Deep Reinforcement Learning for Dynamic Urban
Transportation Problems

Laura Schultz and Vadim Sokolov
Systems Engineering and Operations Research
George Mason University. Fairfax, VA
Email: {Ischult2, vsokolov}@gmu.edu

Abstract—Many transportation system analysis tasks are for-
mulated as an optimization problem - such as optimal con-
trol problems in intelligent transportation systems and long
term urban planning. The models often used to represent the
dynamics of a transportation system involve large data sets
with complex input-output interactions and are difficult to use
in the context of optimization. We explore the use of deep
learning and deep reinforcement learning for such optimization
problems in transportation. Use of deep learning meta-models
can produce a lower dimensional representation of those relations
and allow to implement optimization and reinforcement learning
algorithms in an efficient manner. In particular, we develop deep
learning models for calibrating transportation simulators and
reinforcement learning to solve the problem of optimal scheduling
of travelers on the network.

I. INTRODUCTION

Many modern transportation system analysis problems, such
as fleet management [1], intelligent system operations [2] and
long-term urban planning [3], lead to high-dimensional and
highly nonlinear optimization problems. Analytical formula-
tions using mathematical programming [4], [S] or conservation
laws [6], [7] are typically assumed but rely on high level
abstractions, such as origin-destination matrices for demand.
Alternatively, complex simulation [8], [9], [10] models, which
model individual travelers through Agent-Based Modeling
(ABM), provide a flexible approach to represent traffic and
demand patterns in large scale multi-modal transportation
systems. However, the computational costs often times prove
prohibitive and meta-model-based approaches have been pro-
posed [11], [12].

In this paper, we propose an alternative approach to solving
these optimization problems for large scale transportation
systems. Our approach relies on deep learning approximators,
a Latent Variable Model (LVM) technique which is capa-
ble of extracting the underlying low-dimensional pattern in
high-dimensional input-output relationship. Deep learners have
proven highly effective in combination with Reinforcement
and Active Learning [13] to recognize these latent patterns for
exploitation. Our approach builds on the work of simulation-
based optimization [11], [12], deep learning [14], [15], as
well as reinforcement learning [16], [17] techniques recently
proposed for transportation applications. The two main con-
tribution of this paper are

1) Development of innovative deep learning architecture for
reducing dimensionality of search space and modeling

relations between transportation simulator inputs (travel
behavior parameters, traffic network characteristics) and
outputs (mobility patterns, traffic congestion)

2) Development of reinforcement learning techniques that
rely on deep learning approximators to solve optimiza-
tion problems for dynamic transportation systems

We demonstrate our methodologies using two applications.
First, we solve the problem of calibrating a complex, stochastic
transportation simulator to accurately match recorded field
data in order to make the representation useful for both short
term operational decisions and long term urban planning.
Leveraging previously proposed methods, which treat the
problem as an optimization issue [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], our approach makes no assumptions
about the form of the simulator and types of inputs and outputs
used. Further, we show that deep learning models are more
sample efficient when compared to unadulterated Bayesian
techniques or traditional dimension-reduction methods. We
build on our calibration framework [12] by further exploring
the dimensionality reduction utilized for more efficient input
parameter space exploration. More specifically, we introduce
the formulation and analysis of a combinatorial Neural Net-
work method and compare it with previous work that used
Active Subspace methods.

The second application builds upon recent advances in
deep learning approaches to Reinforcement Learning (RL).
Demonstrating impressive results in many applications [28],
[29] through neural network approximations of state-action
functions, RL mimics the way humans learn new tasks and
behavioral policies via trial and error. Most research on
RL has been concentrated to the field of machine learning
and classical Artificial Intelligence (AI) problems, such as
robotics, language translation and supply chain management
problems [30]; however, some classical transportation control
problems have been previously solved using RL [31], [32],
[33], [34], [31], [35], [36], [37], [38], [39]. Furthermore, the
deep RL has was recently applied and proven successful for
traffic flow control [40], [17], [16], [41], [42].

The remainder of this paper is organized as follows: Sec-
tion II briefly documents the highlights of neural network
architectures; Section II-C describes the new deep learning
architecture that finds low dimensional patterns in simula-
tor’s inputs-output relations and we apply our deep learner
to the problem of model calibration. Section III describes

Evaluation Integration Exploration

Fig. 1. Three Stages of Calibration Framework

the additional application of deep reinforcement learning to
transportation system optimization. Finally Section IV offers
avenues for further research.

II. DEEP LEARNING FOR CALIBRATION

The primary goal of a calibration procedure is to find a
set of static input parameters that lead to simulation outputs
that match observed data, such as traffic counts, point-to-
point travel times, or transit ridership, as close as possible.
A simulator that is capable of reproducing observed flows
can then be used confidently to develop forecasts on network
performance for different infrastructure changes or policies.

Recently, we developed a meta-model framework, which
executes Bayesian optimization algorithms in distributed com-
puting environments, to be used for these transportation
simulation-based problems [12]. Decomposed into three re-
iterative stages, as shown in Figure 1, the framework takes
a generalizable approach by using black-box optimization
methodologies when the simulator is highly complex but the
resources for evaluation are limited; Specifically, a Gaussian
Process (GP) approach constructs a probability distribution
over all potential linear and nonlinear functions representing
the discrepancy relationship between the simulator and field
data and seeks a valued estimation for the simulator’s static
input parameters with minimal uncertainty and resources.

Unfortunately, Bayesian models do not scale favorably with
dimensionality. The contribution of a single sample to the
understanding of evaluation space decreases as the space
between samples becomes larger and dimensions grow. In
practice, however, high dimensional data possesses a natural
structure within it that can be successfully expressed in lower
dimensions. Known as dimension reduction, the effective num-
ber of parameters in the model reduces and enables successful
analysis from smaller data sets.

The previous work utilized a reduction technique known as
Active Subspaces to address this concern with limited success.
In this section, we develop a new, combinatorial deep learning
architecture that can be used to learn the low-dimensional
structure instead.

A. Multi-Layer Perceptron

Let y denote a multi-dimensional output and = =
(z1,...,2p) € RP a (high dimensional) set of inputs. We
wish to recover the multivariate function (map), denoted by
y = f(x), using training data of input-output pairs (y;, ;)Y ;,
that generalizes well for out-of-sample data. DL is a pattern
matching model that uses composition of univariate functions
to approximate the input-output relations. By composing L

layers, a deep learning predictor, known as a Multi-layer
Perceptron network, becomes

@ :FW’b(x) = (f1?107b0 o... O’lll/)L,bL)(x)
iy =filwizi +b) YV ie[0,L).

Here f; is a univariate activation function. Wights w; €
RPY¥Pi and offsets b; € R are selected by applying stochastic
gradient descent (SGD) to solve a regularized least squares
optimization problem given by

N
_ o 12
minimize ;:1 llys — Fwp(x:)|l5 + &(W, D).

Here ¢ is a regularization penalty on the network parameters
(weights and offsets).

B. Auto-Encoder

An auto-encoder is a deep learning routine which trains
the architecture to approximate x by itself (i.e., z = y) via a
bottleneck structure. This means we select a model Fyy,(x)
which aims to concentrate the information required to recreate
z. Put differently, an auto-encoder creates a more cost effective
representation of x. For example, under an Ly-loss function,
we wish to solve

imize || F 2
mn‘l/%uzeH wb(T) — 2|3

subject to a regularization penalty on the weights and offsets.
In an auto-encoder, for a training data set {z1,...,z,}, we
set the target values as y; = x;. A static auto-encoder with
two linear layers, akin to a traditional factor model, can be
written via a deep learner as

oV =z
a® = (wPaM +p?)
a® =Fyp(z) = fo(w®a® 4 p®)),

where a(?) are activation vectors. The goal is to find the
weights and biases so that size of w(?) is much smaller than
size of w(®).

C. Deep Learning Architecture

Within the calibration framework, two objectives must be
realized by the neural network:

1) A reduced dimension subspace which captures the rela-
tionship between the simulator inputs and outputs must
be found and bounded in order for adequate exploration
of the state-space to determine the next useful evaluation
point

2) Given that the recommended evaluation points are ex-
pressed in the reduced dimension sample space, the
network must be able to recover a projected sample back
to the original space to allow for simulator evaluation

Given the deterministic nature of our DL model [15], we use
the neural network for only dimensionality reduction in our
GP calibration framework.

Dimension
Reduced
Layer

T

Fig. 2. Graphical Representation of the Combinatorial Neural Network for
Calibration

To address these objectives, we combine an MLP archi-
tecture to capture a low-dimensional representation of the
input-output with an autoencoder architecture to decode the
new subspace back to the original. We will then be able to
run the calibration framework’s optimization algorithms inside
the low dimensional representation of the input parameter
space to address the curse of dimensionality issue and convert
the recommended sample into a usable form for simulator
evaluation. The Autoencoder and MLP share the same initial
layers up to the reduced dimension layer, as shown in Figure
2.

The activation function used is the tanh, which provides a
bounded range of (—1,1) and is a close approximation to the
sine function.

We ran the simulator several times to generate an initial
sample set for use as training data to explore the relationship
between the inputs and outputs; a hypercube sampling across
the original dimensions subspace is utilized. Additionally,
to quantify the discrepancies during training of the neural
network, the following loss functions are used:

1) The MLP portion of the architecture uses the mean
squared error function L

N
Ly =5 -0

where ¢(0) represents the predicted values produced by
the neural network for the simulator’s output y given the
input set 0

2) The Autoencoder portion of the architecture uses the
mean squared error function L and a quadratic penalty
cost P for producing predicted values outside of the
original subspace bounds since the simulator cannot
evaluate a point that does not lie in the plausible domain

D [¢(6)] = max[0, p(6;) — u]* + max[0, 21 — ¢(6;)]?

2
where ¢(0) represents the predicted values produced by
the neural network for the simulator’s input x given the
input set 0, x, represents the input set’s upper bound,
and z; represents the input set’s lower bound

D. Empirical Results

We use Sioux-Falls [43], a transportation model consisting
of 24 intersections with 76 directional roads, or arcs, for
our empirical results. The network structure and input data
provided by [44] have been adjusted from the original dataset
to approximate hourly demand flows in the form of Origin-
Destination (O-D) pairs, the simulation’s input set.

The input data is provided to a simulator package which
implements the iterative Frank-Wolfe method to determine
the traffic equilibrium flows and outputs average travel times
across each arc. Due to limited computing availability, only the
first twenty O-D pairs are treated as unknown input variables
between 0 and 7000, which need to be calibrated, while the
other O-D pairs are assumed to be known and fixed. Random
noise is added to the simulator to emulate the observational
and variational errors expected in real-world applications. The
calibration framework’s objective function is to minimize the
mean discrepancy between the simulated travel times resulting
from the calibrated O-D pairs and the ’true’ times resulting
from the full set of true O-D pair values.

The neural network begins with an input layer, fy, of the 20
O-D input pairs, z1.29, we are attempting to calibrate. Using
a Tanh activation function, three layers, f1, f2, f3, with 10
nodes each produce the internal layers of the deep network
connecting the input and the first output layer, y;.7¢, which
contains the average traffic times across each of the 76 arcs.
Three additional layers, using a Tanh activation function as
well, with 10 nodes each, fy4, f5, fs, connect the second middle
layer, fo, to a secondary output layer consisting of the re-
constructed z input values. See Figure 2 for a visualization of
the architecture used.

Overall, the performance of the calibration using a deep
neural network proved significant, see Figure 3(a). A calibrated
solution set was produced which resulted in outputs, on
average, within 3% of the experiment’s true output. With a
standard deviation of 5%, Figure 3(b) provides a visualization
for those links which possessed greater than average variation
from the true demand’s output. Given the same computational
budget, Bayesian optimization that uses low dimensional rep-
resentation from the deep learner leads to 25% more accurate
match between measured and simulated data when compared
to active subspaces.

III. DEEP REINFORCEMENT LEARNING

Consider the desire for a calibrated simulator not to be used
for the evaluation of interested scenarios but as a tool for
designing a policy 7 : s — a which dictates an optimal action
a for the current state of the system s. A simulator is an
interactive system of players (travelers, system operators, etc.),
known as agents, and their environment. In such a system, the
agent interacts with an environment in discrete time steps. At
each timestep, ¢, the agent has a set of actions, A which can be
executed. Given the action, the environment changes from its
original state, s, to a new, influenced state, s’. Reinforcement
Learning (RL) allows to find a sequence of actions to achieve

Nodes with > 3 % difference

— Original Subspace (200) .
8 = Active Subspace (20) 00 L H
— Neural Network Subspace (10D)

i\— 200 LN}
\—\— 100 s . s
-2 of @ a0 B® Ty

0 10 n) 40 50 60 kil 20 B a0 50] 7
Sample Number Node Number

Tog(Minimu

(b) Calibrated vs True

Fig. 3. Results of demand matrix calibration using Bayesian optimization. (a)
Comparison of the Three Methods in terms of Objective Evaluations applied
to original parameter space (black line), reduced dimensionality parameter
space of Active Subspaces (red line), and reduced dimensionality parameter
space of Neural Networks(blue line). (b) Comparison of Calibrated and True
Travel Time Outputs with Above Average Differences.

(a) Objective Function

the desirable state. The desirability of a state is modeled by
the reward function.

This approach is quite conducive to transportation. For
example, if a commuter chooses to leave the house after rush
hour has ended, he will eventually be rewarded at the end of
his commute with a shorter travel. Although not immediately
realized, the reward is no less desired and will, in the future,
encourage the agent to apply the same actions when possible.

One approach to RL is via Q-learning [45]. Q-learning,
represents the ’quality’ of a certain action within the envi-
ronment’s current state via a Q-function, hich represents the
maximum, discounted reward that can be obtained in the future
if action a is performed in state s and all subsequent actions
are continued following the optimal policy 7 from that state
on:

Qr(s,a) = E[R¢|s: = s,as = a, 7,

where R, = > >, 4" 'r. is the discounted return and
T € [0,1] is the factor used to enumerate the importance of
immediate and future rewards.

In other words, it is the greatest reward we can expect given
we follow the best set of action sequences after performing
action a in state s. Subsequently, the optimal policy requires
choosing the optimal, or maximum, value for each state:

Q*(s,a) = max Qr(s,a)

Unfortunately, the Q-functions for these transportation sim-
ulators continue to possess high-dimensionality concerns sim-
ilarly noted in our previous calibration work. However, recent
advancements have allowed for the successful integration of
reinforcement learning’s Q-function with deep neural net-
works [46]. Known as a Deep Q Network (DQN), these neural
networks have the potential to provide a diminished feature
set for highly structured, highly-dimensional data without
hindering the power of the reinforcement learning.

For development and training of such a network, a neural
network architecture best-fitting the problem is constructed
with the following loss function [47]

Li(0:) = B (079N = QUs.0:00))?]

Fig. 4. Graphical Representation of the Example Transportation System

where 6 are the parameters, Q(-) is the Q-function for state

s and action a and
yP N =7+ ymaxQ(s',a’;07),
a

where 6~ represents parameters of a fixed and separate
target network.

Furthermore, to increase the data efficiency and reduce the
correlation among samples during training, DQNs leverage a
buffer system known as experience replay. Each transition and
answer set, (¢, ag, ¢, S¢41), is stored offline and, throughout
the training process, random small batches from the replay
memory are used instead of the most recent transition. For the
purpose of this paper, a MLP network is utilized as the neural
architecture.

A. Empirical Results

For demonstration and analysis, a small transportation net-
work, depicted in Figure 4, consisting of 3 nodes and 2 routes,
or arcs, is used.

The small network has varying demand originating from
node 1 to node 2 for 24 time periods. Using RL, we find
the best policy to handle this demand with the lowest overall
system travel time given that any single period has two
allowable actions:

1) 0 — 2 units of demand from node 1 to node 2 can be
delayed up to one hour

2) 0— 2 units of demand from node 1 to node 2 can be re-
routed to node 3 as an alternative destination at a further
distance

In essence, we solve the optimal traffic assignment problem.
Our state contains the following information: (i) the amount of
original demand from node 1 to node 2 that is to be executed
at time ¢, Dy 1 2; (ii) the amount of demand moved to time
t for execution from time ¢ — 1, M; 1 o; (iii) the amount of
demand left to be met between time ¢+ 1 and ¢t = 24, divided
by the amount of time left 24 — (¢ + 1).! The action set
includes the option to move 0,1,or 2 units of demand from
the current period ¢ to the subsequent period ¢ 4+ 1 or move
0,1,or 2 units of demand from the arc between note 1 and 2 to
the arc between node 1 and 3, A; = [A¢441,1,2, Ar,1,3]. The
reward is calculated using the same simulator package from
the Section II-D, which implements the iterative Frank-Wolfe
method to determine the traffic equilibrium flows and outputs

!Q-learning requires a Markov Process assumption. The third state value
prevents the solution from attempting to delay demand as long as possible
while meeting the ergodic requirement of Markov Processes

Equilibrium Travel Time per Pericd

1600

1400

1200

—
=
=)
=

800

Travel Time

600

400

200

0 5 10 15 20
Hour

Em Original Travel Demand
Flow Solution

B Adjusted Travel Demand Flow
Solution using Q Deep Network

Fig. 5. Comparison of System Travel Time per Period

total system travel time for the period. Since Q-learning seeks
the maximum reward, we took the negative total system travel
time over the 24 periods as the reward.

Four inputs are given to the neural network to describe the
state: original demand, moved demand, demand left, and the
current time ¢. These inputs are then fed into two hidden layers
with a tanh activation function consisting of ten nodes each
and outputs to the nine combinatorial outputs possible for the
two allowable actions. The amount the discount factor,~y, was
set to 0.9 and the action selection is done according to an e-
greedy policy, which takes the highest value according to the
neural network or picks randomly at a probability that decays
exponentially, in order to initially encourage exploration.

After running the network on 100 of 24-long episodes, a
randomly generated set of demand was produced and run
through the resulting neural network. A 51% improvement
in the system travel time was achieved. Table I illustrates the
adjustments decided by the @) network and Figure 5 compares
the travel times by period between the original and adjusted
demands.

IV. DISCUSSION

Deep learning provides a general framework for modeling
complex relations in transportation systems. As such, deep
learning frameworks are well-suited to many optimization
problems in transportation. This paper presents an innovative
deep learning architecture for applying reinforcement learning
and calibrating a transportation model. We have demonstrated,
deep learning is a viable option compared to other metamodel
based approaches. Our calibration and reinforcement learning
examples demonstrate how to develop and apply deep learning
models in transportation modeling.

At the same time, there are significant challenges asso-
ciated with using deep learning for optimization problems.
Most notably, the issue of performance of deep reinforcement
learning [48]. Though theoretical bounds on performance of
different RL algorithms do exist, the research done over the
past few decades showed that worst case analysis is not
the right framework for studying artificial intelligence: every

TABLE I
ADJUSTMENTS TO DEMANDS PER PERIOD USING DQN

Hour| Original Demand | DQN Adjusted | DQN Adjusted
of Arcy 2 Demand of | Demand of
Arcy 2 Arcy 3
1 4 4 0
2 2 0 1
3 3 1 1
4 1 2 1
5 1 0 1
6 3 3 0
7 0 0 0
8 0 0 0
9 1 0 1
10 1 0 1
11 1 0 1
12 2 0 1
13 2 1 1
14 4 2 1
15 2 2 1
16 1 1 1
17 3 0 1
18 2 2 1
19 0 1 0
20 2 0 1
21 3 1 1
22 2 2 1
23 1 1 1
24 2 0 2

model that is interesting enough to use in practice leads to
computationally hard problems [49]. Similarly, while there
are many important theoretical results that show very slow
convergence of many RL algorithm, it was shown to work well
empirically on specific classes of problems. The convergence
analysis developed for RL techniques is usually asymptotic
and worst case. Asymptotic optimality was shown by [45]
who shows that @)-learning, which is an iterative scheme
to learn optimal policies, does converge to optimal solution
Q* asymptotically. Littman et.el. [50] showed that a general
reinforcement learning models based on exploration model
does converge to an optimal solution. It is not uncommon for
convergence rates in practice to be much better than predicted
by worst case scenario analysis. Some of the recent work
suggests that using recurrent architectures for Value Iteration
Networks (VIN) can achieve good empirical performance
compared to fully connected architectures [51]. Adaptive ap-
proaches that rely on meta-learning were shown to improve
performance of reinforcement learning algorithms [52].

Another issue that requires further research is the bias-
variance trade-off in he context of deep reinforcement learning.
Traditional regularization techniques that add stochasticity to
RL functions do not prevent from over-fitting [53].

In the meantime, deep learning and deep reinforcement
learning are likely to exert greater and greater influence in
the practice of transportation.

REFERENCES

[1] R. Nair and E. Miller-Hooks, “Fleet management for vehicle sharing
operations,” Transportation Science, vol. 45, no. 4, pp. 524-540, 2011.

[2]

[5]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

K. Lam, W. Krichene, and A. Bayen, “On learning how players learn:
estimation of learning dynamics in the routing game,” in Cyber-Physical
Systems (ICCPS), 2016 ACM/IEEE 7th International Conference on.
IEEE, 2016, pp. 1-10.

H. Spiess and M. Florian, “Optimal strategies: a new assignment model
for transit networks,” Transportation Research Part B: Methodological,
vol. 23, no. 2, pp. 83-102, 1989.

J. Larson, T. Munson, and V. Sokolov, “Coordinated platoon routing
in a metropolitan network,” in 2016 Proceedings of the Seventh SIAM
Workshop on Combinatorial Scientific Computing. SIAM, 2016, pp.
73-82.

V. Sokolov, J. Larson, T. Munson, J. Auld, and D. Karbowski, “Maxi-
mization of platoon formation through centralized routing and departure
time coordination,” Transportation Research Record: Journal of the
Transportation Research Board, no. 2667, pp. 10-16, 2017.

C. G. Claudel and A. M. Bayen, “Lax-hopf based incorporation of
internal boundary conditions into hamilton—jacobi equation. part i:
Theory,” IEEE Transactions on Automatic Control, vol. 55, no. 5, pp.
1142-1157, 2010.

N. Polson, V. Sokolov et al., “Bayesian analysis of traffic flow on
interstate i-55: The Iwr model,” The Annals of Applied Statistics, vol. 9,
no. 4, pp. 1864-1888, 2015.

K. Nagel and G. Fltterd, “Agent-based traffic assignment: Going from
trips to behavioural travelers,” in Travel Behaviour Research in an
Evolving WorldSelected papers from the 12th international conference
on travel behaviour research. International Association for Travel
Behaviour Research, 2012, pp. 261-294.

V. Sokolov, J. Auld, and M. Hope, “A flexible framework for devel-
oping integrated models of transportation systems using an agent-based
approach,” Procedia Computer Science, vol. 10, pp. 854-859, 2012.

J. Auld, M. Hope, H. Ley, V. Sokolov, B. Xu, and K. Zhang, “Polaris:
Agent-based modeling framework development and implementation for
integrated travel demand and network and operations simulations,”
Transportation Research Part C: Emerging Technologies, vol. 64, pp.
101-116, 2016.

L. Chong and C. Osorio, “A simulation-based optimization algorithm
for dynamic large-scale urban transportation problems,” Transportation
Science, 2017.

L. Schultz and V. Sokolov, “Bayesian optimization for transportation
simulators,” Procedia Computer Science, vol. 130, pp. 973-978, 2018.
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

M. F. Dixon, N. G. Polson, and V. O. Sokolov, “Deep learning for spatio-
temporal modeling: Dynamic traffic flows and high frequency trading,”
arXiv preprint arXiv:1705.09851, 2017.

N. G. Polson and V. O. Sokolov, “Deep learning for short-term traffic
flow prediction,” Transportation Research Part C: Emerging Technolo-
gies, vol. 79, pp. 1-17, 2017.

C. Wu, A. Kreidieh, K. Parvate, E. Vinitsky, and A. M. Bayen, “Flow:
Architecture and benchmarking for reinforcement learning in traffic
control,” arXiv preprint arXiv:1710.05465, 2017.

C. Wu, K. Parvate, N. Kheterpal, L. Dickstein, A. Mehta, E. Vinitsky,
and A. M. Bayen, “Framework for control and deep reinforcement
learning in traffic,” in Intelligent Transportation Systems (ITSC), 2017
IEEE 20th International Conference on. 1EEE, 2017, pp. 1-8.

R. Cheu, X. Jin, K. Ng, Y. Ng, and D. Srinivasan, “Calibration of
FRESIM for Singapore expressway using genetic algorithm,” Journal of
Transportation Engineering, vol. 124, no. 6, pp. 526535, Nov. 1998.
T. Ma and B. Abdulhai, “Genetic algorithm-based optimization ap-
proach and generic tool for calibrating traffic microscopic simulation
parameters,” Intelligent Transportation Systems and Vehicle-highway
Automation 2002: Highway Operations, Capacity, and Traffic Control,
no. 1800, pp. 6-15, 2002.

L. Lu, Y. Xu, C. Antoniou, and M. Ben-Akiva, “An enhanced SPSA
algorithm for the calibration of Dynamic Traffic Assignment models,”
Transportation Research Part C: Emerging Technologies, vol. 51, pp.
149-166, Feb. 2015. [Online]. Available: http://linkinghub.elsevier.com/
retrieve/pii/S0968090X14003295

E. Cipriani, M. Florian, M. Mahut, and M. Nigro, “A gradient
approximation approach for adjusting temporal origindestination
matrices,” Transportation Research Part C: Emerging Technologies,

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

vol. 19, no. 2, pp. 270-282, Apr. 2011. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0968090X 10000975

J. B. Lee and K. Ozbay, “New calibration methodology for microscopic
traffic simulation using enhanced simultaneous perturbation stochastic
approximation approach,” Transportation Research Record, no. 2124,
pp. 233-240, 2009.

D. K. Hale, C. Antoniou, M. Brackstone, D. Michalaka, A. T.
Moreno, and K. Parikh, “Optimization-based assisted calibration of
traffic simulation models,” Transportation Research Part C: Emerging
Technologies, vol. 55, pp. 100-115, Jun. 2015. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0968090X 15000261

M. L. Hazelton, “Statistical inference for time varying origindestination
matrices,” Transportation Research Part B: Methodological, vol. 42,
no. 6, pp. 542-552, Jul. 2008. [Online]. Available: http://linkinghub.
elsevier.com/retrieve/pii/S0191261507001348

G. Fltterd, “A general methodology and a free software for the calibra-
tion of DTA models,” in The Third International Symposium on Dynamic
Traffic Assignment, 2010.

G. Fltterd, M. Bierlaire, and K. Nagel, “Bayesian demand calibration
for dynamic traffic simulations,” Transportation Science, vol. 45, no. 4,
pp. 541-561, 2011.

T. Djukic, G. Fltterd, H. Van Lint, and S. Hoogendoorn, “Efficient real
time OD matrix estimation based on Principal Component Analysis,”
in Intelligent Transportation Systems (ITSC), 2012 15th International
IEEE Conference on. 1EEE, 2012, pp. 115-121.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. MIT Press, 2017.

I. Giannoccaro and P. Pontrandolfo, “Inventory management in supply
chains: a reinforcement learning approach,” International Journal of
Production Economics, vol. 78, no. 2, pp. 153-161, 2002.

B. Abdulhai and L. Kattan, “Reinforcement learning: Introduction to
theory and potential for transport applications,” Canadian Journal of
Civil Engineering, vol. 30, no. 6, pp. 981-991, 2003.

T. Arentze and H. Timmermans, Albatross: a learning based transporta-
tion oriented simulation system. Eirass Eindhoven, 2000.

E. Bingham, “Reinforcement learning in neurofuzzy traffic signal con-
trol,” European Journal of Operational Research, vol. 131, no. 2, pp.
232-241, 2001.

A. L. Bazzan, “Opportunities for multiagent systems and multiagent
reinforcement learning in traffic control,” Autonomous Agents and Multi-
Agent Systems, vol. 18, no. 3, pp. 342-375, 2009.

I. Arel, C. Liu, T. Urbanik, and A. Kohls, “Reinforcement learning-based
multi-agent system for network traffic signal control,” IET Intelligent
Transport Systems, vol. 4, no. 2, pp. 128-135, 2010.

K. Ling and A. S. Shalaby, “A reinforcement learning approach to street-
car bunching control,” Journal of Intelligent Transportation Systems,
vol. 9, no. 2, pp. 59-68, 2005.

R. Cunningham, A. Garg, V. Cahill er al, “A collaborative rein-
forcement learning approach to urban traffic control optimization,” in
Web Intelligence and Intelligent Agent Technology, 2008. WI-IAT’08.
IEEE/WIC/ACM International Conference on, vol. 2. IEEE, 2008, pp.
560-566.

Z. Adam, M. Abbas, and P. Li, “Evaluating Green-Extension Policies
with Reinforcement Learning and Markovian Traffic State Estimation,”
Transportation Research Record: Journal of the Transportation
Research Board, vol. 2128, pp. 217-225, Dec. 2009. [Online].
Available: http:/trrjournalonline.trb.org/doi/abs/10.3141/2128-22

L. Chong, M. Abbas, B. Higgs, A. Medina, and C. Y. D. Yang,
“A revised reinforcement learning algorithm to model complicated
vehicle continuous actions in traffic,” in 2011 14th International IEEE
Conference on Intelligent Transportation Systems (ITSC), Oct. 2011, pp.
1791-1796.

Z. Adam, M. Abbas, and P. Li, “Evaluating green-extension policies
with reinforcement learning and markovian traffic state estimation,”
Transportation Research Record: Journal of the Transportation Research
Board, no. 2128, pp. 217-225, 2009.

F. Belletti, D. Haziza, G. Gomes, and A. M. Bayen, “Expert level control
of ramp metering based on multi-task deep reinforcement learning,”
arXiv preprint arXiv:1701.08832, 2017.

W. Genders and S. Razavi, “Using a deep reinforcement learning agent
for traffic signal control,” arXiv preprint arXiv:1611.01142, 2016.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

L. J. LeBlanc, E. K. Morlok, and W. P. Pierskalla, “An efficient approach
to solving the road network equilibrium traffic assignment problem,”
Transportation research, vol. 9, no. 5, pp. 309-318, 1975.

B. Stabler, “TransportationNetworks: Transportation Networks for
Research,” Sep. 2017, original-date: 2016-03-12T22:38:10Z. [Online].
Available: https://github.com/bstabler/TransportationNetworks

C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3-4, pp. 279-292, May 1992. [Online]. Available:
https://link.springer.com/article/10.1007/BF00992698

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis,
“Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529-533, Feb. 2015. [Online]. Available:
http://www.nature.com/articles/nature 14236

Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and
N. de Freitas, “Dueling Network Architectures for Deep Reinforcement
Learning,” arXiv:1511.06581 [cs], Nov. 2015, arXiv: 1511.06581.
[Online]. Available: http://arxiv.org/abs/1511.06581

C. Wu, A. Rajeswaran, Y. Duan, V. Kumar, A. M. Bayen, S. Kakade,
I. Mordatch, and P. Abbeel, “Variance reduction for policy gra-
dient with action-dependent factorized baselines,” arXiv preprint
arXiv:1803.07246, 2018.

A. Bhaskara, M. Charikar, A. Moitra, and A. Vijayaraghavan, “Smoothed
analysis of tensor decompositions,” CoRR, vol. abs/1311.3651, 2013.
[Online]. Available: http://arxiv.org/abs/1311.3651

M. L. Littman and C. Szepesvari, “A Generalized Reinforcement-
Learning Model: Convergence and Applications,” Brown University,
Providence, RI, USA, Tech. Rep., 1996.

L. Lee, E. Parisotto, D. S. Chaplot, and R. Salakhutdinov, “Lstm iteration
networks: An exploration of differentiable path finding,” 2018.

M. Al-Shedivat, T. Bansal, Y. Burda, I. Sutskever, I. Mordatch, and
P. Abbeel, “Continuous adaptation via meta-learning in nonstationary
and competitive environments,” arXiv preprint arXiv:1710.03641, 2017.
C. Zhang, O. Vinyals, R. Munos, and S. Bengio, “A Study on Overfitting
in Deep Reinforcement Learning,” ArXiv e-prints, Apr. 2018.

