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ABSTRACT

Domain specific goal-oriented dialogue systems typically require modeling three
types of inputs, viz., (i) the knowledge-base associated with the domain, (ii) the
history of the conversation, which is a sequence of utterances and (iii) the cur-
rent utterance for which the response needs to be generated. While modeling
these inputs, current state-of-the-art models such as Mem2Seq typically ignore
the rich structure inherent in the knowledge graph and the sentences in the con-
versation context. Inspired by the recent success of structure-aware Graph Con-
volutional Networks (GCNs) for various NLP tasks such as machine translation,
semantic role labeling and document dating, we propose a memory augmented
GCN for goal-oriented dialogues. Our model exploits (i) the entity relation graph
in a knowledge-base and (ii) the dependency graph associated with an utterance
to compute richer representations for words and entities. Further, we take cog-
nizance of the fact that in certain situations, such as, when the conversation is in
a code-mixed language, dependency parsers may not be available. We show that
in such situations we could use the global word co-occurrence graph and use it to
enrich the representations of utterances. We experiment with the modified DSTC2
dataset and its recently released code-mixed versions in four languages and show
that our method outperforms existing state-of-the-art methods, using a wide range
of evaluation metrics.

1 INTRODUCTION

Goal-oriented dialogue systems which can assist humans in various day-to-day activities have
widespread applications in several domains such as e-commerce, entertainment, healthcare, etc. For
example, such systems can help humans in scheduling medical appointments, reserving restaurants,
booking tickets, etc.. From a modeling perspective, one clear advantage of dealing with domain spe-
cific goal-oriented dialogues is that the vocabulary is typically limited, the utterances largely follow
a fixed set of templates and there is an associated domain knowledge which can be exploited. More
specifically, there is some structure associated with the utterances as well as the knowledge base.

More formally, the task here is to generate the next response given (i) the previous utterances in the
conversation history (ii) the current user utterance (known as the query) and (iii) the entities and
relationships in the associated knowledge base. Current state-of-the-art methods (Seo et al., 2017;
Eric & Manning, 2017; Madotto et al., 2018) typically use variants of Recurrent Neural Network
(Elman, 1990) to encode the history and current utterance and an external memory network to store
the entities in the knowledge base. The encodings of the utterances and memory elements are then
suitably combined using an attention network and fed to the decoder to generate the response, one
word at a time. However, these methods do not exploit the structure in the knowledge base as defined
by entity-entity relations and the structure in the utterances as defined by a dependency parse. Such
structural information can be exploited to improve the performance of the system as demonstrated
by recent works on syntax-aware neural machine translation (Eriguchi et al., 2016; Bastings et al.,
2017; Chen et al., 2017), semantic role labeling (Marcheggiani & Titov, 2017) and document dating
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(Vashishth et al., 2018) which use GCNs (Defferrard et al., 2016; Duvenaud et al., 2015; Kipf &
Welling, 2017) to exploit sentence structure.

In this work, we propose to use such graph structures for goal-oriented dialogues. In particular, we
compute the dependency parse tree for each utterance in the conversation and use a GCN to capture
the interactions between words. This allows us to capture interactions between distant words in the
sentence as long as they are connected by a dependency relation. We also use GCNs to encode the
entities of the KB where the entities are treated as nodes and the relations as edges of the graph.
Once we have a richer structure aware representation for the utterances and the entities, we use
a sequential attention mechanism to compute an aggregated context representation from the GCN
node vectors of the query, history and entities. Further, we note that in certain situations, such as,
when the conversation is in a code-mixed language or a language for which parsers are not available
then it may not be possible to construct a dependency parse for the utterances. To overcome this,
we construct a co-occurrence matrix from the entire corpus and use this matrix to impose a graph
structure on the utterances. More specifically, we add an edge between two words in a sentence if
they co-occur frequently in the corpus. Our experiments suggest that this simple strategy acts as a
reasonable substitute for dependency parse trees.

We perform experiments with the modified DSTC2 (Bordes et al., 2017) dataset which contains
goal-oriented conversations for reserving restaurants. We also use its recently released code-mixed
versions (Banerjee et al., 2018) which contain code-mixed conversations in four different languages,
viz., Hindi, Bengali, Gujarati and Tamil. We compare with recent state-of-the-art methods and show
that on average the proposed model gives an improvement of 2.8 BLEU points and 2 ROUGE points.

Our contributions can be summarized as follows: (i) We use GCNs to incorporate structural in-
formation for encoding query, history and KB entities in goal-oriented dialogues (ii) We use a se-
quential attention mechanism to obtain query aware and history aware context representations (iii)
We leverage co-occurrence frequencies and PPMI (positive-pointwise mutual information) values
to construct contextual graphs for code-mixed utterances and (iv) We show that the proposed model
obtains state-of-the-art results on the modified DSTC2 dataset and its recently released code-mixed
versions.

2 RELATED WORK

In this section we review the previous work in goal-oriented dialogue systems and describe the
introduction of GCNs in NLP.

Goal-Oriented Dialogue System : Initial goal-oriented dialogue systems (Young, 2000; Williams
& Young, 2007) were based on dialogue state tracking (Williams et al., 2013; Henderson et al.,
2014a;b) and included pipelined modules for natural language understanding, dialogue state track-
ing, policy management and natural language generation. Wen et al. (2017) used neural networks for
these intermediate modules but still lacked absolute end-to-end trainability. Such pipelined modules
were restricted by the fixed slot-structure assumptions on the dialogue state and required per-module
based labelling. To mitigate this problem Bordes et al. (2017) released a version of goal-oriented
dialogue dataset that focuses on the development of end-to-end neural models. Such models need to
reason over the associated KB triples and generate responses directly from the utterances without any
additional annotations. For example, Bordes et al. (2017) proposed a Memory Network (Sukhbaatar
et al., 2015) based model to match the response candidates with the multi-hop attention weighted
representation of the conversation history and the KB triples in memory. Liu & Perez (2017) further
added highway (Srivastava et al., 2015) and residual connections (He et al., 2016) to the memory
network in order to regulate the access to the memory blocks. Seo et al. (2017) developed a variant
of RNN cell which computes a refined representation of the query over multiple iterations before
querying the memory. However, all these approaches retrieve the response from a set of candidate
responses and such a candidate set is not easy to obtain in any new domain of interest. To account
for this, Eric & Manning (2017); Zhao et al. (2017) adapted RNN based encoder-decoder models
to generate appropriate responses instead of retrieving them from a candidate set. Eric et al. (2017)
introduced a key-value memory network based generative model which integrates the underlying
KB with RNN based encode-attend-decode models. Madotto et al. (2018) used memory networks
on top of the RNN decoder to tightly integrate KB entities with the decoder to generate more infor-
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mative responses. However, as opposed to our work, all these works ignore the underlying structure
of the entity-relation graph of the KB and the syntactic structure of the utterances.

GCNs in NLP : Recently, there has been an active interest in enriching existing encode-attend-
decode models (Bahdanau et al., 2015) with structural information for various NLP tasks. Such
structure is typically obtained from the constituency and/or dependency parse of sentences. The idea
is to treat the output of a parser as a graph and use an appropriate network to capture the interactions
between the nodes of this graph. For example, Eriguchi et al. (2016) and Chen et al. (2017) showed
that incorporating such syntactical structures as Tree-LSTMs in the encoder can improve the per-
formance of Neural Machine Translation (NMT). Peng et al. (2017) use Graph-LSTMs to perform
cross sentence n-ary relation extraction and show that their formulation is applicable to any graph
structure and Tree-LSTMs can be thought of as a special case of it. In parallel, Graph Convolutional
Networks (GCNs) (Duvenaud et al., 2015; Defferrard et al., 2016; Kipf & Welling, 2017) and their
variants (Li et al., 2015) have emerged as state-of-the-art methods for computing representations of
entities in a knowledge graph. They provide a more flexible way of encoding such graph structures
by capturing multi-hop relationships between nodes. This has led to their adoption for various NLP
tasks such as neural machine translation (Marcheggiani et al., 2018; Bastings et al., 2017), semantic
role labeling (Marcheggiani & Titov, 2017), document dating (Vashishth et al., 2018) and question
answering (Johnson, 2017; Nicola De Cao, 2018).

To the best of our knowledge ours is the first work that uses GCNs to incorporate dependency struc-
tural information and the entity-entity graph structure in a single end-to-end neural model for goal-
oriented dialogue. This is also the first work that incorporates contextual co-occurrence information
for code-mixed utterances, for which no dependency structures are available.

3 BACKGROUND

In this section we describe Graph Convolutional Networks (GCN) (Kipf & Welling, 2017) for undi-
rected graphs and then describe their syntactic versions which work with directed labeled edges of
dependency parse trees.

3.1 GCN FOR UNDIRECTED GRAPHS

Graph convolutional networks operate on a graph structure and compute representations for the
nodes of the graph by looking at the neighbourhood of the node. k layers of GCNs can be stacked
to account for neighbours which are k-hops away from the current node. Formally, let G = (V, E)
be an undirected graph where V is the set of nodes (let |V| = n) and E is the set of edges. Let
X ∈ Rn×m be the input feature matrix with n nodes and each node xu(u ∈ V) is represented by
an m-dimensional feature vector. The output of a 1-layer GCN is the hidden representation matrix
H ∈ Rn×d where each d-dimensional representation of a node captures the interactions with its
1-hop neighbour. Each row of this matrix can be computed as:

hv = ReLU

( ∑
u∈N (v)

(Wxu + b)

)
, ∀v ∈ V (1)

Here W ∈ Rd×m is the model parameter matrix, b ∈ Rd is the bias vector and ReLU is the
rectified linear unit activation function. N (v) is the set of neighbours of node v and is assumed to
also include the node v so that the previous representation of the node v is also considered while
computing the new hidden representation. To capture interactions with nodes which are multiple
hops away, multiple layers of GCNs can be stacked together. Specifically, the representation of node
v after kth GCN layer can be formulated as:

hk+1
v = ReLU

( ∑
u∈N (v)

(W khk
u + bk)

)
, ∀v ∈ V (2)

where hk
u is the representation of the uth node in the (k − 1)th GCN layer and h1

u = xu.
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3.2 SYNTACTIC GCN

In a directed labeled graph G = (V, E), each edge between nodes u and v is represented by a triple
(u, v, L(u, v)) where L(u, v) is the associated edge label. Marcheggiani & Titov (2017) modified
GCNs to operate over directed labeled graphs, such as the dependency parse tree of a sentence.
For such a tree, in order to allow information to flow from head to dependents and vice-versa, they
added inverse dependency edges from dependents to heads such as (v, u, L(u, v)′) to E and made
the model parameters and biases label specific. In their formulation,

hk+1
v = ReLU

( ∑
u∈N (v)

(W k
L(u,v)h

k
u + bk

L(u,v))

)
, ∀v ∈ V (3)

Notice that unlike equation 2, equation 3 has parameters W k
L(u,v) and bk

L(u,v) which are label spe-
cific. Suppose there are L different labels, then this formulation will require L weights and biases
per GCN layer resulting in a large number of parameters. To avoid this, the authors use only three
sets of weights and biases per GCN layer (as opposed to L) depending on the direction in which
the information flows. More specifically, W k

L(u,v) = V k
dir(u,v), where dir(u, v) indicates whether

information flows from u to v, v to u or u = v. In this work, we also make bkL(u,v) = bkdir(u,v)
instead of having a separate bias per label. The final GCN formulation can thus be described as:

hk+1
v = ReLU

( ∑
u∈N (v)

(W k
dir(u,v)h

k
u + bk

dir(u,v))

)
, ∀v ∈ V (4)

4 MODEL

We first formally define the task of end-to-end goal-oriented dialogue generation. Each dialogue of t
turns can be viewed as a succession of user utterances (U ) and system responses (S) and can be rep-
resented as: (U1, S1, U2, S2, ..Ut, St). Along with these utterances, each dialogue is also accompa-
nied by e KB triples which are relevant to that dialogue and can be represented as: (k1, k2, k3, ..ke).
Each triple is of the form: (entity1, relation, entity2). These triples can be represented in the
form of a graph Gk = (Vk, Ek) where V is the set of all entities and each edge in E is of the form:
(entity1, entity2, relation) where relation signifies the edge label. At any dialogue turn i, given
the (i) dialogue historyH = (U1, S1, U2, ..Si−1), (ii) the current user utterance as the queryQ = Ui

and (iii) the associated knowledge graph Gk, the task is to generate the current response Si which
leads to a completion of the goal. As mentioned earlier, we exploit the graph structure in KB and the
syntactic structure in the utterances to generate appropriate responses. Towards this end we propose
a model with the following components for encoding these three types of inputs.

4.1 QUERY ENCODER

The query Q = Ui is the ith (current) utterance in the dialogue and contains |Q| tokens. We denote
the embedding of the ith token in the query as qi We first compute the contextual representations of
these tokens by passing them through a bidirectional RNN:

bt = BiRNNQ(bt−1,qt) (5)

Now, consider the dependency parse tree of the query sentence denoted by GQ = (VQ, EQ). We use
a query specific GCN to operate on GQ, which takes {bi}|Q|i=1 as the input to the 1st GCN layer. The
node representation in the kth hop of the query specific GCN is computed as:

ck+1
v = ReLU

( ∑
u∈N (v)

(W k
dir(u,v)c

k
u + gk

dir(u,v))

)
, ∀v ∈ VQ (6)

whereW k
dir(u,v),g

k
dir(u,v) are edge direction specific query-GCN weights and biases for the kth hop

and c1u = bu.
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Figure 1: Illustration of the GCN and RNN+GCN modules which are used as encoders in our
model. The notations are specific to the dialogue history encoder but both the encoders are same for
the query. The GCN encoder is same for the KB except the graph structure.

4.2 DIALOGUE HISTORY ENCODER

The history H of the dialogue contains |H| tokens and we denote the embedding of the ith token
in the history by pi Once again, we first compute the hidden representations of these embeddings
using a bidirectional RNN:

st = BiRNNH(st−1,pt) (7)

We now compute a dependency parse tree for each sentence in the history and collectively represent
all the trees as a single graph GH = (VH , EH). Note that this graph will only contain edges between
words belonging to the same sentence and there will be no edges between words across sentences.
We then use a history specific GCN to operate on GH which takes st as the input to the 1st layer.
The node representation in the kth hop of the history specific GCN is computed as:

ak+1
v = ReLU

( ∑
u∈N (v)

(V k
dir(u,v)a

k
u + ok

dir(u,v))

)
, ∀v ∈ VH (8)

where V k
dir(u,v) and ok

dir(u,v) are edge direction specific history-GCN weights and biases in the kth

hop and a1u = su. Such an encoder with a single hop of GCN is illustrated in figure 1(b) and the
encoder without the BiRNN is depicted in figure 1(a).

4.3 KB ENCODER

As mentioned earlier, GK = (VK , EK) is the graph capturing the interactions between the entities in
the knowledge graph associated with the dialogue. Let there be m such entities and we denote the
embeddings of the node corresponding to the ith entity as ei We then operate a KB specific GCN
on these entity representations to obtain refined representations which capture relations between
entities. The node representation in the kth hop of the KB specific GCN is computed as:

rk+1
v = ReLU

( ∑
u∈N (v)

(Uk
dir(u,v)r

k
u + zkdir(u,v))

)
, ∀v ∈ VK (9)

where Uk
dir(u,v) and zkdir(u,v) are edge direction specific KB-GCN weights and biases in kth hop and

r1u = eu. We also add inverse edges to EK similar to the case of syntactic GCNs in order to allow
information flow in both the directions for an entity pair in the knowledge graph.
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Figure 2: Illustration of sequential attention mechanism in RNN+GCN-SeA.

4.4 SEQUENTIAL ATTENTION

We use an RNN decoder to generate the tokens of the response and let the hidden states of the
decoder be denoted as: {di}Ti=1 where T is the total number of decoder timesteps. In order to obtain
a single representation from the final layer (k = f ) of the query-GCN node vectors, we use an
attention mechanism as described below:

µjt = v1tanh(W1c
f
j +W2dt−1) (10)

αt = softmax(µt) (11)

hQ
t =

∑|Q|
j′=1 αj′tc

f
j′ (12)

Here v1,W1,W2 are parameters. Further, at each decoder timestep, we obtain a query aware
representation from the final layer of the history-GCN by computing an attention score for each
node/token in the history based on the query context vector hQ

t as shown below:

νjt = v2tanh(W3a
f
j +W4dt−1 +W5h

Q
t ) (13)

βt = softmax(νt) (14)

hH
t =

∑|H|
j′=1 βj′ta

f
j′ (15)

Here v2,W3,W4 and W5 are parameters. Finally, we obtain a query and history aware represen-
tation of the KB by computing an attention score over all the nodes in the final layer of KB-GCN
using hQ

t and hH
t as shown below:

ωjt = v3tanh(W6r
f
j +W7dt−1 +W8h

Q
t +W9h

H
t ) (16)

γt = softmax(ωt) (17)

hK
t =

∑m
j′=1 γj′tr

f
j′ (18)
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Here v3,W6,W7,W8 and W9 are parameters. This sequential attention mechanism is illustrated
in figure 2. For simplicity, we depict the GCN and RNN+GCN encoders as blocks. The internal
structure of these blocks are shown in figure 1.

4.5 DECODER

The decoder takes two inputs, viz., (i) the context which contains the history and the KB and (ii)
the query which is the last/previous utterance in the dialogue. We use an aggregator which learns
the overall attention to be given to the history and KB components. These attention scores: θHt and
θKt are dependent on the respective context vectors and the previous decoder state dt−1. The final
context vector is obtained as:

hC
t = θHt hH

t + θKt hK
t (19)

hfinal
t = [hC

t ;h
Q
t ] (20)

where [; ] denotes the concatenation operator. At every timestep the decoder then computes a prob-
ability distribution over the vocabulary using the following equations:

dt = RNN(dt−1, [h
final
t ;wt]) (21)

Pvocab = softmax(V ′dt + b′) (22)

where wt is the decoder input at time step t, V ′ and b′ are parameters. Pvocab gives us a probability
distribution over the entire vocabulary and the loss for time step t is lt = − logPvocab(w

∗
t ), where

w∗t is the tth word in the ground truth response. The total loss is an average of the per-time step
losses.

4.6 CONTEXTUAL GRAPH CREATION

For the dialogue history and query encoder, we used the dependency parse tree for capturing struc-
tural information in the encodings. However, if the conversations occur in a language for which
no dependency parsers exist, for example: code-mixed languages like Hinglish (Hindi-English)
(Banerjee et al., 2018) , then we need an alternate way of extracting a graph structure from the ut-
terances. One simple solution which worked well in practice was to create a word co-occurrence
matrix from the entire corpus where the context window is an entire sentence. Once we have such
a co-occurrence matrix, for a given sentence we can connect an edge between two words if their
co-occurrence frequency is above a threshold value. The co-occurrence matrix can either contain
co-occurrence frequency counts or positive-pointwise mutual information (PPMI) values (Church &
Hanks, 1990; Dagan et al., 1993; Niwa & Nitta, 1994).

5 EXPERIMENTAL SETUP

In this section we describe the datasets used in our experiments, the various hyperparameters that
we considered and the models that we compared.

5.1 DATASETS

The original DSTC2 dataset (Henderson et al., 2014a) was based on the task of restaurant reservation
and contains transcripts of real conversations between humans and bots. The utterances were labeled
with the dialogue state annotations like the semantic intent representation, requested slots and the
constraints on the slot values. We report our results on the modified DSTC2 dataset of Bordes et al.
(2017) where such annotations are removed and only the raw utterance-response pairs are present
with an associated set of KB triples for each dialogue. For our experiments with contextual graphs
we reported our results on the code-mixed versions of modified DSTC2, which was recently released
by Banerjee et al. (2018) 1. This dataset has been collected by code-mixing the utterances of the
English version of modified DSTC2 in four languages viz. Hindi (Hi-DSTC2), Bengali (Be-DSTC2),
Gujarati (Gu-DSTC2) and Tamil (Ta-DSTC2), via crowdsourcing. Statistics about this dataset and
example dialogues are shown in Appendix A.

1
https://github.com/sumanbanerjee1/Code-Mixed-Dialog
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Model per-resp.
acc BLEU ROUGE Entity F1

1 2 L
Rule-Based (Bordes et al., 2017) 33.3 - - - - -
MEMNN (Bordes et al., 2017) 41.1 - - - - -
QRN (Seo et al., 2017) 50.7 - - - - -
GMEMNN (Liu & Perez, 2017) 48.7 - - - - -
Seq2Seq-Attn (Bahdanau et al., 2015) 46.0 57.3 67.2 56.0 64.9 67.1
Seq2Seq-Attn+Copy (Eric & Manning, 2017) 47.3 55.4 - - - 71.6
HRED (Serban et al., 2016) 48.9 58.4 67.9 57.6 65.7 75.6
Mem2Seq (Madotto et al., 2018) 45.0 55.3 - - - 75.3
GCN-SeA 47.1 59.0 67.4 57.1 65.0 71.9
RNN+CROSS-GCN-SeA 51.2 60.9 69.4 59.9 67.2 78.1
RNN+GCN-SeA 51.4 61.2 69.6 60.2 67.4 77.9

Table 1: Comparison of GCN-SeA with other models on English version of modified DSTC2

Dataset Model per-resp.
acc BLEU ROUGE Entity F1

1 2 L

Hi-DSTC2

Seq2Seq-Bahdanau Attn 48.0 55.1 62.9 52.5 61.0 74.3
HRED 47.2 55.3 63.4 52.7 61.5 71.3
Mem2Seq 43.1 50.2 55.5 48.1 54.0 73.8
GCN-SeA 47.0 56.0 65.0 55.3 63.0 72.4
RNN+CROSS-GCN-SeA 47.2 56.4 64.7 54.9 62.6 73.5
RNN+GCN-SeA 49.2 57.1 66.4 56.8 64.4 75.9

Be-DSTC2

Seq2Seq-Bahdanau Attn 50.4 55.6 67.4 57.6 65.1 76.2
HRED 47.8 55.6 67.2 57.0 64.9 71.5
Mem2Seq 41.9 52.1 58.9 50.8 57.0 73.2
GCN-SeA 47.1 58.4 67.4 57.3 64.9 69.6
RNN+CROSS-GCN-SeA 50.4 59.1 68.3 58.9 65.9 74.9
RNN+GCN-SeA 50.3 59.2 69.0 59.4 66.6 75.1

GU-DSTC2

Seq2Seq-Bahdanau Attn 47.7 54.5 64.8 54.9 62.6 71.3
HRED 48.0 54.7 65.4 55.2 63.3 71.8
Mem2Seq 43.1 48.9 55.7 48.6 54.2 75.5
GCN-SeA 48.1 55.7 65.5 56.2 63.5 72.2
RNN+CROSS-GCN-SeA 49.4 56.9 66.4 57.2 64.3 73.4
RNN+GCN-SeA 48.9 56.7 66.1 56.9 64.1 73.0

Ta-DSTC2

Seq2Seq-Bahdanau Attn 49.3 62.9 67.8 56.3 65.6 77.7
HRED 47.8 61.5 66.9 55.2 64.8 74.4
Mem2Seq 44.2 58.9 58.6 50.8 57.0 74.9
GCN-SeA 46.4 62.8 68.5 57.5 66.1 71.9
RNN+CROSS-GCN-SeA 50.8 64.5 69.8 59.6 67.5 78.8
RNN+GCN-SeA 50.7 64.9 70.2 59.9 67.9 77.9

Table 2: Comparison of RNN+GCN-SeA, GCN-SeA with other models on all code-mixed datasets

5.2 HYPERPARAMETERS

We used the same train, test and validation splits as provided in the original versions of the datasets.
We minimized the cross entropy loss using the Adam optimizer (Kingma & Ba, 2015) and tuned
the initial learning rates in the range of 0.0006 to 0.001. For regularization we used an L2 norm of
0.001 in addition to a dropout (Srivastava et al., 2014) of 0.1. We used randomly initialized word
embeddings of size 300. The RNN and GCN hidden dimensions were also chosen to be 300. We
use GRU (Cho et al., 2014) cells for the RNNs. All parameters were initialized from a truncated
normal distribution with a standard deviation of 0.1.

5.3 MODELS COMPARED

We compare the performance of the following models.
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(i) RNN+GCN-SeA vs GCN-SeA : We use RNN+GCN-SeA to refer to the model described in
section 4. Instead of using the hidden representations obtained from the bidirectional RNNs, we
also experiment by providing the token embeddings directly to the GCNs i.e. c1u = qu in equation
6 and a1u = pu in equation 8. We refer to this model as GCN-SeA.

(ii) Cross edges between the GCNs: In addition to the dependency and contextual edges, we add
edges between words in the dialogue history/query and KB entities if a history/query word exactly
matches the KB entity. Such edges create a single connected graph which is encoded using a single
GCN encoder and then separated into different contexts to perform the sequential attention. This
model is referred to as RNN+CROSS-GCN-SeA.

(iii) Frequency vs PPMI Contextual Graph : We experiment with the raw frequency co-
occurrence graph structure and the PPMI graph structure for the code-mixed datasets, as explained
in section 4.6. We refer to these models as GCN-SeA+Freq and GCN-SeA+PPMI. In both these
models, the GCN takes inputs from a bidirectional RNN.

(iv) GCN-SeA+Random vs GCN-SeA+Structure : We experiment with the model where the
graph is constructed by randomly connecting edges between two words in a context. We refer to this
model as GCN-SeA+Random. We refer to the model which either uses dependency or contextual
graph instead of random graphs as GCN-SeA+Structure.

6 RESULTS AND DISCUSSIONS

In this section we discuss the results of our experiments as summarized in tables 1,2, and 3. We use
BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004) metrics to evaluate the generation quality of
responses. We also report the per-response accuracy which computes the percentage of responses
in which the generated response exactly matches the ground truth response. In order to evaluate the
model’s capability of correctly injecting entities in the generated response, we report the entity F1
measure as defined in Eric & Manning (2017).

Results on En-DSTC2 : We compare our model with the previous works on the English version
of modified DSTC2 in table 1. For most of the retrieval based models, the BLEU or ROUGE scores
are not available as they select a candidate from a list of candidates as opposed to generating it.
Our model outperforms all of the retrieval and generation based models. We obtain a gain of 0.7
in the per-response accuracy compared to the previous retrieval based state-of-the-art model of Seo
et al. (2017), which is a very strong baseline for our generation based model. We call this a strong
baseline because the candidate selection task of this model is easier than the response generation
task of our model. We also obtain a gain of 2.8 BLEU points, 2 ROUGE points and 2.5 entity F1
points compared to current state-of-the-art generation based models.

Results on code-mixed datasets and effect of using RNNs: The results of our experiments on the
code-mixed datasets are reported in table 2. Our model outperforms the baseline models on all the
code-mixed languages. One common observation from the results over all the languages (including
En-DSTC2) is that RNN+GCN-SeA performs better than GCN-SeA. Similar observations were
made by Marcheggiani & Titov (2017) for the task of semantic role labeling.

Effect of using Hops: As we increased the number of hops of GCNs, we observed a decrease in
the performance. One reason for such a drop in performance could be that the average utterance
length is very small (7.76 words). Thus, there isn’t much scope for capturing distant neighbourhood
information and more hops can add noisy information. Please refer to Appendix B for detailed
results about the effect of varying the number of hops.

Frequency vs PPMI graphs: We observed that PPMI based contextual graphs were slightly bet-
ter than frequency based contextual graphs (See Appendix C). In particular, when using PPMI as
opposed to frequency based contextual graph, we observed a gain of 0.95 in per-response accuracy,
0.45 in BLEU, 0.64 in ROUGE and 1.22 in entity F1 score when averaged across all the code-mixed
languages.

Effect of using Random Graphs: GCN-SeA-Random and GCN-SeA-Structure take the token
embeddings directly instead of passing them though an RNN. This ensures that the difference in
performance of the two models are not influenced by the RNN encodings. The results are shown
in table 3 and we observe a drop in performance for GCN-Random across all the languages. This
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Dataset Model per-resp. BLEU ROUGE Entity F1
acc 1 2 L

En-DSTC2 GCN-SeA+Random 45.9 57.8 67.1 56.5 64.8 72.2
GCN-SeA+Structure 47.1 59.0 67.4 57.1 65.0 71.9

Hi-DSTC2 GCN-SeA+Random 44.4 54.9 63.1 52.9 60.9 67.2
GCN-SeA+Structure 47.0 56.0 65.0 55.3 63.0 72.4

Be-DSTC2 GCN-SeA+Random 44.9 56.5 65.4 54.8 62.7 65.6
GCN-SeA+Structure 47.1 58.4 67.4 57.3 64.9 69.6

Gu-DSTC2 GCN-SeA+Random 45.0 54.0 64.1 54.0 61.9 69.1
GCN-SeA+Structure 48.1 55.7 65.5 56.2 63.5 72.2

Ta-DSTC2 GCN-SeA+Random 44.8 61.4 66.9 55.6 64.3 70.5
GCN-SeA+Structure 46.4 62.8 68.5 57.5 66.1 71.9

Table 3: GCN-SeA with random graphs and frequency co-occurrence graphs on all DSTC2 datasets.

shows that any random graph does not contribute to the performance gain of GCN-SeA and the
dependency and contextual structures do play an important role.

Ablations : We experiment with replacing the sequential attention by the Bahdanau attention (Bah-
danau et al., 2015). We also experiment with various combinations of RNNs and GCNs as encoders.
The results are shown in table 8 (Appendix D). We observed that GCNs do not outperform RNNs
independently. In general, RNN-Bahdanau attention performs better than GCN-Bahdanau attention.
The sequential attention mechanism outperforms Bahdanau attention as observed from the following
comparisons (i) GCN-Bahdanau attention vs GCN-SeA, (ii) RNN-Bahdanau attention vs RNN-SeA
(in BLEU and ROUGE) and (iii) RNN+GCN-Bahdanau attention vs RNN+GCN-SeA. Overall, the
best results are always obtained by our final model which combines RNN, GCN and sequential
attention.

7 CONCLUSION

We showed that structure aware representations are useful in goal-oriented dialogue and we obtain
state-of-the art performance on the modified DSTC2 dataset and its recently released code-mixed
versions. We used GCNs to infuse structural information of dependency graphs and contextual
graphs to enrich the representations of the dialogue context and KB. We also proposed a sequential
attention mechanism for combining the representations of (i) query (current utterance), (ii) conver-
sation history and (ii) the KB. Finally, we empirically showed that when dependency parsers are not
available for certain languages such as code-mixed languages then we can use word co-occurrence
frequencies and PPMI values to extract a contextual graph and use such a graph with GCNs for
improved performance.
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A. CODE-MIXING STATISTICS AND DIALOGUE EXAMPLE

Hindi Bengali Gujarati Tamil
Vocabulary Size 1676 1372 1858 2185
Code-Mixed English Vocabulary 386 360 387 424
Native Language Vocabulary 739 477 912 1214
Others Vocabulary 551 535 559 547
Unique Utterances 6549 6274 6417 6666
Utterances with code-mixed words 5750 5703 5643 5632
Pure Native Language utterances 348 210 340 420
Pure English utterances 451 361 434 614
Average length of utterances 8.16 7.74 8.04 6.78
Average # of code-mixed utterances per dialog 12.11 14.28 11.80 12.96

Table 4: Statistics about code-mixing in the dataset (Banerjee et al., 2018).

English Hindi-English codemixed
user <SILENCE> <SILENCE>

bot
Hello, welcome to the Cambridge restaurant
system. You can ask for restaurants by area,
price range or food type. How may I help you ?

Hello , Cambridge restaurant system mein
aapka swagat hai. Aap pa sakte hai
restaurant by area, price range ya food type.
Aap ko kaise help kar sakta hu main ?

user im looking for a moderately priced restaurant. mein moderately priced restaurant dhund
raha hoon.

bot What kind of food would you like ? Aap kaunse type ka food lena chahege?
user it doesnt matter. matter nahi karta.
bot What part of town do you have in mind ? aapke mind me town ka kaun sa part hai ?
user the south part of town. south part of town.
bot api call R cuisine south moderate api call R cuisine south moderate

KB Triples:
pizza hut cherry hinton R post code pizza hut cherry hinton post code
pizza hut cherry hinton R cuisine italian
pizza hut cherry hinton R location south
pizza hut cherry hinton R phone pizza hut cherry hinton phone
pizza hut cherry hinton R address pizza hut cherry hinton address
pizza hut cherry hinton R price moderate
pizza hut cherry hinton R rating 3
restaurant alimentum R post code restaurant alimentum post code
restaurant alimentum R cuisine european
restaurant alimentum R location south
restaurant alimentum R phone restaurant alimentum phone
restaurant alimentum R address restaurant alimentum address
restaurant alimentum R price moderate
restaurant alimentum R rating 10

user <SILENCE> <SILENCE>

bot
restaurant alimentum is a nice restaurant
in the south of town serving modern
european food.

restaurant alimentum ek bohot hi accha
restaurant hai south town me jo
modern european food serve karta hai

user can i get the address ? kya mujhe address mil sakta hai

bot Sure, restaurant alimentum is on
restaurant alimentum address.

Bilkul, restaurant alimentum
restaurant alimentum address par hai

user and whats the phone number for that ? aur iska phone number kya hai ?

bot The phone number of restaurant alimentum
is restaurant alimentum phone.

restaurant alimentum ka phone number
hai restaurant alimentum phone

user okay, thank you, good bye. theek, thank you, good bye.
bot you are welcome. welcome, alvida.

Table 5: Example dialogues from the DSTC2 dataset in English and in Hindi-English code-mixed
languages. The English words which are mixed in Hindi are italicized.
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B. EFFECT OF USING HOPS:

Dataset Model per-resp. BLEU ROUGE Entity F1
acc 1 2 L

En-DSTC2
GCN-SeA+K=1 47.1 59.0 67.4 57.1 65.0 71.9
GCN-SeA+K=2 48.4 59.7 68.5 58.4 66.2 72.8
GCN-SeA+K=3 46.4 59.4 67.3 56.9 64.8 68.8

Hi-DSTC2
GCN-SeA+K=1 47.0 56.0 65.0 55.3 63.0 72.4
GCN-SeA+K=2 40.4 53.2 61.8 50.5 59.7 60.2
GCN-SeA+K=3 19.0 29.7 42.2 28.9 38.5 00.5

Be-DSTC2
GCN-SeA+K=1 47.1 58.4 67.4 57.3 64.9 69.6
GCN-SeA+K=2 41.9 55.2 64.5 53.5 61.9 61.4
GCN-SeA+K=3 07.0 25.6 34.3 16.8 25.0 02.4

GU-DSTC2
GCN-SeA+K=1 48.1 55.7 65.5 56.2 63.5 72.2
GCN-SeA+K=2 43.3 53.5 63.7 53.4 61.5 64.2
GCN-SeA+K=3 20.8 36.5 47.3 34.1 45.1 17.3

Ta-DSTC2
GCN-SeA+K=1 46.4 62.8 68.5 57.5 66.1 71.9
GCN-SeA+K=2 44.4 61.5 67.2 55.8 64.7 68.8
GCN-SeA+K=3 36.4 56.1 62.2 49.9 59.9 56.0

Table 6: GCN-SeA with multiple hops on all DSTC2 datasets

C. FREQUENCY VS PPMI CO-OCCURRENCE

Dataset Model per-resp. BLEU ROUGE Entity F1
acc 1 2 L

En-DSTC2 GCN-SeA+Freq 50.4 61.1 69.3 59.6 67.0 76.0
GCN-SeA+PPMI 50.5 60.7 69.3 59.7 67.0 77.4

Hi-DSTC2
GCN-SeA+Freq 48.7 56.9 65.5 56.1 63.5 74.5

GCN-SeA+PPMI 49.2 57.1 66.4 56.8 64.4 75.9

Be-DSTC2
GCN-SeA+Freq 49.0 59.0 68.2 58.5 65.7 72.7

GCN-SeA+PPMI 50.3 59.2 69.0 59.4 66.6 75.1

Gu-DSTC2
GCN-SeA+Freq 48.4 56.1 66.2 56.7 64.0 73.3

GCN-SeA+PPMI 48.9 56.7 66.1 56.9 64.1 73.0

Ta-DSTC2
GCN-SeA+Freq 49.2 64.1 69.5 59.0 67.1 76.7

GCN-SeA+PPMI 50.7 64.9 70.2 59.9 67.9 77.9

Table 7: RNN+GCN-SeA with different contextual graphs on all DSTC2 datasets
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D. ABLATION RESULTS

Dataset Model per-resp.
acc BLEU ROUGE Entity F1

1 2 L

Hi-DSTC2

Seq2seq-Bahdanau Attn 48.0 55.1 62.9 52.5 61.0 74.3
GCN-Bahdanau Attn 38.5 50.4 58.9 47.7 56.7 59.1
RNN+GCN-Bahdanau Attn 47.1 56.0 65.1 55.2 62.9 72.2
RNN-SeA 45.8 55.9 65.1 55.5 63.1 71.8
RNN+GCN-SeA 49.2 57.1 66.4 56.8 64.4 75.9

Be-DSTC2

Seq2seq-Bahdanau Attn 50.4 55.6 67.4 57.6 65.1 76.2
GCN-Bahdanau Attn 42.1 55.1 63.7 52.8 61.1 64.3
RNN+GCN-Bahdanau Attn 47.0 57.7 67.0 57.4 64.6 70.9
RNN-SeA 46.8 58.5 67.6 58.1 65.1 71.9
RNN+GCN-SeA 50.3 59.2 69.0 59.4 66.6 75.1

Gu-DSTC2

Seq2seq-Bahdanau Attn 47.7 54.5 64.8 54.9 62.6 71.3
GCN-Bahdanau Attn 38.8 49.5 59.2 48.3 56.8 58.0
RNN+GCN-Bahdanau Attn 46.5 55.5 65.6 55.9 63.4 70.6
RNN-SeA 45.4 56.0 66.0 56.6 63.9 69.8
RNN+GCN-SeA 48.9 56.7 66.1 56.9 64.1 73.0

Ta-DSTC2

Seq2seq-Bahdanau Attn 49.3 62.9 67.8 56.3 65.6 77.7
GCN-Bahdanau Attn 42.0 59.3 64.8 52.8 62.1 69.7
RNN+GCN-Bahdanau Attn 46.3 63.2 68.0 57.2 65.6 72.1
RNN-SeA 46.8 64.0 69.3 59.0 67.1 74.2
RNN+GCN-SeA 50.7 64.9 70.2 59.9 67.9 77.9

En-DSTC2

Seq2seq-Bahdanau Attn 46.0 57.3 67.2 56.0 64.9 67.1
GCN-Bahdanau Attn 45.7 58.1 66.5 55.9 64.1 70.1
RNN+GCN-Bahdanau Attn 47.4 59.5 67.9 57.7 65.6 72.9
RNN-SeA 47.0 60.2 68.5 58.9 66.2 72.7
RNN+GCN-SeA 51.4 61.2 69.6 60.2 67.4 77.9

Table 8: Ablation results of various models on all versions of DSTC2.
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