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Abstract

In a nonparametric setting, the causal structure
is often identifiable only up to Markov equiva-
lence, and for the purpose of causal inference, it
is useful to learn a graphical representation of the
Markov equivalence class (MEC). In this paper,
we revisit the Greedy Equivalence Search (GES)
algorithm, which is widely cited as a score-based
algorithm for learning the MEC of the underly-
ing causal structure. We observe that in order to
make the GES algorithm consistent in a nonpara-
metric setting, it is not necessary to design a scor-
ing metric that evaluates graphs. Instead, it suffices
to plug in a consistent estimator of a measure of
conditional dependence to guide the search. We
therefore present a reframing of the GES algo-
rithm, which is more flexible than the standard
score-based version and readily lends itself to the
nonparametric setting with a general measure of
conditional dependence. In addition, we propose
a neural conditional dependence (NCD) measure,
which utilizes the expressive power of deep neu-
ral networks to characterize conditional indepen-
dence in a nonparametric manner. We establish the
optimality of the reframed GES algorithm under
standard assumptions and the consistency of using
our NCD estimator to decide conditional indepen-
dence. Together these results justify the proposed
approach. Experimental results demonstrate the ef-
fectiveness of our method in causal discovery, as
well as the advantages of using our NCD measure
over kernel-based measures.

1 INTRODUCTION

Causal structure learning is a fundamental problem in var-
ious disciplines of science, and flexible solutions to this

problem have potentially wide applications [Pearl, 2009,
Koller and Friedman, 2009, Peters et al., 2017], e.g., in-
ferring causal relationships among phenotypes [Neto et al.,
2010, Zhang et al., 2015], and finding causes in earth system
sciences [Runge et al., 2019] and telecommunication net-
works [Ng et al., 2022]. In many scenarios, it is expensive
or even impossible to perform interventions or randomized
experiments in order to discover the causal relationships.
This limitation inspires the need to infer or at least systemati-
cally produce plausible hypotheses of causal structures from
purely observational data, which is often known as causal
discovery. General assumptions relating the data distribu-
tion to the unknown causal structure have been leveraged to
make causal discovery feasible, including the well-known
Markov condition and faithfulness assumption [Spirtes et al.,
2000].

Suppose the unknown causal structure can be properly repre-
sented by a directed acyclic graph (DAG) over the observed
variables. The last one and a half decades have seen a host
of results on the identifiability of the causal DAG from
the observational data distribution, under various paramet-
ric or semi-parametric assumptions [Shimizu et al., 2006,
Hoyer et al., 2009, Zhang and Hyvarinen, 2009, Bühlmann
et al., 2014, Peters and Bühlmann, 2014]. However, in a
nonparametric setting, from the observational distribution,
the causal structure is known to be identifiable only up to
Markov equivalence. Despite this limitation, it remains a
worthy task to learn a graphical representation of the Markov
equivalence class (MEC), known as a completed partial di-
rected acyclic graph (CPDAG), for a CPDAG usually reveals
some valuable causal information and can be used to guide
experimental studies.

Existing methods for causal discovery targeting the CPDAG
are roughly categorized into constraint-based and score-
based methods. The former uses statistical tests to find con-
ditional (in)dependence relationships in the data and use
them as constraints to recover the CPDAG that satisfies
them. The PC algorithm [Spirtes et al., 2000] is a well-
known exemplar of this approach. The latter formulates the
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task as an optimization problem by assigning a score to
each candidate graph and searching for the one with the
optimal score. Regarding the search and optimization strat-
egy, many algorithms solve a combinatorial optimization
problem by performing a greedy search; on the other hand,
starting from Zheng et al. [2018], much recent work tackles
the problem through a continuous optimization [Yu et al.,
2019, Lachapelle et al., 2020]. While continuous optimiza-
tion has advantages in scalability, global convergence is hard
to guarantee by using gradient-based algorithms without im-
plausible assumptions such as strong convexity, especially
when the model involves neural networks. In contrast, some
search algorithms can be shown to achieve global optimality
in the large sample limit even with a relatively sparse search
space. One of the best-known procedures of this kind is
Greedy Equivalence Search (GES) [Chickering, 2002].

The standard score-based GES algorithm requires a scor-
ing criterion to evaluate each candidate graph. Classical
examples include the BIC [Schwarz, 1978] and the BDeu
scores [Geiger and Heckerman, 1994]. However, most score
functions are born out of restrictive parametric assumptions
on the data distribution which rarely hold for real-world data.
When the parametric model is misspecified, which is very
common in real data, the optimality of the standard GES
with such a score is not guaranteed to reflect the ground
truth even in the large sample limit.

In this paper, we explore a simple strategy to produce a
nonparametric GES. We observe that in order to make GES
consistent in a nonparametric setting, it is not necessary to
design a scoring metric that evaluates graphs as a whole.
Instead, it suffices to define a certain criterion to guide the
search at each step of the procedure. The approach we con-
sider in this work is to plug in a consistent estimator of a
measure of conditional dependence to provide such guid-
ance. The result is a reframed GES algorithm that is more
flexible than the standard score-based version and readily
lends itself to the nonparametric setting with a general mea-
sure of conditional dependence. This avoids potential model
misspecification that commonly occurs in score-based meth-
ods. On the other hand, although the reframed GES becomes
essentially constraint-based, it retains desirable features of
the search strategy of GES and performs significantly bet-
ter in our experiments than paradigmatic constraint-based
methods such as PC.

In addition, we propose a measure of conditional depen-
dence based on a characterization of conditional indepen-
dence from Daudin [1980] and a novel neural conditional
dependence (NCD) estimator which utilizes the expressive
power of deep neural networks. Many existing nonparamet-
ric measures of conditional dependence are based on kernel
methods and leverage characterizations in a Reproducing
Kernel Hilbert Space (RKHS), e.g., Gretton et al. [2005].
However, kernel methods suffer from high computational
complexity, preventing them from efficient applications in

large scale problems. In contrast, our neural network based
approach can benefit from a large sample size without a
severe compromise in computational time.

We highlight our main contributions as follows:

• We present a reframing of the GES algorithm that can
flexibly incorporate a consistent estimator of a general
conditional dependence measure.

• We propose a neural conditional dependence (NCD)
measure, which utilizes the expressive power of deep
neural networks.

• We provide theoretical guarantees on the correctness
of the reframed GES algorithm and the consistency of
the NCD estimator to measure conditional dependence
under mild conditions, and demonstrate the empirical
advantages of the resulting method in causal discovery.

2 BACKGROUND AND RELATED WORK

2.1 PRELIMINARIES AND NOTATIONS

Let G = (V,E) be a directed acyclic graph (DAG) con-
sisting of nodes V = (X1, . . . , Xd), each of which is a
(possibly multi-dimensional) random variable, and directed
edges E that connect pairs of nodes. Let PaGi be the set of
parents of node Xi. We denote the joint distribution of V by
PV. A basic problem of causal discovery aims at inferring
the unknown causal DAG G from an independent and iden-
tically distributed (i.i.d.) sample from PV. In general, we
need assumptions relating the DAG G and the distribution
PV to make the task possible. A principle adopted by all
causal discovery methods is the causal Markov condition:
PV is Markovian with respect to DAG G, in the sense that
every conditional independence statement entailed by G ac-
cording to the standard Markov property of DAGs is true
of PV. We also assume the commonly adopted faithfulness
assumption: PV is faithful with respect to DAG G, in the
sense that every conditional independence statement true of
PV is entailed by G. If two DAGs G1 and G2 entail the same
set of conditional independence statements, they are said to
be Markov equivalent. The set of all DAGs that are Markov
equivalent to a DAG G is called the Markov equivalence
class (MEC) of G, which can be represented by a completed
partially directed acyclic graph (CPDAG). For random vari-
ables X,Y and Z, we write X ⊥⊥ Y | Z to mean that X
and Y are conditionally independent given Z.

2.2 RELATED WORK ON CAUSAL DISCOVERY

The point that GES can be recast in the spirit of a constraint-
based method has been noted in the literature, most recently
by Chickering [2020] and most explicitly by Nandy et al.
[2018]. To our knowledge, however, the idea of running



GES without a global scoring metric has not been suffi-
ciently explored. In Nandy et al.’s insightful discussion, for
example, they emphatically show how a consistent global
score can be constructed from local conditional dependence
scores in multivariate Gaussian and nonparanormal settings,
and stop short of considering the option of dispensing with
global scoring altogether. As we aim to demonstrate in this
paper, a reframed GES without global scoring is especially
flexible and useful in a nonparametric context.

In our experiments, we use a number of state-of-the-art
causal discovery algorithms for comparison, in addition to
the aforementioned PC and standard GES. One of them is
the CAM algorithm [Bühlmann et al., 2014], which decou-
ples the search for the causal ordering from the selection of
parents for each variable, by leveraging an additive model-
ing assumption. Huang et al. [2018] propose a generalized
score function (GSF) and apply it in the GES algorithm.
Specifically, they transform the statistical decision about
conditional independence to a model selection problem for
a regression task in an RKHS, define a score based on the pe-
nalized log-likelihood for the kernel regression, and then use
the score to guide local moves in GES. This work is closely
related to ours in that both works are motivated by the goal
to develop a nonparametric score to guide the local moves
of GES. However, our approach differs from GSF in at least
two notable aspects. First, by highlighting the sufficiency
of designing a local score that enables consistent statistical
decisions about conditional independence, we propose a
simpler and more flexible way to dispense with parametric
assumptions in GES. Second, the specific score we propose
is based on neural networks rather than kernels and hence
enjoys better computational efficiency when scaling to large
sample size. Another earlier work sharing a similar spirit is
the kernel generalized variance (KGV) [Bach and Jordan,
2002], which is also compared in our experiments.

Other methods follow Zheng et al. [2018], who reformulate
the original combinatorial problem into a continuous opti-
mization problem, named NOTEARS, which is solved us-
ing the augmented Lagrangian algorithm. Several follow-up
works extend NOTEARS to nonlinear causal models, includ-
ing DAG-GNN [Yu et al., 2019], GraN-DAG [Lachapelle
et al., 2020], and Ng et al. [2022], all of which utilize neural
networks to model the nonlinear causal relations. In addition,
Zhu et al. [2020], Wang et al. [2021] adopt policy gradient
to search for a DAG with the optimal score.

Since the main purpose of this work is to make GES more
applicable in nonparametric settings, in our comparisons
we focus mainly on methods that are designed to handle
data for continuous variables generated from fairly complex,
nonlinear models, and leave out some important methods
designed to learn Bayesian networks for discrete variables,
such as Bartlett and Cussens [2017].

2.3 RELATED WORK ON CONDITIONAL
INDEPENDENCE

Conditional independence plays an important role in many
statistics and machine learning problems, ranging from
graphical models [Koller and Friedman, 2009] to invari-
ance learning [Arjovsky et al., 2019]. A number of studies
were devoted to characterizing conditional independence
or developing conditional independence tests. Gretton et al.
[2005] introduce the Hilbert-Schmidt independence crite-
rion (HSIC), which is extended by Fukumizu et al. [2007] to
cover conditional independence and used for a conditional
independence test. Recently, Azadkia and Chatterjee [2021]
propose a surprisingly simple nonparametric measure of
conditional dependence based on ranking statistics, which
we refer to as the Rank Conditional Dependence (RCD)
measure and will use later to illustrate the flexibility of our
approach. Other works focus on constructing tests of con-
ditional independence by proposing various test statistics,
including the kernel conditional independence test [Zhang
et al., 2011] and the test based on a generalized covariance
measure [Shah and Peters, 2020], among others.

3 REFRAMING THE GES ALGORITHM

3.1 STANDARD GES

The GES algorithm [Chickering, 2002] searches over the
space of MECs of DAGs, which are represented by CPDAGs.
The connectivity in the search space is given by the
independence-map (IMAP) relation: graph G is an IMAP of
graph G′ if every conditional independence entailed by G is
entailed by G′. The standard GES uses a scoring function
that assigns a score to every DAG given data, and uses the
score of a representative DAG in a MEC as that for the
MEC. The search strategy consists of two phases, a phase
of forward equivalence search (FES) followed by a phase of
backward equivalence search (BES). In FES, the procedure
starts with the empty CPDAG (the one with no edges), and
moves at each step to a best-scoring CPDAG with one more
adjacency (that is an IMAP of the previous CPDAG), until
the score cannot be improved by adding more adjacencies.
In BES, the procedure starts with the output from FES, and
moves at each step to a best-scoring CPDAG with one fewer
adjacency (of which the previous CPDAG is an IMAP), until
the score cannot be improved by deleting more adjacencies.

We enter some details of FES to highlight the observation
that motivates the subsequent reframing. The case of BES is
analogous. In FES, each step considers possible insert-one-
edge operations on the current CPDAG. Following Chicker-
ing [2002], for non-adjacent nodes Xi and Xj in a CPDAG
P , and for any subset T of the neighbors of Xj (i.e., nodes
that are connected to Xj by undirected edges) that are not
adjacent to Xi, the Insert(Xi, Xj ,T) operator modifies P



to obtain P ′ by inserting the directed edge Xi → Xj , and
for each T ∈ T, directing the previously undirected edge
between T and Xj as T → Xj . If the validity condition
in Chickering [2002, Theorem 15] is met, then there is a
representative DAG G in the MEC represented by P and
a representative DAG G′ in the MEC represented by P ′,
such that G′ is the result of inserting Xi → Xj in G (which
implies that P ′ is an IMAP of P).

In Chickering’s (2002) proof of the asymptotic correctness
of GES under the causal Markov and faithfulness assump-
tions, the crucial condition is that the “local” decision be-
tween G and G′ mentioned above asymptotically tracks
whether a certain conditional independence relation holds.
We make this notion precise in the following definition, in
which D denotes an i.i.d. sample with size n from the joint
distribution PV of V.

Definition 1 (Independence-tracking decision criterion).
Let G and G′ be two DAGs over V that are exactly the same
except that G′ contains an edge Xi → Xj that does not ap-
pear in G. A decision criterion (based on data D) to choose
between G and G′ (among other options) is independence-
tracking if the following two properties hold in the large
sample limit:

(i) If Xj ⊥⊥ Xi | PaGj (according to PV), then the deci-
sion criterion favors G over G′.

(ii) Otherwise, the decision criterion favors G′ over G.

In the standard GES algorithm, a scoring function for DAGs
is used to make such local decisions. The induced decision
criterion is independence-tracking if the scoring function
satisfies the so-called local consistency [Chickering, 2002,
Definition 6]. Indeed, Definition 1 is a straightforward gen-
eralization of the notion of local consistency for scoring
functions. The generalization serves to highlight a simple
but important observation: the crucial condition for the opti-
mality of GES can be implemented by a (locally consistent)
score function for DAGs, but does not necessitate such a
function.

3.2 REFRAMED GES

We now describe a simple alternative way to implement an
independence-tracking decision criterion for GES, by using
any consistent measure of conditional dependence, in the
following sense:

Definition 2 (τ -consistency). Consider a set of statistics
T = {Tn(X,Y |Z) | X,Y ∈ V,Z ⊆ V\{X,Y }} (in-
tended to measure conditional dependence) depending on
the sample D with size n. T is said to be τ -consistent
with parameter τ > 0 if for every X,Y ∈ V and Z ⊆
V\{X,Y }, the following two conditions hold in the large
sample limit:

(i) IfX ⊥⊥ Y | Z (according to PV), then Tn(X,Y |Z) <
τ .

(ii) Otherwise, Tn(X,Y |Z) > τ .

For our purpose, the following sufficient condition for the τ -
consistency in Definition 2 is useful. All proofs are deferred
to Appendix B.

Proposition 1. Suppose for every X,Y ∈ V and Z ⊆
V\{X,Y }, T∗(X,Y |Z) ≥ 0 is a quantity depending on
PV such that

T∗(X,Y |Z) = 0 if and only if X ⊥⊥ Y | Z.

Let T̂n(X,Y |Z) form a set of statistics indexed by X,Y ∈
V and Z ⊆ V\{X,Y }. If T̂n(X,Y |Z) → T∗(X,Y |Z)
in probability as n → ∞ for every X,Y ∈ V and
Z ⊆ V\{X,Y }, then there exists τ > 0 such that
{T̂n(X,Y |Z)} is τ -consistent.

This proposition provides a way to construct a τ -consistent
set of statistics. One first defines a population quantity that
takes the boundary value if and only if the conditional inde-
pendence in question holds. Then one constructs a consis-
tent estimator for this quantity given an i.i.d. sample. The
aforementioned measures including HSIC [Fukumizu et al.,
2007] and RCD [Azadkia and Chatterjee, 2021] were both
developed along this line. In the next section, we will pro-
pose a new measure of conditional dependence based on a
neural network implementation.

It is worth noting the essential difference between our de-
fined τ -consistent statistics and conditional independence
tests. We note that the condition in Proposition 1 indicates
that when X ⊥⊥ Y | Z, the statistic T̂n(X,Y |Z) converges
to 0 in probability, i.e., T̂n = op(1). By contrast, in a typ-
ical conditional independence test, one usually uses a test
statistic that, under the null hypothesis of conditional inde-
pendence, follows an asymptotic null distribution, which is
then used to develop a decision rule. This means that when
X ⊥⊥ Y | Z, the test statistic is stochastically bounded,
i.e., Op(1), but not necessarily op(1). Therefore, it is in
general non-trivial to define a τ -consistent statistic from a
conditional independence test.

With a τ -consistent T̂ (X,Y |Z), it is straightforward to im-
plement an independence-tracking decision criterion to be
used in GES. Specifically, at each step in FES, to each (valid)
operator Insert(Xi, Xj ,T) we assign T̂ (Xi, Xj |PaGj ) as
its “local score” (where G is the DAG representing the cur-
rent CPDAG induced by the operator), and apply the opera-
tor with the highest local score (indicating conditional de-
pendence), unless all remaining valid insert operators yield
a local score lower than the threshold τ . Similarly, at each
step in BES, to each (valid) operator Delete(Xi, Xj ,H),
we assign T̂ (Xi, Xj |PaGj ) as its local score (where G is the
DAG representing the CPDAG the operator would produce),



Algorithm 1 The update step in the reframed FES
Input: the current CPDAG P , sample D, a list of valid insert
operators INS, statistics T̂ (X,Y |Z), threshold τ
Output: the next CPDAG P ′

Set s = 0 and I = NULL.
for Insert(Xi, Xj ,T) ∈ INS do

Let G be the representative DAG of P corresponding to
Insert(Xi, Xj ,T).
Evaluate Score(Xi, Xj ,T) = T̂ (Xi, Xj |PaG

j ).
if Score(Xi, Xj ,T) > s then

Let s = Score(Xi, Xj ,T) and I =
Insert(Xi, Xj ,T).

end if
end for
if s > τ then

Apply operator I to obtain P ′.
else

Keep P ′ = P (and terminate FES).
end if
return P ′

and apply the operator with the lowest local score (indicat-
ing conditional independence), unless all remaining valid
delete operators yield a score greater than τ . The update
step of FES is summarized in Algorithm 1, and the dual
update step of BES is given in Appendix A.

We call the GES algorithm with these update steps the re-
framed GES. Unlike the standard GES, this reframed GES
does not optimize a global score for MECs. However, by us-
ing a suitable local score for choosing operators to apply (or
to stop), the local decision criterion remains independence-
tracking, and as a result the asymptotic optimality of the
reframed GES algorithm is still guaranteed, as stated in the
following theorem.

Theorem 2. Under the causal Markov and faithfulness as-
sumptions, the reframed GES procedure using a τ -consistent
T̂ (X,Y |Z) recovers the MEC of the true graph in the large
sample limit.

4 NEURAL CONDITIONAL
DEPENDENCE MEASURE

In this section, we propose a novel measure of conditional
dependence. Let X , Y , and Z be three random variables
taking values in RdX , RdY , and RdZ , respectively, where
dX , dY , and dZ are the corresponding dimensions. We as-
sume that their joint distribution is absolutely continuous
with respect to Lebesgue measure with density p∗ defined on
RdX+dY +dZ . The conditional independence betweenX and
Y given Z is defined by p∗(x, y, z) = p∗(x|z)p∗(y|z)p∗(z)
for all x, y, z with p∗(z) > 0 [Dawid, 1979].

The following lemma from Daudin [1980] characterizes the
conditional independence, which has given rise to several
hypothesis testing methods. Let L2

Z , L2
XZ , and L2

Y Z be the

spaces of square integrable functions of Z, (X,Z), and
(Y, Z), respectively, e.g., L2

XZ = {f : RdX+dZ → R |
E[f(X,Z)2] <∞}.

Lemma 3 (Daudin [1980]). The random variables X and
Y are conditionally independent given Z if and only if

E[f(X,Z)g(Y,Z)] = 0,

for all f ∈ L2
XZ and g ∈ L2

Y Z such that E[f(X,Z)|Z] = 0
and E[g(X,Z)|Z] = 0.

At the population level, given a ground truth density p∗, we
propose the following measure of conditional dependence
between X and Y given Z:

S(X,Y |Z) = sup
f,g

ρ2(f(X,Z)−h∗(Z), g(Y,Z)− l∗(Z)) (1)

where f ∈ L2
XZ and g ∈ L2

Y Z are test functions, h∗(Z) =
E[f(X,Z)|Z], l∗(Z) = E[g(Y, Z)|Z], and ρ(X1, X2) =
cov(X1, X2)/

√
var(X1)var(X2) denotes the Pearson cor-

relation coefficient of two random variablesX1 andX2. The
reason for using the correlation coefficient rather than the
covariance is that after normalization by the variances, the
characteristic is bounded between [−1, 1]. This makes the
measure well-defined in a bounded range and the computa-
tion of its subsequent sample version numerically stable.

Based on Lemma 3, we have the following simple theorem
which characterizes the property of the measure (1) and
establishes an equivalence condition between the measure
and conditional independence.

Theorem 4. For all p∗, we have S(X,Y |Z) ∈ [0, 1] and
S(X,Y |Z) = 0 if and only if X ⊥⊥ Y | Z.

Having defined the measure S(X,Y |Z), we now make the
computation tractable. We use deep neural network classes
to parametrize the test functions f, g and the conditional
expectations h, l in (1). Formally, we write fθ, gϕ, hω, lψ,
where the subscripts denote the parameters of the corre-
sponding neural networks. We then exploit the approxima-
tion

sup
θ,ϕ

ρ2(fθ(X,Z)− hω∗(Z), gϕ(Y,Z)− lψ∗(Z)), (2)

where hω∗(z) = h∗(z) and lψ∗(z) = l∗(z). Accord-
ing to the universal approximation theorem of neural net-
works [Hornik et al., 1989], equation (2) can approximate
the true measure (1) with arbitrary accuracy by choosing
the appropriate network architecture. Since here we mainly
focus on the statistical property of the estimator proposed
below, we ignore the small approximation error (i.e., the
gap between (2) and (1)) in the analysis for simplicity.

Next, we present a consistent estimator of S(X,Y |Z). Let
D = {(xi, yi, zi), i = 1, . . . , n} be the collection of i.i.d.



Algorithm 2 Computing the NCD score
Input: sample D, horizon Tt, Tr , initial θ, ϕ, ω, ψ
Output: NCD score
1: for tt = 1, 2, . . . , Tt do
2: for tr = 1, 2, . . . , Tr do
3: Update ω by descending

∑
i∇ω(fθ(xi, zi)− hω(zi))

2

4: Update ψ by descending
∑
i∇ψ(gϕ(yi, zi)− lψ(zi))

2

5: end for
6: Update θ, ϕ by ascending the gradient of

ρ̂2(fθ(X,Z)− hω(Z), gϕ(Y,Z)− lψ(Z))
7: end for
8: Compute ŝ = ρ̂2(f(X,Z)− h(Z), g(Y,Z)− l(Z))
9: return ŝ

copies of (X,Y, Z) ∼ p∗. Our estimator of S(X,Y |Z) is
given by

Ŝn(X,Y |Z) = sup
θ,ϕ

ρ̂2
(
fθ(X,Z)−hω̂(Z), gϕ(Y,Z)− lψ̂(Z)

)
,

(3)
where ρ̂ is the sample correlation coefficient based on data
D, and

ω̂ = argmin
ω

1

n

n∑
i=1

(fθ(xi, zi)− hω(zi))
2,

ψ̂ = argmin
ψ

1

n

n∑
i=1

(gϕ(yi, zi)− lψ(zi))
2,

(4)

are the estimators of ω∗ and ψ∗.

Remark. The estimators in (4) based on regression come
from the fact that E[f(X,Z)|Z] = argminh E[f(X,Z)−
h(Z)]2, which is proved in Appendix B.

We call the proposed estimator (3) the neural conditional
dependence (NCD) estimator and its population version (2)
the NCD measure. Since (3) solves a bilevel optimization
problem involving regression problems (4), we adopt an
alternating gradient descent scheme to obtain the NCD esti-
mator. The procedure is summarized in Algorithm 2, where
we alternately update the test functions fθ, gϕ and nonlinear
regressors hω, lψ for Tt and Tr steps, respectively.

To study the asymptotic behavior of the proposed estimator,
we assume the following regularity conditions, all of which
are mild assumptions commonly adopted in the literature.

C1. The parameter spaces θ ∈ Θ, ϕ ∈ Φ, ω ∈ Ω, and
ψ ∈ Ψ are compact.

C2. fθ(x, z), gϕ(y, z), hω(z), and lψ(z) are continuous
with respect to the corresponding parameters and data
x, y, z.

C3. fθ(x, z), gϕ(y, z), hω(z), and lψ(z) are dominated
square integrable, i.e., there exists a dominating func-
tion F (x, z) such that |fθ(x, z)| ≤ F (x, z) for all θ
and E[F (X,Z)]2 <∞.

C4. For all θ, ϕ, there exist unique ω∗(θ) ∈ Ω and ψ∗(ϕ) ∈
Ψ such that hω∗(z) = h∗(z) and lψ∗(z) = l∗(z) al-
most surely, respectively.

The following theorem establishes the consistency of
Ŝn(X,Y |Z) as an estimator of the population measure
S(X,Y |Z).

Theorem 5. Under the regularity conditions C1-C4, as n→
∞, we have Ŝn(X,Y |Z) → S(X,Y |Z) in probability.

Finally, we apply the NCD measure to causal discovery
through the reframing of GES in the previous section. We
plug the estimator Ŝn into the reframed GES procedure
as the “local score”. Based on Theorems 4 and 5, by ap-
plying the sufficient condition in Proposition 1, we know
that Ŝn(X,Y |Z) satisfies the τ -consistency in Definition 2
with some τ > 0. Then Theorem 2 implies the asymptotic
correctness of our method to recover the true MEC.

In addition, to demonstrate the flexibility of our reframed
GES algorithm in incorporating various conditional depen-
dence measures, we will also test a version of our procedure
using the RCD measure recently proposed by Azadkia and
Chatterjee [2021], because it is very easy to compute. The
RCD estimator can be shown to satisfy the τ -consistency
and hence suits our framework well. For completeness, we
provide a description of RCD in Appendix C.

5 EXPERIMENTS

In this section, we compare our proposed method with vari-
ous existing state-of-the-art causal discovery approaches on
both synthetic and pseudo-real data sets. Baseline methods
include score-based methods using BIC [Chickering, 2002],
KGV [Bach and Jordan, 2002], and GSF [Huang et al.,
2018]; a constraint-based method, PC algorithm [Spirtes
et al., 2000]; a method based on structural causal model,
CAM [Bühlmann et al., 2014]; as well as the emerging
methods in the continuous optimization paradigm includ-
ing NOTEARS [Zheng et al., 2018], DAG-GNN [Yu et al.,
2019], and GraN-DAG [Lachapelle et al., 2020]. The details
of the experimental settings and hyperparameters (including
the choice of τ ) of baseline methods and ours are given in
Appendix D.1

The causal discovery performance is evaluated using three
metrics: the structural hamming distance (SHD), the struc-
tural interventional distance (SID) [Peters and Bühlmann,
2015] and the F1 score. Since our method and many base-
line approaches return a CPDAG representing an MEC, both
SHD and SID are evaluated between the learned and ground-
truth CPDAGs. Then the SHD is the smallest number of

1Our code is available at https://github.com/
xwshen51/GES-NCD.

https://github.com/xwshen51/GES-NCD
https://github.com/xwshen51/GES-NCD


Setting GP (1k) GP (5k) MULT (1k) MULT (5k)

Methods SHD F1 score SHD F1 score SHD F1 score SHD F1 score

NCD 5.6±2.5 0.63±0.14 4.2±2.3 0.71±0.14 6.2±2.9 0.59±0.08 5.6±2.4 0.60±0.08
RCD 9.0±0.7 0.41±0.07 8.4±1.1 0.53±0.08 7.4±2.1 0.51±0.09 3.2±1.3 0.67±0.07
PC 8.8±1.6 0.36±0.15 7.2±2.4 0.50±0.16 7.6±1.7 0.44±0.15 4.6±1.8 0.57±0.13
BIC 7.0±2.8 0.49±0.20 6.0±2.5 0.59±0.17 4.2±2.9 0.65±0.09 4.4±3.4 0.62±0.11
KGV 8.5±1.1 0.37±0.08 7.5±0.5 0.51±0.06 9.0±1.9 0.35±0.14 7.2±0.7 0.47±0.07
CAM 6.0±3.5 0.50±0.26 7.2±3.7 0.52±0.22 10.8±1.8 0.09±0.07 11.2±2.3 0.13±0.15
NOTEARS 11.4±0.9 0.06±0.08 11.6±0.9 0.06±0.08 24.8±3.8 0.36±0.07 23.6±4.7 0.37±0.07
DAG-GNN 11.0±1.7 0.00±0.00 11.4±1.8 0.03±0.07 16.4±2.6 0.37±0.13 13.6±3.4 0.40±0.10
GraN-DAG 10.6±1.1 0.05±0.06 12.2±1.8 0.12±0.04 8.6±2.6 0.54±0.12 10.2±1.9 0.51±0.08
GSF 6.4±3.5 0.55±0.19 >12h 3.0±1.1 0.67±0.06 >12h

Table 1: SHD and F1 score on PNL data sets with 10 nodes, 2 expected degrees, and 1000 and 5000 samples.

Setting GP (1k) GP (5k) MULT (1k) MULT (5k)

Methods SHD F1 score SHD F1 score SHD F1 score SHD F1 score

NCD 28.4±3.6 0.55±0.05 24.6±3.8 0.58±0.08 29.2±4.6 0.52±0.07 29.8±5.1 0.57±0.09
RCD 32.8±2.2 0.39±0.11 32.6±4.7 0.44±0.10 31.4±4.5 0.43±0.14 27.2±3.3 0.54±0.06
PC 37.6±1.3 0.18±0.09 36.0±2.7 0.26±0.05 36.2±1.8 0.23±0.06 34.4±1.5 0.32±0.08
BIC 33.0±2.1 0.45±0.06 30.8±3.3 0.50±0.09 30.8±5.6 0.43±0.09 35.0±3.9 0.39±0.07
KGV 37.8±0.7 0.20±0.08 34.2±3.9 0.33±0.07 37.2±1.6 0.27±0.02 37.4±2.2 0.31±0.06
CAM 33.0±5.6 0.42±0.13 30.6±3.4 0.50±0.11 35.2±2.8 0.25±0.07 34.4±6.5 0.31±0.15
NOTEARS 38.8±1.9 0.13±0.05 38.4±1.8 0.13±0.05 39.0±1.6 0.33±0.04 39.0±1.9 0.34±0.07
DAG-GNN 39.2±1.3 0.03±0.02 39.2±2.3 0.05±0.09 37.8±2.4 0.26±0.10 39.6±1.1 0.25±0.12
GraN-DAG 34.0±7.9 0.18±0.09 35.4±6.9 0.30±0.13 37.4±3.2 0.20±0.08 37.0±3.5 0.27±0.09
GSF 34.0±3.0 0.39±0.05 >12h 31.6±3.2 0.38±0.09 >12h

Table 2: SHD and F1 score on PNL data sets with 10 nodes, 8 expected degrees, and 1000 and 5000 samples.

edge additions, deletions, and reversals to convert the esti-
mated CPDAG into the true CPDAG. The SID counts the
number of pairs (Xi, Xj) such that the interventional dis-
tribution p(xj |do(Xi = x)) would be miscalculated if we
chose the parent adjustment set from the estimated graph.
We report the SIDs corresponding to the best and worst
DAG in the learned MEC. The SHD and SID are computed
using functions corresponding to CPDAGs in the Causal
Discovery Toolbox [Kalainathan et al., 2020]. The F1 score
is defined as the harmonic mean of the precision and the
recall. Computing the F1 score involves summarizing the
number of correctly estimated edges. Directed edges in the
ground-truth CPDAG are deemed correctly estimated if the
learned CPDAG contains exactly the same directed edge
and are deemed incorrectly otherwise. Undirected edges
in the ground-truth CPDAG are converted to two directed
edges in the adjacency matrix. When the learned CPDAG
contains exactly the same undirected edge, both converted
directed edges are correctly estimated. One directed edge
and no edge in the learned CPDAG are deemed as correctly
estimating 1 and 0 edge, respectively. In general, a lower
SHD or SID and a higher F1 score indicate a better estimate.

5.1 SYNTHETIC DATA

As mentioned in previous sections, when a data set does
not satisfy the additive Gaussian noise assumption, many
existing methods such as BIC, CAM, NOTEARS, and GraN-
DAG suffer from model misspecification and thus may lead
to misleading results. In contrast, nonparametric methods
like GSF and ours in principle will not be affected. Here
we consider the well-known post nonlinear (PNL) causal
models [Zhang and Hyvarinen, 2009]. A general PNL model
expresses each variable Xi as

Xi = gi,2(gi,1(Pai) +Ni), i = 1, . . . , d,

where Pai contains the direct causes of Xi, Ni is the exoge-
nous noise variable, and gi,1 and gi,2 are nonlinear transfor-
mations.

To synthesize a data set, we first randomly generate a ground-
truth DAG G following the Erdős-Rényi (ER) graph model
and then generate data following G and two types of PNL
models that were also considered in Lachapelle et al. [2020].
The first one, called PNL-GP, samples gi,1 independently
from a Gaussian process with bandwidth one, takes gi,2



as the sigmoid function, and Ni ∼ Laplace(0, bi) with
bi ∼ U [0, 1]. All root variables in PNL-GP are sampled
from U [−1, 1]. The second one, named PNL-MULT, takes
gi,1(x) = log(sum(x)) where sum(x) takes the sum of
all components of a vector x, gi,2(·) = exp(·), and Ni ∼
|N (0, σ2

i )| with σ2
i ∼ U [0, 1]. All root variables in PNL-

MULT are sampled from U [0, 2]. This model is adapted
from Zhang et al. [2015].

Tables 1 and 2 present the results of SHD and F1 score on
sparse and dense graphs with 10 nodes respectively, where
the error bars represent the standard deviations across 5 data
sets per setting. The results of SID are basically consistent,
which are deferred to Appendix E due to the space limit. Ad-
ditional results on graphs with 20 nodes are also presented
in Appendix E. We see that in general, the reframed GES
algorithm with our own NCD or the adopted RCD (shown
in the first two lines of all tables) performs the best across
all settings, except in the sparse PNL-MULT data where
GSF is the best. The advantages of our methods on the more
challenging dense graphs are more significant than those on
sparse ones. In most cases, NCD outperforms RCD, though
RCD produces excellent results on PNL-MULT with a larger
sample. From the perspective of implementation, RCD may
be favored over NCD in terms of fewer hyperparameters and
less computational cost. In addition, our methods exhibit
similarly good performances across different ground-truth
models, while most other methods tend to perform well on
at most one setting, which indicates the robustness of our
nonparametric approach against different distributions.

GSF, as another kernel-based nonparametric score, performs
very well on PNL-MULT with a sparse structure, but is less
competitive in other settings. Note that we only report the
results of GSF using 1000 samples, because even for the
sparse graph, it takes around 17 hours for a single run with
5000 samples compared to around 19 minutes with 1000
samples. In contrast, our NCD-based method can benefit
from a larger sample size while taking similar computational
time as with a smaller sample (both within 4 minutes in the
sparse case). In Appendix E, we discuss more details re-
garding the computational time of different methods. KGV
leads to inferior performance in all settings. The standard
GES with the linear-Gaussian BIC score sometimes per-
forms well on PNL-MULT; a possible reason is that when
the noise variance σ2

i ∼ U [0, 1] happens to be small, the
PNL-MULT model behaves similarly to a linear-Gaussian
model, leading to a case with minor misspecification for
BIC. This may also partly account for the fact that PC per-
forms better on PNL-MULT than on PNL-GP; that is, a
PNL-MULT data set can be similar to linear-Gaussian data
which would satisfy the model assumption made in the hy-
pothesis testing. CAM performs better on PNL-GP than on
PNL-MULT and achieves the best SID in one case, as shown
in Appendix E. The continuous optimization methods are
inferior on these PNL data sets, which could be explained

Method SHD SID F1 score

NCD 2.6±2.9 [2.0±3.7, 14.2±2.8] 0.73±0.15
PC 3.0±1.3 [7.4±4.3, 14.9±3.7] 0.57±0.11
KGV 4.1±1.6 [3.7±3.3, 17.8±2.8] 0.58±0.11
DAG-GNN 4.3±2.3 [4.1±3.9, 15.6±4.1] 0.59±0.27
GSF 4.7±3.0 [4.3±4.2, 15.6±3.0] 0.61±0.17
BIC 4.7±0.9 [4.8±3.8, 16.2±2.7] 0.57±0.00

Table 3: Results on 10 multi-dimensional data sets.

by their misspecification of the model.

In addition, we evaluate our methods in a multi-dimensional
scenario where each node may have more than one dimen-
sion. Note that our NCD estimator can be readily applied
to the multi-dimensional setup by adjusting the input di-
mension of the test functions, while the rank-based RCD
measure unfortunately cannot be directly applied here. Some
of the baseline methods, including CAM, NOTEARS, and
GraN-DAG do not apply to the multi-dimensional case, so
we do not compare with them in this setting. We use 10 syn-
thetic data sets from Huang et al. [2018], each with 5 nodes
and a sample size of 1000. As shown in Table 3, our ap-
proach outperforms the baseline methods in all three metrics.
PC, KGV, and GSF are the second-best performing methods
in terms of SHD, SID, and F1 score, respectively, though
they all give an inferior performance in other metrics.

5.2 PSEUDO-REAL DATA

Although the synthetic data sets from PNL models can ex-
pose the model misspecification problem in many existing
methods, they differ from the additive noise setup only by
the nonlinearity gi,2, and hence amount to relatively mild
cases of misspecification. In this section, we consider a
pseudo-real data set sampled from the SynTReN genera-
tor [Van den Bulcke et al., 2006] where there is no guarantee
at all for model specification. We evaluate on the 10 data
sets sampled by Lachapelle et al. [2020], each with 20 nodes
and a small sample size of 500. In addition, we consider a
real Bayesian network, CHILD network (with 20 nodes),
and randomly generate 3000 samples following the PNL-GP
model introduced in the previous section.

As shown in Table 4, on SynTReN, most baseline methods
perform poorly, indicating a potentially severe violation of
their model assumptions. Our reframed GES with NCD and
with RCD obtain the best SHDs. The results on SynTReN
suggest the potential advantage of nonparametric causal
discovery methods in real applications where model mis-
specification is common and possibly grave. Moreover, our
methods also obtain the best performance on the real graph
structure CHILD. Note that on this large data set with 3000
samples, the kernel-based methods GSF and KGV face seri-
ous computational challenges in that they take more than 12



Method SynTReN CHILD

NCD 30.0±5.8 16.8±3.3
RCD 30.9±4.8 14.0±5.8
PC 37.4±4.1 22.6±9.4
BIC 65.8±10.8 32.8±16.8
NOTEARS 99.8±14.4 23.6±1.9
DAG-GNN 38.5±5.1 28.8±3.2
GraN-DAG 58.7±10.0 17.2±2.1
KGV 39.9±8.0 >12h
GSF 52.1±8.9 >12h

Table 4: SHD on pseudo-real data.

hours for a single run. Therefore, we expect our method to
exhibit even more advantages than the kernel-based methods
in large-scale scenarios.

6 CONCLUSION

In this work, we presented a reframed GES algorithm that
works with a measure of conditional dependence rather than
a scoring metric for graphs. This way the algorithm is easily
applicable in a nonparametric setting with a theoretical guar-
antee. We also proposed a neural conditional dependence
(NCD) measure based on a deep neural network implemen-
tation, and established its theoretical properties that make it
suitable for the reframed GES. The resulting causal discov-
ery algorithm was shown in our experiments to be superior
or competitive in comparison to a number of state-of-the-art
methods. It also enjoys a significant advantage over kernel-
based nonparametric methods in large-scale settings, since
the latter are usually infeasible when the sample size is
relatively large. For future work, we plan to explore a con-
tinuous optimization formulation of causal discovery based
on such nonparametric conditional dependence measures.
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