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ABSTRACT

We propose Cooperative Training (CoT) for training generative models that mea-
sure a tractable density for discrete data. CoT coordinately trains a generator G
and an auxiliary predictive mediator M . The training target of M is to estimate a
mixture density of the learned distribution G and the target distribution P , and that
of G is to minimize the Jensen-Shannon divergence estimated through M . CoT
achieves independent success without the necessity of pre-training via Maximum
Likelihood Estimation or involving high-variance algorithms like REINFORCE.
This low-variance algorithm is theoretically proved to be superior for both sample
generation and likelihood prediction. We also theoretically and empirically show
the superiority of CoT over most previous algorithms in terms of generative quality
and diversity, predictive generalization ability and computational cost.

1 INTRODUCTION

Generative modeling is essential in many scenarios, including continuous data modeling (e.g. image
generation (Goodfellow et al., 2014; Arjovsky et al., 2017), stylization (Ulyanov et al., 2016), semi-
supervised classification (Radford et al., 2015)) and sequential discrete data modeling (e.g. neural
text generation (Bahdanau et al., 2014; Yu et al., 2017; Lu et al., 2018)).

For discrete data with tractable density like natural language, generative models are predominantly
optimized through Maximum Likelihood Estimation (MLE), inevitably introducing exposure bias
(Ranzato et al., 2015), which results in that given a finite set of observations, the optimal parameters
of the model trained via MLE do not correspond to the ones maximizing the generative quality.
Specifically, the model is trained on the data distribution of inputs and tested on a different distribution
of inputs, namely, the learned distribution. This discrepancy implies that in the training stage, the
model is never exposed to its own errors and thus in the test stage, the errors made along the way will
quickly accumulate.

On the other hand, for general generative modeling tasks, an effective framework, named Generative
Adversarial Network (GAN) (Goodfellow et al., 2014), was proposed to train an implicit density
model for continuous data. GAN introduces a discriminator Dφ parametrized by φ to distinguish the
generated samples from the real ones. As is proved in (Goodfellow et al., 2014), GAN essentially
optimizes an approximately estimated Jensen-Shannon divergence (JSD) between the currently
learned distribution and the target distribution. GAN shows promising results in many unsupervised
and semi-supervised learning tasks. The success of GAN results in the naissance of a new paradigm
of deep generative models, i.e. adversarial networks.

However, since the gradient computation requires backpropagation through the generator’s output,
GAN can only model the distribution of continuous variables, making it non-applicable for generating
discrete sequences like natural language. Researchers then proposed Sequence Generative Adversarial
Network (SeqGAN) (Yu et al., 2017), which uses model-free policy gradient algorithm to optimize
the original GAN objective. With SeqGAN, the expected JSD between current and target discrete
data distribution is minimized if the training is perfect. SeqGAN shows observable improvements in
many tasks. Since then, many variants of SeqGAN have been proposed to improve its performance.
Nonetheless, SeqGAN is not an ideal algorithm for this problem, and current algorithms based on it
cannot show stable, reliable and observable improvements that covers all scenarios, according to a
previous survey (Lu et al., 2018). The detailed reason will be discussed in detail in Section 2.
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In this paper, we propose Cooperative Training (CoT), a novel, low-variance, bias-free algorithm
for training likelihood-based generative models on discrete data by directly optimizing a well-
estimated Jensen-Shannon divergence. CoT coordinately trains a generative module G, and an
auxiliary predictive module M , called mediator, for guiding G in a cooperative fashion. For
theoretical soundness, we derive the proposed algorithm directly from the definition of JSD. We
further empirically and theoretically demonstrate the superiority of our algorithm over many strong
baselines in terms of generative performance, generalization ability and computational performance
in both synthetic and real-world scenarios.

2 BACKGROUND

Notations. P denotes the target data distribution. θ denotes the parameters of the generative module
G. φ denotes the parameters of the auxiliary predictive mediator module M . Any symbol with
subscript g and m stands for that of the generator and mediator, respectively. s stands for a complete
sample from the training dataset or a generated complete sequence, depending on the specific context.
st means the t-length prefix of the original sequence, i.e. an incomplete sequence of length t.
x denotes a token, and xt stands for a token that appears in the t-th place of a sequence. Thus
st = [x0, x1, x2, . . . , xt−1] while the initial case s0 is ∅.

2.1 MAXIMUM LIKELIHOOD ESTIMATION

Maximum likelihood estimation is equivalent to minimizing the KL divergence using the samples
from the real distribution:

min
θ

Es∼pdata [− logGθ(s)] , (1)

where Gθ(s) is the estimated probability of s by Gθ and pdata is the underlying real distribution.

Limitations of MLE. MLE is essentially equivalent to optimizing a directed Kullback–Leibler (KL)
divergence between the target distribution P and the currently learned distribution G, denoted as
KL(P‖G). However, since KL divergence is asymmetric, given finite observations this target is
actually not ideal. As stated in (Arjovsky & Bottou, 2017), MLE tries to minimize

KL(P‖G) =
∑
s

P (s) log
P (s)

G(s)
. (2)

• When P (s) > 0 and G(s) → 0, the KL divergence grows to infinity, which means MLE
assigns an extremely high cost to the “mode dropping” scenarios, where the generator fails
to cover some parts of the data.
• When G(s) > 0 and P (s)→ 0, the KL divergence shrinks to 0, which means MLE assigns

an extremely low cost to the scenarios, where the model generates some samples that do not
locate on the data distribution.

Likewise, optimizing KL(G‖P ) will lead to exactly the reversed problems of the two situations.
An ideal solution is to optimize a symmetrized and smoothed version of KL divergence, i.e. the
Jensen-Shannon divergence (JSD), which is defined as

JSD(P‖G) = 1

2

(
KL(P‖M) +KL(G‖M)

)
, (3)

where M = 1
2 (P + G). However, directly optimizing JSD is conventionally considered as an

intractable problem. JSD cannot be directly evaluated and optimized since the equally interpolated
distribution M is usually considered to be unconstructable, as we only have access to the learned
model G instead of P .

2.2 SEQUENCE GENERATIVE ADVERSARIAL NETWORK

SeqGAN incorporates two modules, i.e. the generator and discriminator, parametrized by θ and
φ respectively, as in the settings of GAN. By alternatively training these two modules, SeqGAN
optimizes such an adversarial target:

min
θ

max
φ

Es∼pdata [log(Dφ(s))] + Es∼Gθ [log(1−Dφ(s))] . (4)
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Algorithm 1 Cooperative Training
Require: Generator Gθ; mediator Mφ; samples from real data distribution P ; hyper-parameter Nm.

1: Initialize Gθ , Mφ with random weights θ, φ.
2: repeat
3: for Nm steps do
4: Collect two equal-sized mini-batch of samples {sg} and {sp} from Gθ and P , respectively
5: Mix {sg} and {sp} as {s}
6: Update mediator Mφ with {s} via Eq. (9)
7: end for
8: Generate a mini-batch of sequences {s} ∼ Gθ
9: Update generator Gθ with {s} via Eq. (13)

10: until CoT converges

The objectives of generator Gθ and discriminator Dφ in SeqGAN can be formulated as

Generator: min
θ
−Es∼Gθ

[ n∑
t=1

Qt(st, xt) · logGθ(xt|st)
]

(5)

Discriminator: max
φ

Es∼pdata [log(Dφ(s))] + Es∼Gθ [log(1−Dφ(s))] , (6)

where s ∼ Gθ = [x1, ..., xn] denotes a complete sequence sampled from the generator and the action
value Qt(st, xt) = Es∼Gθ(·|st+1) [Dφ(s)] is the expectation of the discriminator’s evaluation on the
completed sequences sampled from the prefix st+1 = [st, xt], which can be approximated via Monte
Carlo search.

Limitations of SeqGAN & its Variants. First, SeqGAN is an algorithm of high variance, which
relies on pre-training via Maximum Likelihood Estimation as a variance reduction procedure. Besides,
during the adversarial epochs, even if with variance reduction techniques such as Actor-Critic methods
(Sutton, 1984), the fact that SeqGAN is essentially based on model-free reinforcement learning makes
it a non-trivial problem for SeqGAN to converge well. As a result, SeqGAN usually gets stuck
in some fake local optimals. Specifically, although the discriminator can distinguish the samples
from the generator easily, it is not able to effectively guide the generator because of the vanishing
gradient, as is discussed in a recent survey (Lu et al., 2018). Although this problem can be alleviated
by reshaping the reward signals based on the relative rankings of the outputs in a mini-batch (Lin
et al., 2017; Guo et al., 2017), they are more technical workarounds than essential solutions.

Second, SeqGAN trained via REINFORCE (Williams, 1992) suffers from the “mode collapse”
problem, which is similar to the original GAN. That is to say, the learned distribution “collapses” to
the other side of KL divergence, i.e. KL(G‖P ), which leads to the loss of diversity of generated
samples. In other words, SeqGAN trains the model for better generative quality at the cost of diversity.

3 COOPERATIVE TRAINING

3.1 MOTIVATION

To be consistent with the goal that the target distribution should be well-estimated in both quality
and diversity senses, an ideal algorithm for such models should be able to optimize a symmetric
divergence or distance.

For sequential discrete data modeling, since the data distribution is decomposed into a sequential
product of finite-dimension multinomial distributions (always based on the softmax form), the failures
of effectively optimizing JSD when the generated and real data distributions are distant, as discussed
in (Arjovsky et al., 2017), will not appear. As such, to optimize JSD is feasible. However, to
our knowledge, no previous algorithms provide a direct, low-variance optimization of JSD. In this
paper, we propose Cooperative Training (CoT), as shown in Algorithm 1, to directly optimize a
well-estimated unbiased JSD for training such models.
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3.2 ALGORITHM DERIVATION

Each iteration of Cooperative Training mainly consists of two parts. The first part is to train
a mediator Mφ, which is a density function that estimates a mixture distribution of the learned
generative distribution Gθ and target latent distribution P = pdata as

Mφ '
1

2
(P +Gθ). (7)

Since the mediator is only used as a density prediction module during training, the directed KL
divergence is now free from so-called exposure bias for optimization of Mφ. Denote 1

2 (P +Gθ) as
M∗, we have:

Lemma 1 (Mixture Density Decomposition)

∇φJm(φ) =∇φKL(M∗‖Mφ)

=∇φ E
s∼M∗

[
log

M∗(s)

Mφ(s)

]
=∇φ

(
− E
s∼M∗

[logMφ(s)]
)

=∇φ
1

2

(
E

s∼Gθ
[− log(Mφ(s))] + E

s∼P
[− log(Mφ(s))]

)
(8)

By Lemma 1, for each step, we can simply mix balanced samples from training data and the generator,
then train the mediator via Maximum Likelihood Estimation with the mixed samples. The objective
Jm(φ) for the mediator M parametrized by φ therefore becomes

Jm(φ) =
1

2

(
E

s∼Gθ
[− log(Mφ(s))] + E

s∼P
[− log(Mφ(s))]

)
. (9)

Since the objective of MLE is bias-free for predictive purposes, the estimated Mφ is also bias-free
when adopted for estimating JSD. The training techniques and details will be discussed in Section 4.

After each iteration, the mediator is exploited to optimize an estimated Jensen-Shannon divergence
for Gθ:

∇θJg(θ) =∇θ
(
− ˆJSD(Gθ‖P )

)
= ∇θ

(
− 1

2

[
KL(Gθ‖Mφ) +KL(P‖Mφ)

])
=∇θ

(
−1

2
E

s∼Gθ

[
log

Gθ(s)

Mφ(s)

]
− 1

2
E
s∼P

[
log

P (s)

Mφ(s)

])
= ∇θ

(
−1

2
E

s∼Gθ

[
log

Gθ(s)

Mφ(s)

])
.

(10)

Note that the gradient Eq. (10) should be performed for only one step because once Gθ is updated the
current mediator’s estimation Mφ becomes inaccurate.

For any sequence or prefix of length t, we have:

Lemma 2 (Markov Backward Reduction)

∇θ
(
− 1

2
E

st∼Gθ

[
log

Gθ(st)

Mφ(st)

])
(11)

=∇θ

(
−1

2
E

st−1∼Gθ

[∑
st

Gθ(st|st−1) log
Gθ(st|st−1)
Mφ(st|st−1)

]
− 1

2
E

st−1∼Gθ

[
log

Gθ(st−1)

Mφ(st−1)

])
. (12)

The detailed derivations can be found in the supplementary material. Note that Lemma 2 can be
applied recursively. That is to say, given any sequence st of arbitrary length t, optimizing st’s
contribution to the expected JSD can be decomposed into optimizing the first term of Eq. (12) and
solving an isomorphic problem for st−1, which is the longest proper prefix of st. When t = 1, since
in Markov decision process the probability for initial state s0 is always 1.0, it is trivial to prove that
the final second term becomes 0.
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Therefore, Eq. (10) can be reduced through recursively applying Lemma 2. After removing the
constant multipliers and denoting the predicted probability distribution over the action space, i.e.
Gθ(·|st) andMφ(·|st), as πg(st) and πm(st) respectively, the gradient∇θJg(θ) for training generator
via Cooperative Training can be formulated as

∇θJg(θ) = ∇θ E
s∼Gθ

[ n−1∑
t=0

πg(st)
>(log πm(st)− log πg(st))

]
. (13)

For tractable density models with finite discrete action space in each step, the practical effectiveness
of this gradient is well guaranteed for the following reasons. First, with a random initialization
of the model, the supports of distributions Gθ and P are hardly disjoint. Second, the first term of
Eq. (13) is to minimize the cross entropy between G and M∗, which tries to enlarge the overlap of
two distributions. Third, since the second term of Eq. (13) is equivalent to maximizing the entropy of
G, it encourages the support of G to cover the whole action space, which avoids the case of disjoint
supports between G and P .

The overall objective of CoT can be formulated as finding the maximal entropy solution of

max
θ

max
φ

E
s∼pdata

[log(Mφ(s))] + E
s∼Gθ

[log(Mφ(s))] . (14)

Note the strong connections and differences between the optimization objective of CoT (14) and that
of GAN (4). Figure 1 illustrates the whole Cooperative Training process.

Maximum 
Likelihood Estimation

Samples

Samples

Minimize  

Data

Generator

Mediator

Figure 1: Process of Cooperative Training.

3.3 CONVERGENCE ANALYSIS

CoT has theoretical guarantee on its convergence.

Theorem 3 (Jensen-Shannon Consistency) If in each step, the mediator Mφ of CoT is trained to
be optimal, i.e. Mφ = M∗ = 1

2 (Gθ + P ), then optimization via Eq. (14) leads to minimization of
JSD(G‖P ).

Proof. Let p denote the intermediate states. It would be used in the detailed proof. All we need to
show is

∇θ E
s∼Gθ

[ n∑
t=1

πg(st)
>(log πm(st)− log πg(st))

]
∝ ∇θJSD(P‖Gθ). (15)

By inversely applying Lemma 2, the left part in Eq. (15) can be recovered as

∇θ
(1
2

E
s∼Gθ

[
log

Gθ(s)

Mφ(s)

])
, (16)

which is equivalent to

∇θ
(

E
s∼Gθ

[
log

Gθ(s)

Mφ(s)

]
+ E
s∼P

[
log

P (s)

Mφ(s)

])
. (17)

Since now mediator is trained to be optimal, i.e. Mφ =M∗, we have

(17) =∇θ
(

E
s∼Gθ

[
log

Gθ(s)

M∗(s)

]
+ E
s∼P

[
log

P (s)

M∗(s)

])
=2∇θ ˆJSD(P‖Gθ) ∝ ∇θ ˆJSD(P‖Gθ). (18)
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This means training through CoT leads to minimization of ˆJSD(P‖Gθ). When the mediator is
trained to be optimal, ˆJSD(P‖Gθ) = JSD(P‖Gθ). This verifies the theorem.

3.4 DISCUSSION

3.4.1 ADVANTAGES OVER PREVIOUS METHODS

CoT has several practical advantages over previous methods, including MLE, Scheduled Sampling
(SS) (Bengio et al., 2015) and adversarial methods like SeqGAN (Yu et al., 2017).

First, although CoT and GAN both aim to optimize an estimated JSD, CoT is exceedingly more
stable than GAN. This is because the two modules, namely generator and mediator, have similar
tasks, i.e. to approach the same data distribution generatively and predictively. The superiority
of CoT over inconsistent methods like Scheduled Sampling is obvious, since CoT theoretically
guarantees the training effectiveness. Compared with methods that require pre-training in order to
reduce variance like SeqGAN (Yu et al., 2017), CoT is computationally cheaper. More specifically,
under recommended settings, CoT has the same order of computational complexity as MLE.

Besides, CoT works independently. In practice, it does not require model pre-training via conventional
methods like MLE. This is the first time that unbiased unsupervised learning is achieved on sequen-
tial discrete data without using supervised approximation for variance reduction or sophisticated
smoothing as in Wasserstein GAN with gradient penalty (WGAN-GP) (Gulrajani et al., 2017).

3.4.2 THE NECESSITY OF THE MEDIATOR

An interesting problem is to ask why we need to train a mediator by mixing the samples from both
sources G and P , instead of directly training a predictive model P̂ on the training set via MLE. There
are basically two points to interpret this.

To apply the efficient training objective 13, one needs to obtain not only the mixture density model
M = 1

2 (P +G) but also its decomposed form in each timestep i.e. Mφ(s) =
∏n
t=1Mφ(st|st−1),

without which the term πm(st) in Eq 13 cannot be computed efficiently. This indicates that if we
directly estimate P and compute M = 1

2 (G+ P ), the obtained M will be actually useless since its
decomposed form is not available.

Besides, as a derivative problem of “exposure bias”, there is no guarantee for the model P̂ to work
well on the generated samples i.e. s ∼ Gθ to guide the generator towards the target distribution.
Given finite observations, the learned distribution P̂ is trained to provide correct predictions for
samples from the target distribution P . There is no guarantee that P̂ can stably provide correct
predictions for guiding the generator. Ablation study is provided in the appendix.

4 EXPERIMENTS

4.1 UNIVERSAL SEQUENCE MODELING IN SYNTHETIC TURING TEST

Following the synthetic data experiment setting in (Yu et al., 2017; Zhu et al., 2018), we design
a synthetic Turing test, in which the negative log-likelihood NLLoracle from an oracle LSTM is
calculated for evaluating the quality of samples from the generator. Particularly, to support our claim
that our method causes little mode collapse, we calculated NLLtest, which is to sample an extra batch
of samples from the oracle, and to calculate the negative log-likelihood measured by the generator.
We show that under this more reasonable setting, our proposed algorithm reaches the state-of-the-art
performance with exactly the same network architecture. Note that models like LeakGAN (Guo et al.,
2017) contain architecture-level modification, which is orthogonal to our approach, thus will not be
included in this part. The results are shown in Table 1.

4.1.1 DISCUSSION

Computational Efficiency Although in terms of time cost per epoch, CoT does not achieve the
state-of-the-art, we do observe that CoT is remarkably faster than previous RL-GAN approaches.
Besides, consider the fact that CoT is a sample-based optimization algorithm, which involves time
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Table 1: Likelihood-based benchmark and time statistics for synthetic Turing test. ‘-(MLE)’ means
the best performance is acquired during MLE pre-training.

Model/Algorithm NLLoracle NLLtest(final/best) best NLLoracle+test time/epoch

MLE 9.08 8.97/7.60 9.43 + 7.67 16.14± 0.97s
SeqGAN (Yu et al., 2017) 8.68 10.10/-(MLE) (The same as MLE) 817.64± 5.41s
RankGAN (Lin et al., 2017) 8.37 11.19/-(MLE) (The same as MLE) 1270± 13.01s
MaliGAN (Che et al., 2017) 8.73 10.07/-(MLE) (The same as MLE) 741.31± 1.45s
Scheduled Sampling (Bengio et al., 2015) 8.89 8.71/-(MLE) (The same as MLE) 32.54± 1.14s
Professor Forcing (Lamb et al., 2016) 9.43 8.31/-(MLE) (The same as MLE) 487.13± 0.95s

CoT (ours) 8.19 8.03/7.54 8.19 + 8.03 53.94± 1.01s

g-steps=100, d-steps=1, k=10
g-steps=30,   d-steps=1, k=30
g-steps=1,     d-steps=1, k=10
g-steps=1,     d-steps=5, k=3
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Figure 2: Curves of evaluation on JSD, NLLoracle during iterations of CoT under different training
settings. To show the hyperparameter robustness of CoT, we compared it with the similar results as
were evaluated in SeqGAN (Yu et al., 2017).

cost in sampling from the generator, this result is acceptable. The result also verifies our claim that
CoT has the same order (i.e. the time cost only differs in a constant multiplier or extra lower order
term) of computational complexity as MLE.

Hyper-parameter Robustness. We perform a hyper-parameter robustness experiment on synthetic
data experiment. When compared with the results of similar experiments as in SeqGAN (Yu et al.,
2017), our approach shows less sensitivity to hyper-parameter choices, as shown in Figure 2. Note
that since in all our attempts, the evaluated JSD of SeqGAN fails to converge, we evaluated NLLoracle
for it as a replacement.

Self-estimated Training Progress Indicator. Like the critic loss, i.e. estimated Earth Mover
Distance, in WGANs, we find that the training loss of the mediator (9), namely balanced NLL, can be
a real-time training progress indicator as shown in Figure 3. Specifically, in a wide range, balanced
NLL is a good estimation of real JSD(G‖P ) with a steady translation, namely, balanced NLL =
JSD(G‖P ) +H(G) +H(P ).
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Figure 3: (a) Curves of training time JSD(G‖P ) for MLE, SeqGAN and CoT. (b) Curves of balanced
NLL and real JSD. Both results are from synthetic data experiments. Note that balanced NLL is
considered to have only a constant translation of the estimated JSD by the mediator.
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Table 2: N-gram-level quality benchmark: BLEU on test data of EMNLP2017 WMT News
Model/Algorithm BLEU-2 BLEU-3 BLEU-4 BLEU-5

MLE 0.781 0.482 0.225 0.105
SeqGAN (Yu et al., 2017) 0.731 0.426 0.181 0.096
RankGAN (Lin et al., 2017) 0.691 0.387 0.178 0.095
MaliGAN (Che et al., 2017) 0.755 0.456 0.179 0.088
LeakGAN (Guo et al., 2017) 0.835 0.648 0.437 0.271

TextCoT-basic (ours) 0.785 0.489 0.261 0.152
TextCoT-strong (ours) 0.800 0.501 0.273 0.200
TextCoT-strong (α = 1.5) (ours) 0.856 0.701 0.510 0.310

Table 3: Diversity benchmark: estimated Word Mover Distance (eWMD) and NLLtest
Model/Algorithm eWMDtest eWMDtrain NLLtest
MLE 1.015 (σ = 0.023) 0.947 (σ = 0.019) 2.365
SeqGAN (Yu et al., 2017) 2.900 (σ = 0.025) 3.118 (σ = 0.018) 3.122
RankGAN (Lin et al., 2017) 4.451 (σ = 0.083) 4.829 (σ = 0.021) 3.083
MaliGAN (Che et al., 2017) 4.891 (σ = 0.061) 4.962 (σ = 0.020) 3.240
LeakGAN (Guo et al., 2017) 1.803 (σ = 0.027) 1.767 (σ = 0.023) 2.327

TextCoT-basic (ours) 0.766 (σ = 0.031) 0.886 (σ = 0.019) 2.247
TextCoT-strong (ours) 0.923 (σ = 0.018) 0.941 (σ = 0.016) 2.144

4.2 TEXTCOT: ZERO-PRIOR LONG & DIVERSE TEXT GENERATION

As an important sequential data modeling task, zero-prior text generation, especially long and
diversified text generation, is a good testbed for evaluating the performance of a generative model.

Following the experiment proposed in LeakGAN (Guo et al., 2017), we choose EMNLP 2017 WMT
News Section as our dataset, with maximal sentence length limited to 51. We pay major attention to
both quality and diversity. To keep the comparison fair, we present two implementations of CoT,
namely CoT-basic and CoT-strong. As for CoT-basic, the generator follows the settings of that in
MLE, SeqGAN, RankGAN and MaliGAN. As for CoT-strong, the generator is implemented with the
similar architecture in LeakGAN.

For quality evaluation, we evaluated BLEU on a small batch of test data separated from the original
dataset. For diversity evaluation, we evaluated the estimated Word Mover Distance (Kusner et al.,
2015), which is calculated through training a discriminative model between generated samples and
real samples with 1-Lipschitz constriant via gradient penalty as in WGAN-GP (Gulrajani et al.,
2017). To keep it fair, for all evaluated models, the architecture and other training settings of the
discriminative models are kept the same.

The results are shown in Table 2 and Table 3. In terms of generative quality, CoT-basic achieves
state-of-the-art performance over all the baselines with the same architecture-level capacity, especially
the long-term robustness at n-gram level. CoT-strong using a conservative generation strategy, i.e.
setting the inverse temperature parameter α higher than 1, as in (Guo et al., 2017) achieves the
best performance over all compared models. In terms of generative diversity, the results show that
our model achieves the state-of-the-art performance on all metrics including NLLtest, which is the
optimization target of MLE.

5 CONCLUSION

We proposed Cooperative Training, a novel training algorithm for generative modeling of discrete
data. CoT optimizes Jensen-Shannon Divergence, which does not have the exposure bias problem
as the forward KLD. Models trained via CoT shows promising results in sequential discrete data
modeling tasks, including sample quality and the generalization ability in likelihood prediction tasks.
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A DETAILED DERIVATION OF THE ALGORITHM

(10) =∇θ

(
−

1

2
E

st∼Gθ
[logGθ(st)− logMφ(st)]

)

=∇θ

(
−

1

2
E

st∼Gθ

[Gθ(st−1)Gθ(st|st−1)

Gθ(st)
(logGθ(st)− logMφ(st))

])

=∇θ

(
−

1

2
E

st∼Gθ

[Gθ(st−1)Gθ(st|st−1)

Gθ(st)

(
logGθ(st|st−1)Gθ(st−1)− logMφ(st|st−1)Mφ(st−1)

)])

=−
1

2
∇θ

(∑
st

Gθ(st−1)Gθ(st|st−1)
(
logGθ(st|st−1)− logMφ(st|st−1)

)
+
∑
st

Gθ(st−1)Gθ(st|st−1) log
Gθ(st−1)

Mφ(st−1)

)

=−
1

2
∇θ

(∑
st

Gθ(st−1)Gθ(st|st−1)
(
logGθ(st|st−1)− logMφ(st|st−1)

)
+
∑
st−1

(
Gθ(st−1) log

Gθ(st−1)

Mφ(st−1)

)∑
st

Gθ(st|st−1)

)
(here st−1 iterates over all prefixes of the sequences in {st})

=−
1

2
∇θ

(∑
st

Gθ(st−1)Gθ(st|st−1)
(
logGθ(st|st−1)− logMφ(st|st−1)

)
+
∑
st−1

Gθ(st−1) log
Gθ(st−1)

Mφ(st−1)

)

=−
1

2
∇θ

(∑
st

Gθ(st−1)Gθ(st|st−1)
(
logGθ(st|st−1)− logMφ(st|st−1)

)
+ E
st−1∼Gθ

[
log

Gθ(st−1)

Mφ(st−1)

])

=−
1

2
∇θ

( ∑
st−1

Gθ(st−1)
∑
st

Gθ(st|st−1)
(
logGθ(st|st−1)− logMφ(st|st−1)

)
+ E
st−1∼Gθ

[
log

Gθ(st−1)

Mφ(st−1)

])

=(12)

B SAMPLE COMPARISON AND DISCUSSION

Table 4 shows samples from some of the most powerful baseline models and our model.

Observation of the model samples indicates that:

• CoT produces remarkably more diverse and meaningful samples when compared to Leak-
GAN.

• The consistency of CoT is significantly improved when compared to MLE.

C FURTHER DISCUSSIONS ABOUT THE EXPERIMENT RESULTS

The Optimal Balance for Cooperative Training We find that the same learning rate and iteration
numbers for the generator and mediator seems to be the most competitive choice. As for the
architecture choice, we find that the mediator needs to be slightly stronger than the generator. For the
best result in the synthetic experiment, we adopt exactly the same generator as other compared models
and a mediator whose hidden state size is twice larger (with 64 hidden units) than the generator.

Theoretically speaking, we can and we should sample more batches from Gθ and P respectively for
training the mediator in each iteration. However, if no regularizations are used when training the
mediator, it can easily over-fit, leading the generator’s quick convergence in terms of KL(Gθ‖P )
or NLLoracle, but divergence in terms of JSD(Gθ‖P ). Empirically, this could be alleviated by
applying dropout techniques (Srivastava et al., 2014) with 50% keeping ratio before the output layer
of RNN. After applying dropout, the empirical results show good consistency with our theory that,
more training batches for the mediator in each iteration is always helpful.

However, applying regularizations is not an ultimate solution and we look forward to further theoreti-
cal investigation on better solutions for this problem in the future.
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Table 4: WMT News Samples from Different Models
Sources Example

LeakGAN (1) It’s a big advocate for therapy is a second thing to do, and I’m creating a relationship
with a nation.
(2) It’s probably for a fantastic footage of the game, but in the United States is already
time to be taken to live.
(3) It’s a sad House we have a way to get the right because we have to go to see that, ” she
said.
(4) I’m not sure if I thank a little bit easier to get to my future commitment in work, ” he
said.
(5) “ I think it was alone because I can do that, when you’re a lot of reasons, ” he said.
(6) It’s the only thing we do, we spent 26 and $35(see how you do is we lose it,” said both
sides in the summer.

CoT (1) We focus the plans to put aside either now, and which doesn’t mean it is to earn the
impact to the government rejected.
(2) The argument would be very doing work on the 2014 campaign to pursue the firm and
immigration officials, the new review that’s taken up for parking.
(3) This method is true to available we make up drink with that all they were willing to
pay down smoking.
(4) The number of people who are on the streaming boat would study if the children had a
bottle - but meant to be much easier, having serious ties to the outside of the nation.
(5) However, they have to wait to get the plant in federal fees and the housing market’s
most valuable in tourism.

MLE (1) after the possible cost of military regulatory scientists, chancellor angela merkel’s
business share together a conflict of major operators and interest as they said it is unknown
for those probably 100 percent as a missile for britain.
(2) but which have yet to involve the right climb that took in melbourne somewhere else
with the rams even a second running mate and kansas.
(3) “ la la la la 30 who appeared that themselves is in the room when they were shot her
until the end ” that jose mourinho could risen from the individual .
(4) when aaron you has died, it is thought if you took your room at the prison fines of
radical controls by everybody, if it’s a digital plan at an future of the next time.

Possible Derivatives of CoT The form of equation 13 can be modified to optimize other objectives.
One example is the backward KLD (a.k.a. Reverse KLD) i.e. KL(G‖P ). In this case, the objective
of the so-called “Mediator” and “Generator” thus becomes:

“Mediator”, now it becomes a direct estimator P̂φof the target distribution P :

Jp̂(φ) = E
s∼P

[− log(P̂φ(s))]. (19)

Generator:

∇θJg(θ) = ∇θ E
s∼Gθ

[ n−1∑
t=0

πg(st)
>(log πp̂(st)− log πg(st))

]
. (20)

Such a model suffers from so-called mode-collapse problem, as is analyzed in Ian’s GAN Tutorial
(Goodfellow, 2016). Besides, as the distribution estimator P̂ φ inevitably introduces unpredictable
behaviors when given unseen samples i.e. samples from the generator, the algorithm sometimes fails
(numerical error) or diverges.

In our successful attempts, the algorithm produces similar (not significantly better than) results as
CoT. The quantitive results are shown as follows:

Table 5: N-gram-level quality benchmark: BLEU on test data of EMNLP2017 WMT News (New
Split)

Model/Algorithm BLEU-2 BLEU-3 BLEU-4 BLEU-5 eWMD

CoT-basic (ours) 0.850 0.571 0.316 0.169 1.001 (σ = 0.020)
Reverse KL (ours) 0.860 0.590 0.335 0.181 1.086 (σ = 0.014)
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Although under evaluation of weak metrics like BLEU, if successfully trained, the model trained
via Reverse KL seems to be better than that trained via CoT, the disadvantage of Reverse KL under
evaluation of more strict metric like eWMD indicates that Reverse KL does fail in learning some
aspects of the data patterns e.g. completely covering the data mode.
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