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Abstract

We propose a Leaked Motion Video Predictor (LMVP) to predict future frames by
capturing the spatial and temporal dependencies from given inputs. The motion is
modeled by a newly proposed component, motion guider, which plays the role of
both learner and teacher. Specifically, it learns the temporal features from real data
and guides the generator to predict future frames. The spatial consistency in video
is modeled by an adaptive filtering network. To further ensure the spatio-temporal
consistency of the prediction, a discriminator is also adopted to distinguish the real
and generated frames. Further, the discriminator leaks information to the motion
guider and the generator to help the learning of motion. The proposed LMVP can
effectively learn the static and temporal features in videos without the need for
human labeling. Experiments on synthetic and real data demonstrate that LMVP
can yield state-of-the-art results.

1 Introduction

Video combines structured spatial and temporal information in high dimensions. The strong spatio-
temporal dependencies among consecutive frames in video greatly increases the difficulty of modeling.
For instance, it is challenging to effectively separate moving objects from background, and predict
a plausible future movement of the former [2, 4, 11, 14, 15, 21]. Though video is large in size
and complex to model, video prediction is a task that can leverage the extensive online video data
without the need of human labeling. Learning a good video predictor is an essential step toward
understanding spatio-temporal modeling. These concepts can also be applied to various tasks, like
weather forecasting, traffic-flow prediction, and disease control [16, 18, 17].

The recurrent neural network (RNN) is a widely used framework for spatio-temporal modeling.
In most existing works, motion is estimated by the subtraction of two consecutive frames and the
background is encoded by a convolutional neural network (CNN) [1, 9, 11, 12]. The CNN ensures
spatial consistency, while temporal consistency is considered by the recurrent units, encouraging
motion to smoothly progress through time. However, information in two consecutive frames is usually
insufficient to learn the dynamics. Using 3D convolution to generate future frames can avoid these
problems [13, 14], although generating videos by 3D-convolution usually lacks sharpness.

We propose a Leaked Motion Video Predictor (LMVP) for robust future-frame prediction. LMVP
generates the prediction in an adversarial framework: we use a generative network to predict next
video frames, and a discriminative network to judge the generated video clips. For the motion part,
we propose to learn the dynamics by introducing a motion guider, connecting the generator and the
discriminator. The motion guider learns the motion feature through training on real video clips, and
guides the prediction process by providing possible motion features. At the same time, in contrast
with estimating motions by subtracting two consecutive frames, we allow the discriminator to leak
high-level extracted dynamic features to the motion guider to further help the prediction. Such
dynamic features provide more informative guidance about dynamics to the generator. The spatial
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dependencies of video are imposed by a convolutional filter network conditioned on the current frame.
This idea is inspired by a conventional signal processing technique named adaptive filter, which can
increase the flexibility of the neural network [5]. It is assumed that, each pixel of the predicted frame
is a nonlinear function of the neighborhood pixels of the current one, where the nonlinear function is
implemented via LMVP as a deep neural network.

2 Models
The video frames are represented as x ∈ RT×H×W×C , where T is the total number of frames,
H is the frame height, W is the width and C is the channel number. Given the first T0 (T0 < T )
frames, the task is to predict the following T − T0 frames. xt and x̂t represent for real and predicted
video frame at time t, respectively. The model framework is given in Figure 1. It mainly contains
a generator G, a motion guider M , and a discriminator D. D distinguishes between the real and
predicted video clips. M learns the temporal dependencies among the video through the features
leaked from D, and generator G uses the output of motion guider M to predict the next frame based
on the current.

Figure 1: Model Framework.

2.1 Leaked Features from D as Motion Signals

The discriminator D (shown in top of Figure 1) is designed as both a discriminator and a mo-
tion feature extractor. The bottom layers of D is a feature extractor F (·;θF ), followed by several
convolutional and fully connected layers to classify real/fake samples, parameterized by θC . Math-
ematically, given input video clips xt−c:t, we have D(xt−c:t;θD) = CNN(F (xt−c:t;θF );θC),
where θD = {θF ,θC}. The extracted motion feature from xt−c:t is denoted as fd

t = F (xt−c:t;θF ),
which is the input of motion guider M .

The feature extractor F is implemented as a convolutional network. The output fd
t is expected to

capture motion from xt−c:t. The difference between fd
t+1 and fd

t is treated as the dynamic motion
feature between two consecutive frames, which is denoted asmt. In contrast of the direct subtraction
of two consecutive frames [11], our dynamic motion feature is extracted from two consecutive video
clips of length c. Since previous video frames are also included, it can still give reasonable output
even if the model fails at previous time step. The discriminator loss can be written as

Ldis(θD) = −Ex[logD(x;θD)]− Ex̂[log(1−D(x̂;θD))]. (1)

2.2 Learning and teaching game of M

To utilize the leaked motion information fd
t from D, we introduce a motion guider module M , which

is inspired by the leaky GAN model [3] for text generation task. The structure of M is displayed in
the green dotted box in Figure 1. M has a recurrent structure that takes the extracted motion feature
fd
t as input at each time step t, and outputs a predicted motion feature m̂t. Specifically, the motion

guider plays two roles in the model: learner and teacher.

As a learner, M learns the motion in video via leaked feature from D from real video. At time step
t, M receives the leaked information fd

t exacted by D, and predicts the dynamic motion feature
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between time t and t + 1, by forcing m̂t = M(fd
t ;θM ) close to mt = fd

t+1 − fd
t . Denoting the

parameters of the motion guider as θM , the learner loss function can be written as

LL
M (θM ) =

∑
t

||M(fd
t ;θM )− (fd

t+1 − fd
t )||22. (2)

Note that only real video samples are used to update θM . The superscript L means “Leaner”.

As a teacher, M serves as a guider by providing predicted dynamic motion features to G. During this
step, θM is fixed while the generator is updated under the guidance of M . Given the leaked features
f̂d
t = F (x̂t−c:t; θF ) of predicted data x̂t−c:t at time t, the output m̂t = M(f̂d

t ;θM ) serves as an
input to the generator to predict the next frame x̂t+1. This is detailed in the next section.

Since the dynamic motion feature is extracted from a real video clip instead of a single frame, M is
robust against fail predictions at previous time step, i.e., even if the previous predicted frame diverges
from the ground truth.

2.3 Generating the next frame under guide from M

The structure of the generator is shown at the bottom of Figure 1. It contains a spatial feature encoder,
a temporal feature encoder, and a filter network. The spatial feature encoder is designed to learn
the static background structure fs

t , while temporal feature fm
t are computed from dynamic motion

feature m̂t. Note that only predicted samples have their motion guider output m̂t flow back to the
generator. The spatio-temporal features fs

t and fm
t are concatenated and further fed into the filter

network. The next frame is predicted by applying the generated adaptive filter from [fs
t ,f

m
t ] on the

current frame. This technique is also known as visual transformation [14].

As mentioned in Section 2.2, M is updated during the learning step. When generating the next frame
x̂t+1 in the teaching step, M is fixed and outputs the motion guide m̂t. Specifically, to ensure G
generates the next frames following the guidance of M , the dynamic motion feature between the
generated video clips at time t+ 1 and t, which is denoted as f̂d

t+1 − f̂d
t , should be close to m̂t from

M . Then, the generator is updated by minimizing the following loss function:

LT
M (θG) =

∑
t

‖
(
F ([x̂t−c+1:t, G(x̂t, m̂t;θG)])− f̂d

t

)
− m̂t‖22, (3)

where θG includes all parameters in the generator G. The gradient is taken w.r.t θG, while f̂d
t and

m̂t are treated as inputs. Note that x̂t and f̂d
t are the predicted output and leaked motion feature

from time step t, respectively. The superscript T in LT
M indicates M as a “Teacher”.

The total loss function for the generator is

Lgen(θG) = Lrecons(θG) + γLT
M (θG). (4)

Lrecons is the reconstruction loss function of xt+1, x̂t+1, including a pixel-wise cross-entropy/MSE
loss and the gradient difference loss (GDL) [8]. The whole model is updated iteratively for each
component. A pseudo-algorithm is given in Alg. 1 in the Appendix. The discriminator loss (1) is first
evaluated and θD is updated. Then the motion guider parameters θM are updated using only real
samples of x. The generated parameters θG is updated using loss function (4). In practice, Adam [6]
is used to perform the gradient descent optimization.

3 Experiments
BCE SSIM PSNR

ConvLSTM [20] 8.96× 10−2 0.61 10.74
FPM [10] 8.33× 10−2 - -
DFN [5] 6.89× 10−2 0.83 18.4
LMVP 6.13× 10−2 0.87 19.6

Table 1: Binary cross-entropy, SSIM and PSNR
scores results on Moving MNIST dataset.

Moving MNIST: Each video in the Moving
MNIST dataset [10] has 20 frames in total, with
two handwritten digits bouncing inside a 64×64
patch. Given 10 frames, the task is to predict the
motion of the digits of the following 10 frames.
We follow the same training and testing proce-
dure as [10]. Evaluation metrics include Binary
Cross Entropy (BCE), Peak Signal to Noise Ra-
tio (PSNR), and Structural Similarity Index Measure (SSIM) [19] between the ground truth x and
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the prediction x̂. Small values of BCE or large values of SSIM and PSNR indicate good prediction
results. In this task, we need to keep the digit shape the same across time (spatial consistency) while
giving them reasonable movements (temporal consistency).

Table 1 gives the comparison of LMVP and baseline models. The BCE of LMVP achieves
0.061 per pixel over 10 frames, which is better than state-of-the-art models [20, 10, 5, 11].
The predictions from LMVP and DFN [5] are shown in Figure 4. Input is given in the first
row, followed by ground truth of the output, and results from DFN model and our LMVP
model. To prove that our model has consistently good result in to the future, Figure 5 in
the Appendix gives the SSIM and PSNR comparison over (t = T0 + 1, · · · , T ). LMVP
achieves higher SSIM and PSNR scores than other baseline models through all time steps.

Figure 2: Two prediction examples for the Moving MNIST dataset. From top to down: concatenation
of input and ground truth, prediction result of DFN, and prediction result of our model.

MSE SSIM PSNR
Last Frame 10.34× 10−3 0.83 22.11
DFN [5] 3.08× 10−3 0.92 26.95
LMVP 2.67× 10−3 0.927 27.23

Table 2: MSE (per pixel), SSIM and PSNR scores
results on highway driving video dataset.

Highway Drive: The dataset contains videos
were collected from a car-mounted camera dur-
ing car driving on a highway. The videos con-
tain rich temporal dynamics, including both self-
motion of the car and the motion of other objects
in the scene [7]. Following the setting used in
[5], we split the approximately 20, 000 frames
of the 30-minutes video into a training set of
16, 000 frames and a test set of 4, 000 frames.
Each frame is of size 64× 64. The task is to predict three frames in the future given the past three.

The prediction results are compared in Table 2 and two samples from the test set are selected in
Figure 3. In the prediction results of DFN, the rail of the guidepost becomes curving. However, in
the prediction results of LMVP, the rail keeps straight in the first and second predicted frames. To
help the visual comparison, this part has been highlighted by a red circle.

Figure 3: Qualitative prediction examples for the highway driving video dataset. From top to down,
left to right: concatenation of input and ground truth, prediction result of DFN, and prediction result
of our LMVP.

4 Conclusion

We have proposed the Leaked Motion Video Predictor (LMVP) to handle the spatio-temporal
consistency in video prediction. For the dynamics in video, the motion guider learns motion features
from real data and guides the prediction. Since the motion guider learns features from video sequences,
it is more robust compared to using only single frames as input. For structures of the background,
the adaptive filter generates input-aware filters when predicting the next frame, ensuring spatial
consistency. Further, A discriminator is adopted to further improve the prediction result. On both
synthetic and real datasets, LMVP shows superior results over the state-of-the-art approaches.

4



References
[1] H. Cai, C. Bai, Y.-W. Tai, and C.-K. Tang. Deep video generation, prediction and completion of

human action sequences. arXiv preprint arXiv:1711.08682, 2017.

[2] Y.-W. Chao, J. Yang, B. Price, S. Cohen, and J. Deng. Forecasting human dynamics from static
images. In IEEE CVPR, 2017.

[3] J. Guo, S. Lu, H. Cai, W. Zhang, Y. Yu, and J. Wang. Long text generation via adversarial
training with leaked information. AAAI, 2018.

[4] M. Henaff, J. Zhao, and Y. LeCun. Prediction under uncertainty with error-encoding networks.
arXiv preprint arXiv:1711.04994, 2017.

[5] X. Jia, B. De Brabandere, T. Tuytelaars, and L. V. Gool. Dynamic filter networks. In NIPS,
2016.

[6] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[7] W. Lotter, G. Kreiman, and D. Cox. Deep predictive coding networks for video prediction and
unsupervised learning. ICLR, 2017.

[8] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale video prediction beyond mean square
error. ICLR, 2017.

[9] V. Patraucean, A. Handa, and R. Cipolla. Spatio-temporal video autoencoder with differentiable
memory. ICLR, 2016.

[10] N. Srivastava, E. Mansimov, and R. Salakhudinov. Unsupervised learning of video representa-
tions using lstms. In ICML, 2015.

[11] R. Villegas, J. Yang, S. Hong, X. Lin, and H. Lee. Decomposing motion and content for natural
video sequence prediction. ICLR, 2017.

[12] R. Villegas, J. Yang, Y. Zou, S. Sohn, X. Lin, and H. Lee. Learning to generate long-term future
via hierarchical prediction. aICML, 2017.

[13] C. Vondrick, H. Pirsiavash, and A. Torralba. Generating videos with scene dynamics. In NIPS,
2016.

[14] C. Vondrick and A. Torralba. Generating the future with adversarial transformers. In CVPR,
2017.

[15] J. Walker, C. Doersch, A. Gupta, and M. Hebert. An uncertain future: Forecasting from static
images using variational autoencoders. In ECCV, 2016.

[16] D. Wang, W. Cao, J. Li, and J. Ye. Deepsd: supply-demand prediction for online car-hailing
services using deep neural networks. In 2017 IEEE 33rd International Conference on Data
Engineering (ICDE). IEEE, 2017.

[17] D. Wang, W. Cao, M. Xu, and J. Li. Etcps: An effective and scalable traffic condition prediction
system. In International Conference on Database Systems for Advanced Applications. Springer,
2016.

[18] D. Wang, J. Zhang, W. Cao, J. Li, and Y. Zheng. When will you arrive? estimating travel time
based on deep neural networks. AAAI, 2018.

[19] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE transactions on image processing, 2004.

[20] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo. Convolutional lstm
network: A machine learning approach for precipitation nowcasting. In NIPS, 2015.

[21] T. Xue, J. Wu, K. Bouman, and B. Freeman. Visual dynamics: Probabilistic future frame
synthesis via cross convolutional networks. In NIPS, 2016.

5



A Model training

The model is first pre-trained by iteratively updating the parameters of D and G. In each iteration, we
first update θD by minimizing the loss Ldis in Equation (1); then, θF , θM , and θG are jointly updated
by minimizing the loss Lgen in Equation (4) with γ = 0. We found that the above pre-training
technique can empirically stabilize the generation process and learn useful leaked information from
discriminator.

In the main algorithm loop, D, M , and G are trained iteratively. The algorithm outline is given
in Algorithm 1. Firstly, θD is updated according to discriminator loss Ldis while θM and θG are
kept fixed. Secondly, LM (θM ) defined in Equation (2) is evaluated to update θM while θD and θG
remain unchanged. The third step is to update θG by minimizing loss Lgen in Equation (4) with
γ > 0. Note that, in both pre-train and main algorithm loop, all the initial hidden states in recurrent
architecture are set to zero. The gradient is updated by Adam [6].

Algorithm 1 Leaked Motion Video Prediction

1: Input: Training videos V = {x1:T }.
2: Output: Parameters θG, θD, θF and θM .

3: Initialize the discriminator, generator, and motion guider with random weights. Initial hidden
states in the model are set to zeros.

4: Pre-train θD using videos in training dataset as positive samples and output from generator as
negative samples.

5: Pre-train θG, θF and θM using leaked features from θF according to loss Lrecons.
6: Repeat the two pre-train steps iteratively until convergence.
7: for iter = 1 to max_iter do
8: Sample a mini-batch of real video clips {x} and generate fake video clips {x̂} according to

the input.
9: // Train Discriminator

10: Fix θM and θG, update discriminator parameters θD by ∂Ldis

∂θD
.

11: // Train Motion Guider
12: Compute fd

t andmt using real data
13: Compute motion guide (learner) loss LL

M in Equation (2) usingmt and fd
t computed above.

14: Fix θG and θD, update θM by ∂LL
M

∂θM
.

15: // Train generator
16: Compute the prediction x̂t+1 = G(xt,mt;θG) and loss LT

M in (3) using m̂t and f̂d
t from

generated samples in Equation (4).
17: Fix θM and θD, update θG by ∂Lgen

∂θG
.

18: end for
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B Experiment Result on Moving MNIST Dataset

The predictions generated by a LMVP model and a DFN model [5] are displayed in Figure 4. Frames
in the first line are input sequences and ground truth sequences. Frames generated by a DFN model
and our LMVP model are shown in the second and the third line, respectively. Visually, the prediction
of LMVP is better than DFN. This is further confirmed quantitatively in Table 3.

Figure 4: Two prediction examples for the Moving MNIST dataset. From top to down: concatenation
of input and ground truth, prediction result of DFN, and prediction result of our model.

PSNR 2 4 6 8 10 2 4 6 8 10
DFN 23.42 21.19 19.01 18.21 18.46 18.70 18.38 18.32 17.91 17.76
LMVP 25.25 22.99 22.01 20.28 20.44 21.73 21.29 21.05 20.85 20.45

Table 3: PSNR scores of prediction frames for each even time step shown in Figure 4 on Moving
MNIST dataset.

To demonstrate it more clearly, Figure 5 displays the prediction evaluation of DFN and our model
over different time step (t = T0 + 1, · · · , T ). LMVP achieves higher SSIM and PSNR scores than
other baseline models through all time steps.
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Figure 5: Evaluation result of DFN and ours over different time step (from 1st frame prediction
scores to 10th frame prediction scores). The proposed model gets higher SSIM and PSNR scores
than baselines through all time steps.
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