
Workshop track - ICLR 2018

ADABATCH: ADAPTIVE BATCH SIZES FOR TRAINING
DEEP NEURAL NETWORKS

Aditya Devarakonda
Computer Science Division
University of California, Berkeley
aditya@cs.berkeley.edu

Maxim Naumov & Michael Garland
NVIDIA
Santa Clara, CA 95050, USA
{mnaumov, mgarland}@nvidia.com

ABSTRACT

We introduce a new deep learning training approach that adaptively increases the
batch size during the training process. Our method delivers the convergence rate of
small, fixed batch sizes while achieving performance similar to large, fixed batch
sizes. We train the VGG and ResNet networks on the CIFAR-100 and ImageNet
datasets. Our results show that learning with adaptive batch sizes can improve per-
formance by factors of up to 6.25 on 4 NVIDIA Tesla P100 GPUs while attaining
similar accuracies to small batch sizes. Using our technique, we are able to train
ImageNet with batch sizes up to 524, 288.

1 INTRODUCTION

Training deep neural networks with Stochastic Gradient Descent (SGD) typically uses a static batch
size r, which is held constant throughout the training process. However, static batch sizes force
the user to resolve an important conflict. On one hand, small batch sizes are desirable since they
tend to produce convergence in fewer epochs (Das et al., 2016; Keskar et al., 2016). On the other
hand, large batch sizes offer more data-parallelism which can improve computational efficiency and
scalability (Goyal et al., 2017; You et al., 2017). Our approach to resolving this trade-off is to
adaptively increase the batch size during training, beginning with an initial small batch size that
increases between selected epochs (Devarakonda et al., 2017). For the experiments reported in this
paper, we double the batch size at specific intervals and simultaneously adapt the learning rate α
so that the ratio α/r remains constant. Our approach delivers the accuracy of training with small
batch sizes, while improving performance during later epochs through the use of progressively larger
batch sizes. Furthermore, the parallelism exposed by these large batches creates the opportunity for
distributing work across many processors.

2 RELATING LEARNING RATE AND BATCH SIZE

Suppose that we have a weight matrix, Wi, at iteration i during the training process and that q
iterations are required for one epoch of training (i.e., one pass over the data). After an epoch of
training with a learning rate α and batch size r, the weight matrix update can be written as Wi+q =
Wi − α

r

∑q
j=1 ∆Wi+j with an update matrix ∆Wi+j computed at iteration i+ j. Growing batches

by a factor of β > 1 results in an effective batch size of βr and epochs of q̃ = q/β iterations. This
results in an update rule Wi+q̃ = Wi − α̃

βr

∑q̃
j=1

(∑β
k=1 ∆Wi′

)
, where index i′ = (j − 1)β + k.

Notice that Wi+q might be similar to Wi+q̃ only if we set the learning rate α = α̃/β and assume
that updates ∆Wi ≈ ∆Wi′ are similar in both cases. This assumption was empirically shown to
hold for fixed large batch size training with gradual learning rate warmup (Goyal et al., 2017) after
the first few epochs of training. We can interpret 1/β as a learning rate decay. Thus, increasing the
batch size can mimic learning rate decay, a relationship that Smith et al. (2017) have simultaneously
emphasized. In our experiments, we increase batch sizes according to a fixed schedule.
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(a) VGG19 with Batch Norm., Speedup (b) ResNet-20, Speedup

(c) VGG19 with Batch Norm., Test Error (d) ResNet-20, Test Error

Figure 1: CIFAR-100 speedup (left vertical axis) and test errors (right vertical axis) for adaptive (in
red) vs. fixed batch sizes (in blue), where “LR” uses learning rate warmup for the first 5 epochs.

3 EXPERIMENTAL RESULTS

We test our adaptive batch size technique using the VGG (Simonyan & Zisserman, 2014) and
ResNet (He et al., 2016) deep learning networks on CIFAR-100 (Krizhevsky et al., 2009), and
ImageNet (Deng et al., 2009) datasets. We benchmark our implementation1 using PyTorch v0.1.12
running on 4 NVIDIA Tesla P100 GPUs interconnected via NVIDIA NVLink.

We begin our evaluation by training CIFAR-100 using VGG19 with Batch Normalization and
ResNet-20. We use SGD with momentum of 0.9 and weight decay of 5 × 10−4. The baseline
settings for both networks are fixed batch sizes of 128, base learning rate of 0.1, and learning rate
decay by a factor of 0.25 every 20 epochs. The adaptive batch size experiments start with large ini-
tial batch sizes, perform gradual learning rate scaling over 5 epochs and double the batch every 20
epochs while decaying the learning rate by 0.5. We perform 100 epochs of training for all settings.
Figure 1 shows the speedups (left vertical axis) and test errors (right vertical axis) on (1a) VGG19
and (1b) ResNet-20. All speedups are normalized against the baseline fixed batch size of 128. The
additional “LR” labels on the horizontal axis indicate settings which require a gradual learning rate
scaling in the first 5 epochs. Compared to the baseline fixed batch size setting, we see that adap-
tive 1024–16384 batch size attains average speedups (over 5 trials) of 3.54× (VGG19) and 6.25×
(ResNet-20) with less than 2% difference in test error. The test errors curves illustrate that adaptive
batch sizes have similar behavior (< 1% difference) to their fixed batch size counterparts.

We also show the accuracy and convergence of AdaBatch on ImageNet training with the ResNet-
50 network. Due to the large number of parameters, we are only able to fit a batch size of 512
in multi-GPU memory. When training batch sizes > 512 we accumulate gradients. For example,
when training with a batch size of 1024 we perform two forward and backward passes with batch
size 512 and accumulate the gradients before updating the weights. For all experiments we train the
ResNet-50 with a starting learning rate of 0.1 and use learning rate warmup (Goyal et al., 2017). We

1https://github.com/NVlabs/AdaBatch
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(a) ResNet-50, starting batch size 8192. (b) ResNet-50, starting batch size 16384.

Figure 2: ImageNet test errors curves for adaptive versus fixed batch sizes with LR warmup.

(a) ResNet-50, starting batch size 8192. (b) ResNet-50, starting batch size 16384.

Figure 3: Comparison of ImageNet test errors curves for adaptive batch sizes with LR warmup and
batch size increases of 2x, 4x, and 8x.

then use a learning rate decay of 0.1 every 30 epochs for fixed batch size experiments. For adaptive
batch sizes, we simultaneously double the batch size and decay the learning rate by 0.2 every 30
epochs. The network is trained using SGD with momentum of 0.9 and weight decay of 10−4.

Figure 2 illustrates the test errors of large batch size training on ImageNet. We use a baseline batch
size of 256 for learning rate warmup. Our results indicate that adaptive batch size convergence is
similar to small, fixed batch size convergence and superior to large, fixed batch size. In Figure 3,
we explore the convergence behavior of AdaBatch when batch size is increased by factors of 2×,
4× and 8× and learning rates decayed by 0.2, 0.4 and 0.8, respectively, every 30 epochs. All other
training parameters are fixed. Our results indicate that the test error curves are comparable for a
wide range of increase factors. Notably, AdaBatch enables ImageNet training with batch sizes of
up to 524, 288 without significantly altering test error. In Figure 3b, increasing the batch size by
8× results in poor convergence. This is a result of increasing the batch size too much and too early
during training. It is important to tune the increase factor proportional to the starting batch size.

4 CONCLUSION

In this paper we have developed an adaptive scheme that dynamically increases the batch size during
training. We have shown that by using our scheme to train CIFAR-100 and ImageNet on the VGG
and ResNet networks, we can maintain the better test accuracy of small batches, while obtaining
higher performance often associated with large batches. Our results demonstrate that AdaBatch can
attain speedups of up to 6.25× on 4 NVIDIA P100 GPUs and that ImageNet can be trained with
batch sizes of up to 524, 288 with less than a 1% change in accuracy.
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