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ABSTRACT

Exploration has been a long standing problem in both model-based and model-free
learning methods for sensorimotor control. While there has been major advances
over the years, most of these successes have been demonstrated in either video
games or simulation environments. This is primarily because the rewards (even the
intrinsic ones) are non-differentiable since they are function of the environment
(which is a black-box). In this paper, we focus on the policy optimization aspect
of the intrinsic reward function. Specifically, by using a local approximation,
we formulate intrinsic reward as a differentiable function so as to perform policy
optimization using likelihood maximization – much like supervised learning instead
of reinforcement learning. This leads to a significantly sample efficient exploration
policy. Our experiments clearly show that our approach outperforms both on-policy
and off-policy optimization approaches like REINFORCE and DQN respectively.
But most importantly, we are able to implement an exploration policy on a robot
which learns to interact with objects completely from scratch just using data
collected via the differentiable exploration module. See project videos at https:
//doubleblindICLR.github.io/robot-exploration/.

1 INTRODUCTION

There has been a lot of recent progress in the field of Reinforcement Learning (RL). However, most
of the successful applications have been confined to the artificial world of video games (Mnih et al.,
2015b) or simulations (Lillicrap et al., 2016). While the field of RL was born out of need to make our
robots learn how to perform actions, none of the recent advances have translated to success in the
field of robotics. Why is that? Let us consider the simple task of stacking. How does the robot learn
to execute successful trajectories for stacking? In model-free Reinforcement Learning(RL) paradigm,
the robot will try and try until it is able to stack objects and once it hits a successful instance, it is
used as a positive signal (‘reward’) to promote these policy parameters. How does the robot try?
Due to lack of any other signals from the environment, most-often robots use random-exploration
policies (or random trajectories). It is clear that if the rewards are sparse, it may take millions of
random “tries” before it hits any success. Clearly this approach is only scalable in video-games and
not real-world robotics. Another possibility is to use model-driven approaches. Here, the robot will
learn a model of the world from our millions of interactions and use the model to simulate and search.
But what millions of interactions should be performed to build our models? Again due to lack of any
external information, the most common approach is using random interactions to explore and build
the world model (Agrawal et al., 2016; Levine et al., 2016; Pinto et al., 2016). Building a good model
will require enormous number of interactions.

It is clear that one of the biggest stumbling blocks in-front of current robotics is lack of a structured
way to explore the world and be efficient in their tries to seek reward or build a model. Therefore,
there has been a lot of significant effort to build approaches for exploration and being more sample-
efficient than random or on-policy exploration. The common theme across these approaches is to
introduce “intrinsic” rewards – rewards given by agent to itself based on how environment behaves.
These rewards are denser compared to external rewards and hence provide early feedback to the
exploration policy. Some examples of intrinsic rewards include “curiosity” (Pathak et al., 2017;
Oudeyer & Kaplan, 2009; Schmidhuber, 1991) where prediction error is used as reward signal,
“diversity rewards” (Eysenbach et al., 2018; Lehman & Stanley, 2011b;a) which discourages the agent
from revisiting the same states (or similar states). If the intrinsic rewards are treated as additional
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Figure 1: Schematic Explanation: In general formulation, the reward function r is a function of
environment function TE . This makes reward function non-differentiable with respect to action at. In
our approach, we use local constancy approximation to assume xt+1 is a constant. This immediately
turns reward function differentiable and hence trainable via gradient descent.

rewards in RL and explored in context of original extrinsic rewards; it acts as reward shaping function
which improves sample efficiency but not by a significant amount.

Another possibility is to use the inspiration from humans: humans even try to explore the world
without the context of task. In a similar-manner, we can use these intrinsic rewards to learn task-
independent exploration policy. This task-independent exploration policy can then be fine-tuned with
sparse task-rewards or used to collect data to train model-based RL algorithms. In fact, in a recent
work (Burda et al., 2018), the authors demonstrate how curiosity can be used to train exploration-
policy and then fine-tuned for specific tasks. And they demonstrate the power of curiosity on 54
games. Yes, 54 environments but no real-world physical robots!

Why is that? To understand the reason behind sample inefficiency of curiosity or intrinsic rewards,
notice how the intrinsic rewards are given by agent. The agent performs an action and then computes
the reward based on its own model and environment behavior. For example, in curiosity (Pathak et al.,
2017), if the internal model and environment behavior disagree, then the policy is rewarded. From an
exploration viewpoint this seems like a good formulation, rewarding actions for which model knows
little-to-none. But the same formulation from an optimization viewpoint, it suffers from all the bad
properties of extrinsic rewards. The reward is a function of environment behavior with respect to the
performed action. Since the environment behavior function is unknown, it is treated as black-box and
hence the gradients have to be computed using REINFORCE (Williams, 1992) which is quite sample
inefficient.

Our paper investigates exploration from an optimization viewpoint and asks a simple question: can we
formulate curiosity reward as a differentiable function? We believe a differentiable reward function
would enable to us to be sample efficient and for the first time ever, implement exploration on a
real-world physical robot. We use a simple yet quite an effective approximation which yields the
reward function differentiable. In the end, our optimization is simple min-max over parameters of
forward model and policy function results. Our results indicate that the differentiable reward function
formulation is significantly better in exploration reaching to interesting interactions in few hundred
tries. This allows us to implement an exploration policy on a robot and demonstrate pushing and
grasping actions using policies trained from scratch.

2 INCENTIVIZING EXPLORATION VIA INTRINSIC REWARDS

Consider an agent interacting with the environment E . At time t, it receives the observation xt
and then takes an action predicted by its policy, i.e., at = π(xt; θP ). Upon executing the action, it
receives, in return, the next observation xt+1 which is ‘generated’ by the environment. Our goal
is to build an agent that chooses its action in order to maximally explore the state space of the
environment in an efficient manner. A popular way to train an agent to perform efficient exploration
is to incentivize it by giving feedback on the samples it already executed in the environment via
“intrinsic” rewards, i.e., the rewards generated by the agent itself.
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Strategies for Intrinsic Reward Generation: Given the agent’s transition {xt, at, xt+1}, let the
intrinsic reward generated by the agent be ri(xt, at, xt+1) abbvt. as rit. A good intrinsic reward for-
mulation would be the one that encourages the agent to perform actions that lead to most informative
examples. In general, the reward function is considered black-box since it involves environment. In
this paper, we demonstrate that a simple gradient approximation for maximizing rewards which are
intrinsic to the agent leads to a much more sample-efficient policy optimization procedure. While our
formulation could be applied to a more general set of intrinsic rewards, we describe it in the context
of prediction-error based curiosity rewards which has recently been shown to be successful across a
large variety of simulated environments (Burda et al., 2018).

The prediction-error based curiosity reward formulation (Pathak et al., 2017) involves first building a
prediction model, aka forward model, fθF of the environment. Forward model is trained to map the
current observation xt and at to the resulting state xt+1 using maximum likelihood loss and hence it
can be learned efficiently. The agent’s policy is trained to select the actions at which result in high
loss for the forward model. For instance, in deterministic environment, a gaussian density model can
be used to define intrinsic reward rit for the agent:

ri(xt, at, xt+1) , ‖f(xt, at; θF )− xt+1‖2 (1)

The agent is trained to maximize rit and the forward model is simultaneously trained in online manner
on the data collected by the agent during exploration. One commonality among different exploration
methods (Bellemare et al., 2016; Pathak et al., 2017; Houthooft et al., 2016a), is that the forward
model is usually learned in a supervised manner and the agent’s policy is trained using reinforcement
learning either in on-policy or off-policy manner.

On-Policy Reward Optimization In this case, the policy is directly optimized to maximize the
intrinsic reward rit via policy-gradients (Sutton & Barto, 1998). Given the agent’s rollout sequence
and the intrinsic reward rit at each timestep t, the policy is trained to maximize the sum of expected
reward, i.e., maxθP Eπ(xt;θP )

[∑
t γ

trit
]

discounted by a factor γ. The gradients of this expression
are computed using REINFORCE (Williams, 1992). In practice, the existing on-policy algorithms,
e.g., A3C (Mnih et al., 2016), PPO (Schulman et al., 2017) etc. are deployed off-the shelf.

Off-Policy Reward Optimization Off-policy algorithms (e.g. DDPG (Lillicrap et al., 2016) or
DQN (Mnih et al., 2015a)) use Q-value function to represent agent’s policy. Q-value, for a given
pair of the current state xt and the executed action at, is defined as the total sum of discounted
future rewards. Agent’s policy can be written in terms of this Q-value function as at = π(xt; θP ) =
arg maxat Q(xt, at; θP ) plus epsilon-noise. The main benefit in learning Q-values is that they can be
trained with samples from buffer even if they are not from the agent’s current policy to minimize the
following loss: ‖Q(xt, at; θP )−Eπ(xt;θP )

[∑
t γ

trit
]
‖2. However, since intrinsic reward distribution

rit changes over time one would need to update the intrinsic reward using the most recent fθF .

The key thing to note is that both the approaches to policy optimization treat reward rit as an unknown
quantity which can only be estimated via samples.

3 SAMPLE-EFFICIENT DIFFERENTIABLE EXPLORATION

As discussed in the previous section, there has been a lot of work in proposing formulations for
intrinsic rewards to the agent. However, the optimization procedure for training policies to maximize
these intrinsic rewards has more or less remained the same – i.e. – treating the intrinsic reward as a
“black-box” even though it is generated by the agent itself.

Let’s consider an example to understand the reason behind the status quo. Consider a robotic-arm
agent trying to push multiple objects kept on the table in front of it by looking at the image from
an overhead camera. Suppose the arm pushes an object such that it collides with another one on
the table. The resulting image observation following this action will be the outcome of complex
real-world interaction the actual dynamics of which is not known to the agent. More importantly, note
that this resulting image observation is a function of the agent’s action (i.e., push in this case). Since
the intrinsic reward ri(xt, at, xt+1) is function of the next state (which is a function of the agent’s
action) . This dependency on the unknown environment dynamics absolves the policy optimization to
compute any sort of analytical gradient with respect to the intrinsic rewards.
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To state this intuition mathematically, let TE be the true transition function of the environment such
that xt+1 = TE(xt, at). Note that for environments with stochastic dynamics TE will be a distribution,
but we describe deterministic case for brevity of the notations. The intrinsic reward function rit, in
Equation (1), can now be rephrased in terms of TE as ri(xt, at, TE(xt, at)). It is easy to see that TE
is required to compute analytical gradients ∂rit/∂at at any time t.

The standard way to optimize policy to maximize sequence of intrinsic rewards is to either use
REINFORCE (i.e., on-policy way) or regress to rit to learn value estimates (i.e., off-policy) as
discussed in the previous section. Both these approaches do not make any use of the structure present
in the design of rit. While these are unbiased estimators for training policy parameters with respect to
rit, they suffer from high variance which is a known issue in reinforcement learning and an active area
of research (Schulman et al., 2015). For instance, REINFORCE roughly amounts to saying that the
agent should change the probability of the executed action in proportion to rewards received which
fluctuates with the reward trajectories, leading to high variance. It gives no signal as to what action to
take if the current action did not lead to a good reward.

3.1 DIFFERENTIABLE INTRINSIC REWARD WITH LOCAL CONSTANCY APPROXIMATION

The focus of this paper is on the policy optimization aspect of the intrinsic reward function rather
than their formulation. Our goal is to address the question whether we can formulate intrinsic reward
as a differentiable function so as to perform policy optimization using likelihood maximization –
much like supervised learning instead of reinforcement. If possible, this would allow the agent to
make use of the structure in rit explicitly. For instance, in case of curiosity-driven intrinsic reward, the
forward predictor fθF is trained via maximum likelihood which means it can be learned with much
more sample efficiency. If the policy could also be optimized using direct gradients, the rewarder
could very efficiently inform the agent to change its action space in the direction where forward
prediction loss is high, instead of providing a scalar feedback as in case of reinforcement learning.
Explicit reward (cost) functions are one of the key reasons for success stories in optimal-control based
robotics (Deisenroth & Rasmussen, 2011b; Gal et al., 2016), but they don’t scale to high-dimensional
state space such as images and rely on having access to a good model of the environment.

To address our goal, let us revisit the intrinsic reward function in Equation (1). Upon substituting πθP
and TE , we get:

rit , ‖f(xt, π(xt; θP ); θF )− TE(xt, π(xt; θP ))‖2 (2)
Note that the first term in the Equation (2) is differentiable since fθF is a learned function, but second
term is not since the environment is not known. Hence, we propose to make a local zeroth-order
approximation to the environment so as to make rit differentiable with respect to the action at.

Local constancy approximation Consider a state xt and the action at predicted by the policy at
that state, at = π(xt; θP ). The agent reaches xt+1 upon executing the action. We assume that the final
state xt+1 remains constant in an infinitely small ε-neighborhood ball around the action at executed
at the same initial state xt. Mathematically, it can be written as xt+1 = TE(xt, at) ≈ TE(xt, ãt) for
ãt ∈ Nε(at) where ε→ 0. With this approximation in place, we can now compute ∂rit/∂at at any
time t by back propagating gradients through the forward function.

Intuitively, it basically assumes that minute fluctuations in action won’t change the transition state.
Of course, this does not hold true in certain corner cases, for instance, pushing an object at the
very corner edge. In those cases, intrinsic reward formulation with local constancy approximation
would incentivize all the actions equally in the ε-neighborhood ball, instead of that particular action.
This, fortunately, seems like a reasonable settlement in practice as such corner cases require higher
sampling to understand where exactly the corner case occurs.

3.2 DIRECT POLICY OPTIMIZATION WITH DIFFERENTIABLE INTRINSIC REWARDS

We now leverage the local constancy approximation to formulate a direct gradient-based policy opti-
mization which maximizes intrinsic rewards achieved by the agent without relying on reinforcement
learning for policy optimization.

We first discuss the one step case and then provide the general setup. Given a transition {xt, at, xt+1},
the agent generates an intrinsic reward for itself rit = ‖f(xt, at; θF )− xt+1‖2. Forward model fθF
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is trained to minimize its loss which amounts to minimizing rit with respect to θF . This is done
via direct loss minimization using gradient descent. Upon using local constancy approximation,
we can also optimize for policy parameters θP via differentiable loss function in the same manner
using gradient descent. However, policy is optimized to maximize the objective. This results into a
min-max optimization over rit. The joint objective for a one-step reward horizon is written as follows:

min
θF

max
θP

‖f(xt, at; θF )− xt+1‖2 (3)

s.t. at = π(xt; θP )

xt+1 = TE(xt, at) ≈ TE(xt, ãt) for ãt ∈ Nε(at), ε→ 0

Note that both policy and forward predictor are trained via maximum likelihood in a supervised
manner. Hence, given the local constancy approximation, this should be a much more efficient way
to optimize exploration policy unlike reinforcement learning based policy-optimization. We optimize
the objective in Equation 3 in an alternating fashion where forward predictor is optimized in the
outer-loop, and the policy in inner-loop.

Generalization to multi-step reward horizon To optimize policy to maximize a discounted sum
of sequence of future intrinsic rewards rit in a differentiable manner, the forward predictor would
have to make predictions spanning over multiple time-steps. The objective from Equation (3) can
be generalized to the multi-step horizon setup by recursively applying the forward predictor as∑
t ‖x̂t+1 − xt+1‖2 where x̂t+1 = f(x̂t, at; θF ) and x̂0 = x0. Alternatively, one could use LSTM

to make forward model itself multi-step.

3.3 PRACTICAL CONSIDERATIONS IN IMPLEMENTATION

Min-max optimization At first glance, it might appear that optimizing the objective in Equation (3)
could be unstable learning process. However, unlike the other cases of online min-max optimization
(e.g. Generative Adversarial Networks (Goodfellow et al., 2014)), this case could be easily made
stable. Here, the goal of our policy optimization is to learn from the forward predictor in the outer-loop
and the forward predictor is to improve itself. Hence, we train the forward predictor slightly faster
than the policy by keeping higher learning rate to stabilize the learning process. Other alternative
could be to take few extra gradient steps in the outer-loop minimization than inner-loop maximization.

Back-propagation through forward predictor To directly optimize the policy with respect to the
loss function of the forward predictor, we need to backpropagate all the way through action sampling
process from the policy. In case of continuous action space, one could achieve this via making policy
deterministic, i.e. at = πθP with epsilon greedy sampling (Lillicrap et al., 2016). Alternatively, in
case of discrete action space, we found that straight-through estimator (Bengio et al., 2013) works
well in practice. In this paper, we discretized the action space of our agent.

Learning forward predictions in the feature space It has been shown that learning forward-
dynamics predictor fθP (Burda et al., 2018; Pathak et al., 2017) in some feature space leads to better
generalization instead of making predictions in raw pixel space. Our formulation is trivially extensible
to any representation space because all the operations can be performed with φ(xt) instead of xt.

4 EXPERIMENTAL SETUP AND BASELINES

We consider the task of object manipulation in complex scenarios. Our setup contains a 7-DOF
robotic arm which could be tasked to interact with the the objects kept on the table in front of it. The
objects are kept randomly in the workspace of the robot on the table. All of our experiments use
raw visual RGBD images as input and predict raw actions as output. We use position-control for
controlling the robotic arm and its action space contains following actions: (a) {X,Y }: the target
location in the work-space of the end-effector; (b) Θ: the angle at which gripper of the robot should
approach the specified location; (c) Gripper Status: a boolean value indicating whether to perform
a grasping (open the gripper fingers) or pushing gesture (keep fingers close). Note that in order to
perform an accurate grasp or push on objects, the agent has to figure out accurate location, orientation
and the gripper status.
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We parametrize the action space in the network in a similar manner as (Zeng et al., 2018). The action
space is discretized into 224 × 224 {X,Y } locations, 16 orientations for grasping (fingers close)
and 16 orientations for pushing. Input to the policy is a 224 × 224 RGBD image and it produces
probabilities of the push and grasp action for each input pixel location. Instead of adding the 16
rotations in the output, we pass 16 equally spaced rotated inputs to the network and then sample
actions based on the output of all the inputs. This exploits the convolutional structure of the network.

There is no assumption of any sort about either the environment, or the training signal. Our robotic
agents explore the work-space purely out of their own intrinsic reward in a pursuit to develop useful
skills. We have an instantiation of this setup both in the real world and in a simulated environment.

Baselines In this paper, we propose a sample efficient way to optimize policy using intrinsic
rewards that does not treat the reward function as a black box. As baselines, we compare the same
curiosity reward function but optimized using REINFORCE. We also compare to off-policy baseline
of DQN. In order to make apples-to-apples comparison between the proposed differentiable learning
optimization vs. existing black-box optimization, We kept exactly the same setup for all the methods
and only changed the optimization procedure. For obtaining the right hyper-parameters we use
REINFORCE with external touch-rewards (See Appendix A). As one can see the REINFORCE
baseline is quite effective with external rewards.

5 EXPERIMENTS

Our goal is to demonstrate a exploration formulation which is sample-efficient enough to be applicable
in real-world robotic setups. The two main components of our proposed methodology are the
exploration policy and the forward prediction model. We evaluate both the components on object
manipulation tasks: (a) in a simulated V-REP based environment, and (b) in real-world robotic setup
using Sawyer robot arm. We perform simulation experiments to help us setup the right parameters
and do extensive comparisons against REINFORCE and DQN. We consider two environment setups:
sparse and non-sparse. In the non-sparse setup, the environment contains multiple objects which
makes it easier for the policy to stumble upon the object. In the sparse setup, the work-space of the
robot only contains one object.

5.1 OBJECT MANIPULATION IN SIMULATION

Our main goal is to deploy the exploration policy in real-world, but we first begin by studying in
depth the performance of our proposed approach in contrast to prior formulations that treat intrinsic
reward function as a black-box.

Simulated Object Interaction Setup We used V-REP simulator to simulate the robot performing
grasping and pushing on table top environment. This setup is based on (Zeng et al., 2018). It consist
of UR5 robot arm with an RG2 gripper. Dynamics is simulated using Bullet Physics 2.83 physics
engine. V-REPs internal inverse kinematics module is used robot motion planning. The objects
used in these simulations include 6 3D toy blocks of different shapes, colors of which are randomly
chosen during experiments. Perception data is captured using a statically mounted 3D camera in the
environment. It provides RGBD images (640x480), without any noise added for depth or color.

Evaluation of the exploration policy learned by the agent How do we evaluate if our exploration
policy is taking interesting steps? In our setup, one attribute that correlates with interesting-ness is
performing actions on object. We use this as a metric to explore how quickly our policy learns to
explore interesting part of space. Figures 2a and 2b show the performance when the environment
consist of single and multiple objects respectively. It is clear that both REINFORCE and DQN
perform quite poorly and do not show any significant improvement even after 3K interactions. On
the other hand, our approach is able to exploit the structure in the loss to learn significantly faster.
and achieves 40% interaction rate even after 3K interactions. Table 2 shows the interaction results
in multi-step setting after first 250 interactions. Again, our multi-step formulation is more effective
compared to baseline approaches.
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Figure 2: Comparing the performance of our proposed sample efficient exploration with other baseline
methods in simulated manipulation environment.

5.2 OBJECT MANIPULATION USING ROBOTIC ARM IN THE REAL-WORLD

We now deploy our sample-efficient exploration formulation on real-world robotic setup. The real-
world poses additional challenges unlike simulated environments in terms of behavior, dynamics
of varied objects available in the real world. Our robotic setup consisted of a Sawyer-arm with a
table placed in front of it. We mounted Kinectv2 at a fixed location from robot to receive RGBD
observation of the environment. We calibrated the system to get extrinsic between camera and robot.
In every run robot starts with 3 object placed in front of it (See Appendix for setup). Objects were
manually replaced if robot has completed 100 interactions or if there are no objects in front of it. To
see if the robot has interacted with objects, we used to monitor the change in the RGB image. This
information is only used for our purpose to check the progress of robot, it is not provided to policy.

In order to test the skills learned by the robot during its curious exploration, we tested it on a set of
held-out objects. Out of total of 30 objects, we created set of 20 objects for training and 10 objects for
testing. Both, our method and reinforce were trained for 1400 robot interaction with the environment.
Both models were evaluated based on the 80 robot interaction. During testing , environment reset
was done after every 10 robot steps.

How good is Exploration Policy? The key requirement of a good exploration policy is that it
should search the space in an efficient manner, generalize to unseen scenarios and discover complex
behaviors which are hard to stumble upon randomly. Again we use the same metric (interaction
with objects) as before to measure effectiveness of exploration policy. Figure 3(left) shows how
effective our differentiable curiosity module is and how it learns to interact with object even with
1400 examples. This result clearly indicates the importance of using the approximation and hence
differentiable reward function. At the end of 1400 steps, the interaction rate was more than 80%. Our
final trained exploration policy interacts approximately 91% of times with unseen objects whereas
random performs 17%. On the other hand, it seems that REINFORCE just collapses and only 1% of
actions involve interaction with object (See Table 3).

How good is Forward Prediction Model? We use the data collected during the exploration to train
forward prediction models. If the data explored by the agent is interesting, the prediction model
should perform well on complex tasks. We evaluate how well is the forward prediction model
in terms of planning for goal-driven scenarios. We also provide the evaluation in terms of future
prediction (Finn et al., 2017) in Appendix. We compare the planning accuracy of the forward model
learned on the data collected by different exploration schemes. We use the cross-entropy based
method to optimize for the action plan given the initial state and the goal state. Metric is L2 distance
from the ground truth action location. As result in the Table 1 indicate the forward model learned
using our approach is significantly better than the baseline REINFORCE model.

6 RELATED WORK

The problem of exploration is a well-studied problem in the field of reinforcement learning. Early
approaches focused on studying exploration from theoretical perspective (Strehl & Littman, 2008)
and proposed Bayesian formulations (Kolter & Ng, 2009; Deisenroth & Rasmussen, 2011a) which are
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Method Name Pushing Failed Grasp Attempt Grasping Mean

Exploration w/ REINFORCE 49.22 54.97 55.49 53.22
Exploration w/ Ours 35.41 38.06 53.26 42.24

Table 1: Planning Error of the forward prediction learned on the data collected by the exploration
policy for multi-object scenarios.
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Figure 3: (Left) Interaction Rate vs. Number of Samples for real-world robot. (Right) Table 2 shows
interaction rate with 250 steps and Table 3 shows the interaction rate of final robot model.

hard to scale in higher dimensions. In this paper, we focus on the specific problem of exploration using
intrinsic rewards. A large family of approaches use “curiosity” as a reward for training the agents.
A good summary of early work in curiosity-driven rewards can be found in (Oudeyer et al., 2007;
Oudeyer & Kaplan, 2009). Most approaches use some form of prediction-error between the learned
model and environment behavior (Pathak et al., 2017). This prediction error can also be formulated
as surprise (Schmidhuber, 1991; Achiam & Sastry, 2017; Sun et al., 2011). Other forms of curiosity
can be to explore states and actions where prediction of a forward model is highly-uncertain (Still
& Precup, 2012; Houthooft et al., 2016b). Finally, approaches such as (Lopes et al., 2012) try to
explore state space which help improve the prediction model most. However, most of these efforts
have still studied the problem in context of external rewards. These intrinsic rewards just guide the
search to the space where forward model is uncertain or likely to be wrong.

Another approach for intrinsic rewards is using explicit visitation counts (Bellemare et al., 2016; Fu
et al., 2017). These exploration strategies guide the exploration policy to “novel” states (Bellemare
et al., 2016). A closely related work uses diversity as a reward for exploration and skill-learning (Ey-
senbach et al., 2018). However, both visitation counts or measuring diversity requires learning a
model which keeps the distribution of visited states. Learning such a model does not seem trivial.
Another issue is the transferable properties and generalization of such approaches unless the state
features are transferable themselves.

Finally, apart from intrinsic rewards, other approaches include using an adversarial game (Sukhbaatar
et al., 2018) where one agent gives the goal states and hence guiding exploration. Gregor et al.
(2017) introduce a formulation of empowerment where agent prefers to go to states where it expects
it will achieve the most control after learning. Researchers have also tried using perturbation of
learned policy for exploration (Fortunato et al., 2017; Plappert et al., 2017) and using value function
estimates (Osband et al., 2016). Again these approaches have mostly been considered in context of
external rewards and hence turn out to be sample inefficient.

7 DISCUSSION

Exploration has always been a crucial topic in robotics yet all the recent advances have been shown in
either video-games or simulation due to sample inefficiency. This paper focuses on policy optimization
for exploration policy learned via intrinsic rewards. Specifically, we propose a simple yet effective
local approximation which allows us to perform policy optimization using likelihood maximization.
We demonstrate the effectiveness of our approach on Sawyer robot which learns how to interact with
objects (trained from scratch).
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APPENDIX A TRAINING USING EXTERNAL REWARD
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Figure 4: Used external reward from environment to learn policy

In this section, we tried to analyze how policy performs if it is provided with external reward from
the environment. The environment gives +1 to the agent if it moves the objects, otherwise 0.

Figure 5: Robot Interacting with objects based on curiosity
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(a) real world robot setting (b) simulation setting

APPENDIX B PREDICTION LOSS

Prediction Loss We compare the prediction loss of the forward model learned on the data collected
by different exploration schemes. We use L2 distance in the ImageNet feature space. As the result in
the Table 1 indicate the data collected using our model performs better.

Method Name Free-Space Pushing Failed Grasp Attempt Grasping Mean

Exploration w/ REINFORCE 0.28 0.23 0.17 0.64 0.33
Exploration w/ Ours 0.17 0.23 0.17 0.63 0.3

Table 1: Prediction Loss of the forward prediction learned on the data collected by the exploration
policy for multi-object scenarios on real robot.
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APPENDIX C COMPARISON ON ATARI GAMES

Figure 7: Comparison to recent state-of-the-art exploration strategy (Burda et al., 2018) on Atari.

We now demonstrate the comparison of our proposed exploration formulation in Section 3.2 with
the recently proposed (concurrent work) large-scale-curiosity (Burda et al., 2018) implementation
on benchmark Atari games. For baseline, we used the publicly available implementation off-the-
shelf (Burda et al., 2018). The policy training is performed using the curiosity-reward function for
the baseline and using our differentiable exploration objective for our method, without relying on
any external rewards from the game. We measure the external reward from the game as a proxy to
evaluate the quality of exploration. This external game reward is only shown for evaluation purposes
but not used for training.

Our proposed model in Equation 3 relies on the learned prediction model to train the policy in an
efficient manner. However, in the absence of any external rewards on these games, the exploration
would have to rely on long-term prediction of the learned forward model to make progress that
correlated with getting extrinsic reward. However, the long-term model learning is still an active area
of research (Ebert et al., 2017). Since using current approaches, the long-term prediction models are
hard to learn, so we use our objective in conjunction with reinforce objective when the long-term
prediction quality matters. The orange curve in Figure 7 denotes the recent implementation curiosity
baseline provided in the paper. Note both these environments require long-term modeling of the
environment and on both the environments, our objective seems to provide gain in efficiency.

APPENDIX D ANALYIZING THE DIFFERENTIABLE EXPLORATION OBJECTIVE

In this section, we discuss a toy experiment to investigate how would the proposed object behave due
to the effect of local constancy approximation, explained in Section 3.2.

Example-1: Investigating behavior of the objective
Lets consider a simple setting of navigation in the environment where states are represented by
the color of rooms that agent visits. We compare the behavior of count-based and curiosity-driven
exploration with our proposed differentiable exploration objective. In both cases, let us assume a
tabular representation (i.e. learns in one example) for the exploration model.

For the count-based exploration reward, count based method will only consider next state being
visited irrespective of what path being take to reach over there. It will give +1 exploration reward for
the first 2 transitions mentioned in Table 2. However, when agent does transition from green to blue,
count based method will give 0 reward, even though this state transition happened for the first time.
In contrast to this, a prediction-based curiosity objective gives +1 reward for the first three transitions
because they all happened for the first time, and 0 reward for the last case.

14



Under review as a conference paper at ICLR 2019

Timestep State Action Next-State Count-Based Curiosity Our
(t) (xt) (at) (xt+1) Reward Value Reward Value Action Gradient

1 white a1 blue 1 1 +ve
2 blue a2 green 1 1 +ve
3 green a3 blue 0 1 +ve*
4 green a3 blue 0 0 −ve*

Table 2: Discussing the behavior of exploration reward for count-based method, curiosity (dynamics-
based) and our differentiable exploration. +ve and −ve refers to the gradient direction for the action
in our case. *,* refers to the cases when our objective of differentiable exploration behaves differently
than count-based and curiosity.

Both curiosity and count-based objectives are optimized via policy gradients in general. Hence, when
reward is 1 it means the action is encouraged and hence the probability of that action is increased
as desired. However, the more interesting scenario is when the reward is 0. In this case, the policy
gradient objective suppresses the current action being taken due to the reinforce objective (Schulman
et al., 2015). Since the action probability is normalized across action, this amounts to increasing
other actions in proportion to their existing log probability. This is fine in expectation, but suffers
from high variance in small batches.

Now let us consider our proposed objective from Equation 3. In our case, the behavior in first three
cases is similar to the prediction-based curiosity objective. However, in the final case, when the
same transition is being executed, our model would explicitly try to force the policy to take action
that does not lead to the blue as next state. Now if the environment contained mostly blue rooms,
our objective will explicitly encourage actions that go to a non-blue rooms, in contrast with
reinforce which penalizes actions that lead to blue rooms.. We now elaborate why this simple
difference in behavior has a striking impact in high dimensional scenarios.

Example-2: Investigating gradient direction
Consider a thought experiment of a white surface with a red magic box kept at a random location. The
action space of a robotic arm involves going to any location (e.g. a discrete n×n grid) on the surface.
If the robotic arm end-effector ends up in the area occupied by
magic box, something unpredictable happens. Now since the area
of red magic box is much smaller compared to the white surface,
it would take long time to hit the magic area randomly. Hence,
most of the example for learning dynamics will be from the free
surface. Suppose a forward dynamics model is learned on a bunch
of initial sample interactions (out of which most of them will be on
free space) and hence the models prediction error will be very low
in white surface and high the red magic area. A curiosity-objective
learned with reinforce would penalize the actions leading to white
space as the reward will be low over there, and the probability of
other actions (including going to red area) will increase in proportion
of their log-probs. In contrast, the direct gradients in our case would directly force the actions to
go to non-white locations and hence, quickly reach the locations in red area. This examples is
representative of scenarios where the number of un-interesting interactions is much more than the
interesting interactions which are worth exploring, which is usually the case in the real-world setups.

D.1 THEORETICAL UNDERSTANDING OF OBJECTIVE

The proposed objective in Equation 3 bears similarities to the experiment-design in optimization
literature. For a detailed overview, refer to the Chapter-7 in Boyd & Vandenberghe (2004). The goal
of experiment design is to optimize for the actions such that the error covariance in the model is
small, which means going to areas with high prediction error. While this is out of the scope of paper,
we hope that this connection would help spur discussions for future work to build upon.
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