to generate the

new image Ĩ . The metric is formulated as

Mfeature = αEI
[
‖f̃I − fI‖

]
(4)

where α = 1
EI′ [‖fI′−EI′′ [fI′′ ]‖]

is used for normalization. A small value of Mfeature indicates most
feature components in f are explainable.

3.4 EVALUATING THE ROBUSTNESS OF EXPLANATION

This metric is used to measure the robustness of explanation methods to the spatial masking. We
believe that the method, which is robust to spatial masking, can be considered more convincing. The
robustness is an important perspective of evaluating explanation methods.

Given an input image I ∈ I and its attribution map {ai} w.r.t a DNN, we use a mask M to cover
specific parts of the image to get a masked image Î . For each input image I , we can generate four
masked images by masking the right, left, top, and bottom half of the image, respectively. For each
masked image Î , the explanation method estimates the attribution âi for each pixel. We compare
pixel-level attributions of the unmask pixels between original images and masked images, as follows.

Mnon-robust = EI

 1

‖a‖

√ ∑
i∈I\Imask

(ai − âi)2

 (5)

We used ‖a‖ for normalization, and a large value of Mnon-robust indicates a high non-robustness.

3.5 EVALUATING THE MUTUAL VERIFICATION

This metric aims to quantitatively measure the mutual verification between different explanation
methods. It is usually believed that two explanation methods are more reliable if they can verify
each other. Given a DNN F and an image I ∈ I, two different explanation methods α and β
produce attribution maps aα and aβ , respectively. We measure their difference as follows.

Mmutual = EI
[
‖ aα
‖aα‖

− aβ
‖aβ‖

‖
]

(6)

Attribution maps from different explanation methods are normalized by their L2-norm. A lower
value of Mmutual indicates a more convincing mutual verification between explanation methods α
and β.
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Grad_CAM Grad GI GB DeepSHAPLRP PertLIME Origin

Figure 1: Example of attribution maps of different methods.

4 EXPERIMENT

To evaluate explanation methods, we conducted experiments on the CIFAR-10 (Krizhevsky & Hin-
ton, 2009) dataset and the Pascal VOC 2012 (Everingham et al., 2010) dataset. For images in the
Pascal VOC 2012 dataset, we cropped objects using their bounding boxes and used the cropped ob-
jects as inputs to train DNNs for object classification. We trained and explained LeNet (LeCun et al.,
1998), ResNet-20/32/44/56 (He et al., 2016) using the CIFAR-10 dataset. AlexNet (Krizhevsky
et al., 2012), VGG-16/19 (Simonyan & Zisserman, 2015), ResNet-50/101 (He et al., 2016) were
trained using the Pascal VOC 2012 dataset.

4.1 BASELINE

In our experiments, we mainly evaluated the following explanation methods. Figure 1 shows attri-
bution maps yielded by these explanation methods. Appendix D provides more attribution maps.

Grad: Given an input, (Simonyan et al., 2013) quantified the attribution value with the gradient of
the input. We termed this algorithm as Grad. For RGB images with multiple channels, Grad selected
the maximum magnitude across all channels for each pixel.
GI: (Shrikumar et al., 2016) proposed a method, namely GI, which used the pixel-wise product of
the input and its gradient as attribution value. Attribution values for RGB channels were summed to
get the final attribution value.
GB: Guided Back-propagation, namely GB, corresponded to Grad where the back-propagation rule
at ReLU units was redefined (Springenberg et al., 2014).
LRP: Layer-wise relevance propagation (LRP) (Binder et al., 2016) redefined back-propagation
rules for each layer to decompose the output of a DNN over the input. We used LRP-ε and set the
parameter ε = 1 in experiments.
DeepSHAP: DeepSHAP adapted DeepLIFT (Shrikumar et al., 2016) to approximate pixel-wise
Shapley values for the input image (Lundberg & Lee, 2017). We applied the code released by (Lund-
berg & Lee, 2017).
LIME: LIME (Ribeiro et al., 2016) trained an interpretable model to compute the attribute value for
each super-pixel. We used the code released by (Ribeiro et al., 2016).
Pert: (Fong & Vedaldi, 2017) explained a prediction by training a mask to perturb the input image.
Mask values ranging between 0 and 1 indicated the saliency of each pixel. We termed this method
Pert.
CAM: CAM computed attribution map over the feature from the last convolutional layer (Zhou
et al., 2016). It required the special structure with a global average pooling layer and a fully con-
nected layer at the end of the DNN.
Grad CAM: Grad CAM was similar to CAM (Selvaraju et al., 2017). Grad CAM used gradients
over the feature map, instead of the parameters of the fully connected layer.

4.2 IMPLEMENTATION DETAILS

Bias of the attribution map at the pixel level: To approximate the Shapley value for each image,
we sampled 1000 times for each image in the CIFAR-10 dataset and sampled 100 times for each
image in the Pascal VOC 2012 dataset. We sampled the top-10%, 30%, 50%, 70%, 90% pixels with
the highest/lowest values.
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Figure 2: Results of the bias of the attribution map at the pixel level. Row (I) and row (II) used
trained LeNet, ResNet20, ResNet32, ResNet44, ResNet56 on the CIFAR-10 dataset from left to
right; row (III) and row (IV) used trained ResNet50, ResNet101, VGG16, VGG19, AlexNet on the
Pascal VOC 2012 dataset from left to right. Row (I) and row (III) sampled pixels with the highest
attribution values; row (II) and row (IV) sampled the pixels with the lowest attribution values.

Table 2: Quantification of unexplainable feature components.

Method Grad GI GB DeepSHAP LIME LRP Pert
CIFAR10-LeNet 0.96821 1.10399 0.91546 1.10371 0.67032 1.08469 0.70177
CIFAR10-ResNet20 1.22212 1.28065 1.14596 1.26002 1.05286 - 1.13032
CIFAR10-ResNet32 1.22803 1.29324 1.16028 1.27681 1.04412 - 1.14261
CIFAR10-ResNet44 1.22382 1.26434 1.10411 1.24961 1.02039 - 1.10772
CIFAR10-ResNet56 1.22487 1.24123 1.11306 1.24146 1.00916 - 1.10122
VOC2012-AlexNet 1.02425 1.09375 1.04981 1.0809 1.01942 1.11513 1.04048
VOC2012-VGG16 1.18959 1.22715 1.22724 1.32364 1.12339 1.32674 1.12878
VOC2012-VGG19 1.08084 1.1226 1.10411 1.17121 1.08387 1.23784 1.13043
VOC2012-ResNet50 1.23345 1.24123 1.2156 1.23441 1.22411 - 1.25732
VOC2012-ResNet101 1.08592 1.09363 1.07853 1.07856 1.11289 - 1.23279

Quantification of unexplainable feature components: Given an image, we masked the pixels with
the lowest absolute attribution value. The number of the masked pixels was determined to ensure
that the sum of masked absolute attribution value took 10% of the total absolute attribution value.
On average, around 30% pixels were masked. The masked pixels were assigned with the average
pixel value over images. We used features of the last convolutional layer to compute Mfeature.

4.3 EXPERIMENT RESULT AND ANALYSIS

Bias of the attribution map at the pixel level: Figure 2 shows curves of evaluation results on
different models learned using different datasets. According to these curves, GI and LIME provided
the least biased attribution maps for ResNet at the pixel level. For AlexNet, VGG-16/19 and LeNet,
LRP outperformed other methods. Detailed numbers corresponding curves in Figure 2 are listed in
the Appendix E.

Some methods could not be evaluated using the bias at the pixel level. For example, Pert computed
an importance map without negative values instead of an attribution map for each image. The code
of CAM (Zhou et al., 2016) projected attribution values to the range between 0 and 1. Grad CAM
and LRP were not used on residual networks, because there was only one fully connected layer
behind the last convolutional layer in residual networks. In this case, Grad CAM could not diagnose
the logic contained in the cascaded non-liner layers of the DNN. For LRP, the relevance propagation
rules of some structures in ResNet were not defined to the best of our knowledge.

Quantification of unexplainable feature components: Table 2 compares the amount of unexplain-
able feature components between explanation methods. We found that LIME, GB and Pert explained
more feature components than other methods. We noticed that the quantification of unexplainable
feature components of most explanation methods were considerable larger than expected. It was be-
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Table 3: Non-robustness of explanation methods with different datasets/models.

Method Grad GI GB DeepSHAP LIME LRP Pert CAM Grad CAM
CIFAR10-LeNet 0.510 0.610 0.548 0.843 - 0.932 0.369 - 1.039
CIFAR10-ResNet20 0.515 0.599 0.330 0.541 - - 0.466 0.443 0.386
CIFAR10-ResNet32 0.762 0.832 0.321 0.645 - - 0.469 0.351 0.318
CIFAR10-ResNet44 0.957 1.010 0.299 0.513 - - 0.470 0.321 0.287
CIFAR10-ResNet56 0.911 0.959 0.298 0.567 - - 0.475 0.341 0.321
VOC2012-AlexNet 0.519 0.603 0.421 0.448 3.994 0.719 0.602 - 0.489
VOC2012-VGG16 0.475 0.500 0.271 0.388 2.175 0.447 0.635 - 0.381
VOC2012-VGG19 0.505 0.524 0.286 0.356 2.172 0.444 0.666 - 0.381
VOC2012-ResNet50 0.605 0.663 0.280 0.936 2.354 - 0.552 0.367 0.309
VOC2012-ResNet101 0.553 0.593 0.269 0.847 4.667 - 0.565 0.347 0.266

Figure 3: Heat maps of mutual verification. A low value ofMmutual between two methods indicates
a more convincing mutual verification between them.

cause the attribution maps from some methods contained relatively larger noise. Thus, the masked
pixels were almost uniformly distributed over images, which destroyed the context information and
led to worse results.

We did not evaluate CAM and Grad CAM, because they calculated attribution maps at the feature
level, which were not comparable with attribution values at the pixel level.

Robustness of explanation: Table 3 shows the quantitative results ofMnon-robust on different models
trained using different datasets. We found that GB and Grad CAM exhibited a lower non-robustness
to spatial masking. For more results, Appendix F shows examples of attribution maps of masked
images.

Mutual verification: Figure 3 visualizes the mutual verification Mmutual between different expla-
nation methods, which indicates a high level mutual verification between LRP, GI and DeepSHAP.
Appendix G provides more detailed results. Note that we did not compare CAM and Grad CAM
with other methods. It was because they computed attribution maps on intermediate-layer features.

5 CONCLUSION

In this paper, we have proposed four metrics to evaluate explanation methods from four different
perspectives. The proposed evaluation metrics are computed without requirements for ground-truth
explanations. Our metrics can be broadly applied to different methods, w.r.t. DNNs learned using
different datasets. These metrics evaluate the bias of the attribution map at the pixel level, quantify
the unexplainable feature components, the robustness of the explanation and the mutual verification.
In experiments, we used our metrics to evaluate nine widely used explanation methods. Experi-
mental results showed that attribution maps from LRP, GI and LIME exhibited lower bias at the
pixel level. LIME and GB explained more feature components than other methods. Regarding the
robustness, GB, CAM and Grad CAM were more robust to spatial masking than other explanation
methods. DeepSHAP, GI and LRP can better verified each other.
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Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, Klaus-Robert Müller, and Wojciech
Samek. Layer-wise relevance propagation for neural networks with local renormalization layers.
In International Conference on Artificial Neural Networks (ICANN), 2016.
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A PROPERTIES OF THE SHAPLEY VALUE

Let I denote the input image; let Ω denote the set of all pixels in I . We can use I∅ to denote a
baseline image, i.e. all pixels in I∅ equal to the average value over all images. For a subset S ⊂ Ω,
IS denotes an image that satisfies

(IS)i =

{
(I)i, i ∈ S
(I∅)i, i /∈ S

(7)

where i is the index of the pixel in I and IΩ is the same image as I . Let F and G denote two
models with scalar output. The Shapley value of the i-th pixel is represented by A∗i , and they have
the following properties.

Efficiency: The sum of Shapley values
∑
i∈ΩA

∗
i is equal to F (IΩ)− F (I∅).

Symmetry: The features that are treated equally by the model are treated equally by the Shapley
value. If F (IS∪{i}) = F (IS∪{j}) for all subsets S, then A∗i = A∗j .

Additivity: For any two models F and G, if they are combined into one model F +G, the Shapley
value must be added pixel by pixel: (A∗)F+G

i = (A∗)Fi + (A∗)Gi .

Monotonicity: For any two models F and G, if for all subsets S we have F (IS∪{i}) − F (IS) ≥
G(IS∪{i})−G(IS) for all subsets S, then we have (A∗)Fi ≥ (A∗)Gi .

B ANALYSIS OF THE COMPUTATIONAL COST

In this section, we continue using the notation in Section 3.1 and Section 3.2. Suppose that we
sample m times to approximate the Shapley value. The variance of Ashapi is σ2

m where σ2 satis-
fies (Castro et al., 2009)

σ2 =
∑

P⊂Ω\{i}

|P |!(|Ω| − |P | − 1)!

|P |!
[
F (IP∪{i})− F (IP )−A∗i

]2 (8)

So we have (σshap)2 = σ2/m. For the set of sampled pixels S, the variance of their average Shapley

value is |S|(σ
shap)2

|S|2 = (σshap)2

|S| = σ2

m|S| . Apparently, if we want to get the same accuracy for a single
pixel as the set of pixels, we need to sample m|S| times, which needs much more computational
cost than our metric, especially when the number of sampled pixels is large.

C STUDIES OF EXPLANATION METHODS BESIDES THE ESTIMATION OF
ATTRIBUTION MAPS.

Network visualization: The visualization of feature representations inside a neural network is
the most direct way of opening the black-box of the neural network. Related techniques include
gradient-based visualization (Zeiler & Fergus, 2014; Mahendran & Vedaldi, 2015; Yosinski et al.,
2015) and up-convolutional nets (Dosovitskiy & Brox, 2016) to invert feature maps of conv-layers
into images.

Network diagnosis: Some studies diagnose feature representations inside a neural network. (Yosin-
ski et al., 2014) measured features transferability in intermediate layers of a neural network. (Aubry
& Russell, 2015) visualized feature distributions of different categories in the feature space. (Kin-
dermans et al., 2018) extracted rough pixel-level correlations between network inputs and outputs,
i.e. estimating image regions that directly contribute the network output. Network-attack meth-
ods (Koh & Liang, 2017; Szegedy et al., 2014) computed adversarial samples to diagnose a CNN.
(Lakkaraju et al., 2017) discovered knowledge blind spots of a CNN in a weakly-supervised manner.
However, above methods usually analyzed a neural network at the pixel level and did not summarize
the network knowledge into clear visual concepts. (Bau et al., 2017) defined six types of semantics
for CNN filters, i.e. objects, parts, scenes, textures, materials, and colors. Then, (Zhou et al., 2015)
proposed a method to compute the image-resolution receptive field of neural activations in a feature
map. Fong and Vedaldi (Fong & Vedaldi, 2018) analyzed how multiple filters jointly represented
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a certain semantic concept. Other studies retrieved intermediate-layer features from CNNs repre-
senting clear concepts. Simon & Rodner (2015) retrieved features to describe objects from feature
maps, respectively. (Zhou et al., 2015) selected neural units to describe scenes.

Learning interpretable representations: A new trend in the scope of network interpretability
is to learn interpretable feature representations in neural networks Hu et al. (2016); Stone et al.
(2017); Liao et al. (2016) in an un-/weakly-supervised manner. Capsule nets Sabour et al. (2017)
and interpretable RCNN Wu et al. (2017b) learned interpretable features in intermediate layers.
InfoGAN Chen et al. (2016) and β-VAE Higgins et al. (2017) learned well-disentangled codes for
generative networks.

Explaining neural networks via knowledge distillation: Distilling knowledge from a black-box
model into an explainable model is an emerging direction in recent years. (Choi et al., 2017) learned
an explainable additive model, and (Vaughan et al., 2018) distilled knowledge of a network into an
additive model. In order to disentangle feature representations of object parts from intermediate
layers of a CNN, (Zhang et al., 2018) distilled the CNN’s knowledge into an explainer network
with interpretable conv-layers, in which each filter represented a specific object part. (Frosst &
Hinton, 2017; Tan et al., 2018; Che et al., 2016; Wu et al., 2017a) distilled representations of neural
networks into tree structures. These methods did not explain the network knowledge using human-
interpretable semantic concepts.

D MORE EXAMPLES OF ATTRIBUTION MAPS

Grad_CAM Grad GI GB DeepSHAPLRP PertLIME Origin

Figure 4: Example of attribution maps.
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E DETAILED RESULTS OF THE BIAS OF THE ATTRIBUTION MAP AT THE PIXEL
LEVEL

Table 4: Bias of the attribution map at the pixel level on CIFAR-10-LeNet

Method Grad CAM
∣∣Grad

∣∣ GI GB DeepSHAP LIME LRP
top-10% 0.17256 0.05302 0.04060 0.04701 0.04924 0.03138 0.04164
top-30% 0.04921 0.03090 0.01892 0.02109 0.02408 0.03051 0.01798
top-50% 0.01961 0.02057 0.01126 0.01225 0.01443 0.02919 0.01041
top-70% 0.01531 0.01137 0.00671 0.00746 0.00902 0.02727 0.00634
top-90% 0.01785 0.00314 0.00240 0.00300 0.00334 0.02537 0.00277
bottom-10% 0.05317 0.06326 0.04907 0.06730 0.05755 0.02160 0.04271
bottom-30% 0.04510 0.03948 0.02626 0.03224 0.03100 0.02150 0.02198
bottom-50% 0.04732 0.02840 0.01767 0.02126 0.02047 0.02222 0.01481
bottom-70% 0.04693 0.01886 0.01270 0.01551 0.01462 0.02286 0.01086
bottom-90% 0.04022 0.01026 0.00808 0.01025 0.00882 0.02385 0.00708

Table 5: Bias of the attribution map at the pixel level on CIFAR-10-ResNet20

Method
∣∣Grad

∣∣ GI GB DeepSHAP LIME
top-10% 0.04692 0.03962 0.04801 0.04702 0.02716
top-30% 0.02552 0.01522 0.01848 0.02175 0.02706
top-50% 0.01616 0.00795 0.00943 0.01241 0.02666
top-70% 0.00762 0.00416 0.00425 0.00643 0.02456
top-90% 0.00288 0.00283 0.00336 0.00270 0.02185
bottom-10% 0.06610 0.06449 0.06726 0.06866 0.01790
bottom-30% 0.04272 0.03437 0.03833 0.03962 0.01765
bottom-50% 0.03117 0.02296 0.02704 0.02722 0.01836
bottom-70% 0.02168 0.01726 0.02053 0.01992 0.01897
bottom-90% 0.01357 0.01275 0.01513 0.01346 0.02005

Table 6: Bias of the attribution map at the pixel level on CIFAR-10-ResNet32

Method
∣∣Grad

∣∣ GI GB DeepSHAP LIME
top-10% 0.04836 0.04126 0.03984 0.04773 0.02699
top-30% 0.02600 0.01641 0.01728 0.02247 0.02702
top-50% 0.01639 0.00874 0.00972 0.01289 0.02630
top-70% 0.00793 0.00459 0.00565 0.00683 0.02465
top-90% 0.00268 0.00264 0.00242 0.00260 0.02267
bottom-10% 0.06535 0.06389 0.07271 0.06787 0.02059
bottom-30% 0.04217 0.03433 0.03612 0.03917 0.02053
bottom-50% 0.03064 0.02304 0.02359 0.02686 0.02065
bottom-70% 0.02135 0.01726 0.01733 0.01963 0.02103
bottom-90% 0.01331 0.01254 0.01214 0.01307 0.02145
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Table 7: Bias of the attribution map at the pixel level on CIFAR-10-ResNet44

Method
∣∣Grad

∣∣ GI GB DeepSHAP LIME
top-10% 0.04795 0.04155 0.04055 0.04751 0.02712
top-30% 0.02576 0.01626 0.01698 0.02254 0.02709
top-50% 0.01609 0.00848 0.00935 0.01307 0.02637
top-70% 0.00748 0.00433 0.00502 0.00686 0.02485
top-90% 0.00248 0.00228 0.00230 0.00226 0.02271
bottom-10% 0.06510 0.06452 0.07143 0.06802 0.01924
bottom-30% 0.04196 0.03449 0.03663 0.03977 0.01879
bottom-50% 0.03082 0.02323 0.02448 0.02736 0.01967
bottom-70% 0.02159 0.01752 0.01811 0.01989 0.02064
bottom-90% 0.01353 0.01282 0.01293 0.01323 0.02137

Table 8: Bias of the attribution map at the pixel level on CIFAR-10-ResNet56

Method
∣∣Grad

∣∣ GI GB DeepSHAP LIME
top-10% 0.04716 0.04129 0.04780 0.04601 0.02690
top-30% 0.02537 0.01659 0.01855 0.02089 0.02714
top-50% 0.01607 0.00900 0.01022 0.01215 0.02679
top-70% 0.00791 0.00482 0.00569 0.00652 0.02509
top-90% 0.00212 0.00194 0.00214 0.00234 0.02252
bottom-10% 0.06625 0.06551 0.06065 0.06727 0.01828
bottom-30% 0.04164 0.03449 0.03158 0.03779 0.01812
bottom-50% 0.03001 0.02299 0.02129 0.02574 0.01911
bottom-70% 0.02086 0.01712 0.01587 0.01868 0.02023
bottom-90% 0.01300 0.01237 0.01146 0.01267 0.02088

Table 9: Bias of the attribution map at the pixel level on VOC2012-ResNet50

Method
∣∣Grad

∣∣ GI GB DeepSHAP LIME
top-10% 0.00766 0.00728 0.00633 0.00738 0.00876
top-30% 0.00437 0.00345 0.00276 0.00359 0.00606
top-50% 0.00297 0.00213 0.00170 0.00223 0.00451
top-70% 0.00173 0.00138 0.00113 0.00144 0.00335
top-90% 0.00060 0.00060 0.00053 0.00062 0.00235
bottom-10% 0.00831 0.00824 0.00850 0.00839 0.00430
bottom-30% 0.00500 0.00417 0.00386 0.00432 0.00240
bottom-50% 0.00354 0.00269 0.00244 0.00280 0.00151
bottom-70% 0.00228 0.00189 0.00171 0.00194 0.00113
bottom-90% 0.00117 0.00112 0.00111 0.00114 0.00128

Table 10: Bias of the attribution map at the pixel level on VOC2012-ResNet101

Method
∣∣Grad

∣∣ GI GB DeepSHAP LIME
top-10% 0.00790 0.00678 0.00610 0.00685 0.00827
top-30% 0.00438 0.00307 0.00260 0.00318 0.00608
top-50% 0.00291 0.00185 0.00158 0.00194 0.00473
top-70% 0.00175 0.00121 0.00104 0.00127 0.00371
top-90% 0.00067 0.00055 0.00049 0.00056 0.00278
bottom-10% 0.00861 0.00754 0.00839 0.00767 0.00387
bottom-30% 0.00496 0.00369 0.00377 0.00381 0.00222
bottom-50% 0.00343 0.00237 0.00238 0.00245 0.00142
bottom-70% 0.00225 0.00169 0.00169 0.00173 0.00124
bottom-90% 0.00117 0.00104 0.00112 0.00105 0.00174
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Table 11: Bias of the attribution map at the pixel level on VOC2012-AlexNet

Method Grad CAM
∣∣Grad

∣∣ GI GB DeepSHAP LIME LRP
top-10% 0.05403 0.00744 0.00505 0.00646 0.00845 0.00854 0.00453
top-30% 0.03467 0.00434 0.00243 0.00296 0.00447 0.00598 0.00197
top-50% 0.02459 0.00298 0.00149 0.00182 0.00295 0.00443 0.00119
top-70% 0.01711 0.00176 0.00094 0.00120 0.00209 0.00329 0.00080
top-90% 0.01115 0.00060 0.00035 0.00058 0.00140 0.00222 0.00043
bottom-10% 0.01026 0.00906 0.00638 0.00876 0.00438 0.00466 0.00430
bottom-30% 0.00978 0.00534 0.00327 0.00400 0.00215 0.00267 0.00202
bottom-50% 0.00803 0.00372 0.00215 0.00253 0.00131 0.00165 0.00129
bottom-70% 0.00610 0.00239 0.00151 0.00178 0.00075 0.00103 0.00091
bottom-90% 0.00690 0.00124 0.00093 0.00111 0.00030 0.00104 0.00056

Table 12: Bias of the attribution map at the pixel level on VOC2012-VGG16

Method Grad CAM
∣∣Grad

∣∣ GI GB DeepSHAP LIME LRP
top-10% 0.02984 0.00764 0.00656 0.00563 0.00768 0.00864 0.00461
top-30% 0.01876 0.00405 0.00292 0.00253 0.00310 0.00554 0.00159
top-50% 0.01365 0.00267 0.00176 0.00154 0.00187 0.00387 0.00092
top-70% 0.00947 0.00162 0.00115 0.00098 0.00132 0.00272 0.00065
top-90% 0.00650 0.00061 0.00051 0.00038 0.00089 0.00172 0.00044
bottom-10% 0.00767 0.00869 0.00768 0.00865 0.00396 0.00580 0.00288
bottom-30% 0.00708 0.00483 0.00372 0.00406 0.00173 0.00344 0.00117
bottom-50% 0.00654 0.00330 0.00238 0.00261 0.00106 0.00223 0.00072
bottom-70% 0.00540 0.00219 0.00170 0.00185 0.00075 0.00153 0.00054
bottom-90% 0.00509 0.00120 0.00107 0.00122 0.00041 0.00114 0.00040

Table 13: Bias of the attribution map at the pixel level on VOC2012-VGG19

Method Grad CAM
∣∣Grad

∣∣ GI GB DeepSHAP LIME LRP
top-10% 0.02564 0.00761 0.00672 0.00580 0.00802 0.00851 0.00468
top-30% 0.01991 0.00403 0.00301 0.00261 0.00337 0.00565 0.00157
top-50% 0.01517 0.00263 0.00181 0.00159 0.00205 0.00402 0.00091
top-70% 0.01139 0.00161 0.00118 0.00102 0.00143 0.00282 0.00064
top-90% 0.00799 0.00062 0.00053 0.00043 0.00096 0.00183 0.00045
bottom-10% 0.00932 0.00867 0.00782 0.00871 0.00442 0.00587 0.00236
bottom-30% 0.00764 0.00480 0.00378 0.00406 0.00193 0.00352 0.00095
bottom-50% 0.00683 0.00326 0.00243 0.00260 0.00120 0.00231 0.00059
bottom-70% 0.00630 0.00217 0.00173 0.00184 0.00084 0.00140 0.00046
bottom-90% 0.00649 0.00119 0.00109 0.00120 0.00043 0.00107 0.00036

F ATTRIBUTION MAPS OF MASKED IMAGES

G DETAILED RESULTS OF THE MUTUAL VERIFICATION
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Figure 5: Example of attribution maps after spatial masking.

Table 14: Mutual verification on VOC2012-VGG19
Method Grad GI GB DeepSHAP LIME LRP
Grad 0.0000 1.6661 1.4054 1.4177 1.4142 1.4375
GI 1.6661 0.0000 1.4159 1.4008 1.4140 1.3437
GB 1.4054 1.4159 0.0000 1.5834 1.4244 1.5242
DeepSHAP 1.4177 1.4009 1.5835 0.0000 1.3691 1.1106
LIME 1.4142 1.4141 1.4245 1.3691 0.0000 1.3874
LRP 1.4375 1.3437 1.5243 1.1106 1.3874 0.0000

Table 15: Mutual verification on VOC2012-VGG16
Method Grad GI GB DeepSHAP LIME LRP
Grad 0.0000 1.6647 1.3992 1.4302 1.4142 1.4621
GI 1.6647 0.0000 1.4191 1.3711 1.4139 1.2649
GB 1.3992 1.4191 0.0000 1.5839 1.4260 1.5320
DeepSHAP 1.4302 1.3712 1.5840 0.0000 1.3824 1.0636
LIME 1.4142 1.4140 1.4261 1.3825 0.0000 1.3960
LRP 1.4621 1.2649 1.5321 1.0636 1.3960 0.0000

Table 16: Mutual verification on VOC2012-AlexNet
Method Grad GI GB DeepSHAP LIME LRP
Grad 0.0000 1.5540 1.3477 1.4348 1.4148 1.4851
GI 1.5541 0.0000 1.4344 1.3224 1.4113 0.8341
GB 1.3477 1.4344 0.0000 1.4477 1.4146 1.4573
DeepSHAP 1.4349 1.3225 1.4478 0.0000 1.3221 1.2251
LIME 1.4149 1.4115 1.4147 1.3222 0.0000 1.3916
LRP 1.4851 0.8341 1.4573 1.2250 1.3915 0.0000

Table 17: Mutual verification on VOC2012-ResNet50
Method Grad GI GB DeepSHAP LIME
Grad 0.0000 1.6285 1.4143 1.6242 1.4143
GI 1.6285 0.0000 1.4137 0.6537 1.4139
GB 1.4143 1.4136 0.0000 1.4137 1.4238
DeepSHAP 1.6242 0.6537 1.4137 0.0000 1.4139
LIME 1.4144 1.4141 1.4240 1.4140 0.0000
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Table 18: Mutual verification on VOC2012-ResNet101
Method Grad GI GB DeepSHAP LIME
Grad 0.0000 1.6877 1.4136 1.6428 1.4145
GI 1.6877 0.0000 1.4140 0.6778 1.4139
GB 1.4136 1.4140 0.0000 1.4140 1.4275
DeepSHAP 1.6428 0.6778 1.4140 0.0000 1.4138
LIME 1.4146 1.4140 1.4277 1.4139 0.0000

Table 19: Mutual verification on CIFAR10-ResNet56
Method Grad GI GB DeepSHAP LIME
Grad 0.0000 1.4183 1.4107 1.4135 1.4142
GI 1.4183 0.0000 1.4140 1.4104 1.4140
GB 1.4107 1.4140 0.0000 1.4128 1.3879
DeepSHAP 1.4135 1.4104 1.4128 0.0000 1.4097
LIME 1.4142 1.4140 1.3879 1.4098 0.0000

Table 20: Mutual verification on CIFAR10-ResNet44
Method Grad GI GB DeepSHAP LIME
Grad 0.0000 1.3999 1.4128 1.4147 1.4141
GI 1.3999 0.0000 1.4125 1.4114 1.4143
GB 1.4128 1.4125 0.0000 1.4152 1.4175
DeepSHAP 1.4147 1.4114 1.4152 0.0000 1.4097
LIME 1.4142 1.4144 1.4152 1.4175 0.0000

Table 21: Mutual verification on CIFAR10-ResNet32
Method Grad GI GB DeepSHAP LIME
Grad 0.0000 1.4259 1.4129 1.4117 1.4143
GI 1.4259 0.0000 1.4164 1.4113 1.4145
GB 1.4129 1.4164 0.0000 1.4144 1.4111
DeepSHAP 1.4117 1.4113 1.4144 0.0000 1.4117
LIME 1.4144 1.4145 1.4112 1.4117 0.0000

Table 22: Mutual verification on CIFAR10-ResNet20
Method Grad GI GB DeepSHAP LIME
Grad 0.0000 1.3895 1.4010 1.4134 1.4143
GI 1.3895 0.0000 1.4140 1.4133 1.4145
GB 1.4010 1.4140 0.0000 1.4164 1.4382
DeepSHAP 1.4134 1.4133 1.4164 0.0000 1.4118
LIME 1.4144 1.4145 1.4382 1.4118 0.0000

Table 23: Mutual verification on CIFAR10-LeNet
Method Grad GI GB DeepSHAP LIME LRP
Grad 0.0000 1.5079 1.1955 1.4352 1.4130 1.4904
GI 1.5079 0.0000 1.4714 1.3025 1.4003 0.7179
GB 1.1955 1.4714 0.0000 1.4329 1.4249 1.4881
DeepSHAP 1.4352 1.3025 1.4329 0.0000 1.3958 1.3063
LIME 1.4131 1.4004 1.4249 1.3959 0.0000 1.3805
LRP 1.4904 0.7179 1.4881 1.3063 1.3804 0.0000
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