
Tailoring 3D Mapping Frameworks for Field Robotics*

Ferreira, Francisco do C., Zaera, Martı́, Karfakis, Panagiotis T. and Couceiro, Micael S.

Abstract— Mapping is an essential part for the adoption of
robots in agricultural and forestry environments. Providing
the robot with the ability to map its surroundings, facilitates
its navigation and is necessary for implementing obstacle
avoidance, without human interference. Herein we present the
challenges of outdoor environments, present an overview of
existing mapping frameworks and then evaluate their suitability
for field applications. Two widely used mapping frameworks,
OctoMap and RTAB-Map are analyzed within the Robot
Operating System (ROS) ecosystem and a parametric study
is carried out in order to assess their performance, under both
simulated and real-world constraints. Finally this work aims to
be utilized as a deployment reference guide for mobile robotic
applications in outdoor environments.

I. INTRODUCTION

In field robotics, systems are developed to replace humans
in laborious, repetitive and dangerous tasks, with a goal of
higher workflow efficiency and lowering associated costs.
Industrial applications rely on structured conditions and
have some indicative representation of the environment (e.g,
factory floorplan) available, prior to robot deployment. In
non-structured environments, this can only be achieved if
the mobile robots are endowed with mapping capabilities,
be it to find a path from its current location to a given target
location, or to properly identify obstacles, people and other
relevant surrounding features [22].

Initially, we start by addressing the challenges inherent to
mapping in field robotics, defining a set of key performance
indicators that need to be taken into account when selecting
or developing a mapping framework (Section II). Then we
describe and theoretically compare the most widely adopted
mapping frameworks compatible with the Robot Operating
System (ROS) (Section III).

From this comparison, we select OctoMap and RTAB-Map
as the most promising robotic mapping frameworks, capable
of tackling the challenges of field applications (Section IV).
An experimental comparison of both methods is supported by
the parametric study of the methods, in terms of simulation
and real-world experiments (Section IV).

This work contributes to the preparation of a properly
tailored mapping framework for field robotics. We investigate
which is the the most prominent mapping framework and
evaluate it on our mobile robotic platforms in a simulated
and real world application scenarios, and finally provide our
results to serve as guide for future applicability within the
robotics domain.

*This work is co-funded by the program Portugal 2020, under both SEM-
FIRE (ref. CENTRO-01-0247-FEDER-032691) and SAFEFOREST (ref.
CENTRO-01-0247-FEDER-045931) R&D projects and the by the European
Union’s Horizon 2020 research and innovation programme 5GSmartFact
(under the Marie Skłodowska-Curie grant agreement ID 956670).

II. OUTDOOR MAPPING

Mapping for robots operating in outdoor environments has
been studied for several decades. Despite many years of
research, many problems are not robustly solved yet, due to
difficulties in dealing with ever changing environmental con-
ditions, the homogeneity of natural landscapes, the diversity
of natural obstacles and especially the effect of vibrations
or external forces, among other technical challenges [19, 12,
24].

Field robots are required to operate under irregular
terrain and deal with dynamic obstacles [20]. For that,
robots need to be able to generate maps taking into account
parameters such as update capability [17], flexibility [1], loop
closures [6] and sharing efficiency [11].

As maps are typically used for navigation, localization is
a key factor. The robot is equipped with a set of sensors,
capable of acquiring relevant information of its surroundings
and eventually determining its own location within the map.
This process is known as Simultaneous Localization and
Mapping (SLAM). Perception limitations exist, such as max-
imum sensor ranges and potential obstructions from obstacles
which are common problems in laser and visual methods.

All sensors have measurement noise that can be caused
by the robot motion, reflecting surfaces, signal obstruction
and interference from other external effects which are dif-
ficult to model. This calls upon the need to implement
filters to reduce these errors, such as the Kalman Filter [26],
Extended Kalman Filter [25], Unscented Kalman Filter [18],
Particle Filter [23] and graph-based optimization [5], among
others. Measurement noise poses a great challenge to robotic
mapping operating in outdoors.

Another challenge within robotic applications, lies in the
high dimensionality of map generation. The size and detail
of the map can have a heavy toll on computational resources,
such as memory and processing power and affect overall map
generation frequency and quality. The higher the resolution
the more time is required to generate it, as the features are
more and their processing is intensive.

One of the hardest problems in robotic mapping is the
correspondence problem, also known as loop closure or
data association [2, 6, 9]. This concept consists of the robot
being able to recognize a place previously visited via the
detection of landmarks [2] or features. These landmarks are
set during the exploration of the environment. The robot
sets nodes during the exploration and compares a new node
with previously detected nodes to detect feature similarities.
Finding enough correspondences can eventually lead to a
higher mapping accuracy, which reduces the accumulated



errors in the map.
However, some application scenarios may have similar

landmarks at different locations that may mislead the robot’s
perception, i.e. passing through two different lanes in a
vineyard. Furthermore, static landmarks may also change
in outdoor environments, be it due to day-night cycle, where
illumination is changing, or the effects of seasons, where
flora appearances and soil conditions change. By moving
large obstacles to different locations, affects the landmark
recognition process as they can alter the scene association
process. Other factors include removal or destruction of
previously mapped obstacles due to bio-degradation, fires,
floods and rock slides.

Dynamic environments can make the mapping process
very difficult. The examples given previously are effects that
happen over a long period of time. Others changes, however,
may happen more quickly, like a gate that was previously
open but now closed while revisiting that same location. Even
faster changes may occur due to moving entities, like people,
animals, vehicles and other robots. This problem aggravates
the loop closure problem, making it even harder to solve
[20].

Updatability is key to have a stable representation of
the environment. This requires establishing a format that is
compact and fast to update the map’s representation with
new information [15]. It also adds validity to the previously
recorded representation, without influencing the future re-
ceived data [17]. Most ways to solve this problem, are by
dividing the environment into subsets of homogeneous char-
acteristics based on geometric structures such as, occupancy
maps [15, 7], grids [8, 3], graphs [7] and trees [15].

Share-ability of maps is also an important feature in
multi-robot systems. The literature has been addressing this
under cloud robotics and robotic cluster domains. In field
robotics, cloud robotics might not be viable due to the
fact that, in remote locations, we may not have access
to a network connection, e.g. mining, forestry etc. This
is why the robotic cluster concept is often employed in
field robot applications. This approach focuses on sharing
the maps between robots directly, sharing their processing
capabilities within the robot cluster with an overall aim to
solve complicated computational problems. This promotes
locally distributed processing from individual robots to solve
high-dimension of problems [11].

III. MAPPING FRAMEWORKS

A mapping framework is a collection of software packages
that allows to run mapping algorithms. In our case we are
focusing on ROS-compatible mapping frameworks. ROS has
been chosen since it is the most widely employed open-
source meta-operating system for robotics, which provides
hardware abstraction, low-level device control, message-
passing between processes, and package management [13].
ROS encompasses multiple tools and libraries which are
constantly updated by the robotics community, with mapping
frameworks being abundant. However, whether or not those
mapping frameworks are in a deployable state for challenging

domains, such as agricultural or forestry applications, is
still unclear. Table I compares the most popular mapping
frameworks, addressing their readiness for adoption and
dealing with the challenges stated in the previous section.

GMapping is considered due to its popularity in indoor ap-
plications[14, 16]. Yet, as a 2D SLAM approach, GMapping
is unable to cope with the irregular terrain inherent to out-
door environments. The Elevation Map is a framework that
provides a map with 2.5 dimensions, i.e. it is a 2D map with
height information [8]. Compared to GMapping, the Eleva-
tion Map can be generated based on 3D LiDAR or a RGB-
D camera data and is able to cope with the irregularity of
outdoor terrains. Furthermore, Elevation Map uses Kalman
Filters to reduce the measurement errors. Nevertheless, the
Elevation Map cannot work well under dynamic environ-
ments, being unable to fully represent certain environments,
such as flying or suspended obstacles, such as bridges. The
representation provided by the Elevation Map framework is
enriched when combined with the Traversability Map [3].

The Traversability Map is an excellent source of infor-
mation for robot navigation algorithms, since it provides a
cost value to each point along the four cardinal directions
and their diagonals. With the recursive nature of multi-
layer perception, the Traversability Map’s processing power
requirements grow exponentially with the dimension of the
map. Furthermore, as opposed to other approaches, the
Traversability Map changes according to the robot’s current
position, making it very difficult, if not impossible, to
implement a global map, shareable by multi-robot systems.
Therefore, while this framework has been often used as a
local map[4], it cannot be used as a global map capable of
tackling all the aforementioned challenges.

Cartographer [10] uses local SLAM that builds sub-maps
to feed navigation systems and uses global SLAM that runs
on the background, being capable of detecting loop closures
[9]. It uses Extended Kalman Filter algorithms to address the
measurement noise and it is able to perform range odometry
using point clouds, while fusing the odometry from multiple
sources. Despite widely used, this framework presents a
few weaknesses, namely its inability to work well under
dynamic environments and very detailed environments and
is computationally intensive.

OctoMap [15] is a framework based on octrees and is
highly efficient in terms of 3D model storage, being able to
record huge environments in compact maps. OctoMap uses
a particle filter and a probabilistic approach to cope with the
measurement noise and continuously updates the map in a
efficient manner. Due to its octree representation, it can be
used as a a global mapping method for multi-robot systems,
allowing robots to efficiently share maps to each other.

RTAB-Map [7] is a mapping framework that can also in-
ternally integrate OctoMap for a more efficient representation
of 3D environmental maps. RTAB-Map can use a variety of
sensors such as stereo cameras, LiDAR sensors and RGB-D
cameras and create pointclouds of the environment. RTAB-
Map encompasses a loop closure detector that uses a bag-of-
words for feature detection and matching within images and



TABLE I
COMPARISON OF MAPPING FRAMEWORKS

Framework Irregular
Terrain

Noise
Filtration

High Dimensionality
of the Entity

Loop
Closure

Dynamic
Elements Updatability Muti-Robot

System
GMapping X X X X X X
Elevation Map X X X X X
Traversability Map X X X X X
Cartographer X X X X X
OctoMap X X X X X X
RTAB-Map X X X X X X X

laser data. Although it is an optimized mapping approach
, RTAB-Map still requires a high processing capability to
create maps.

From Table I, it is clear that both OctoMap and RTAB-
Map seem to be the most promising mapping frameworks for
generating global maps which are essential in mobile robotic
applications. Both provide shareable multi-session 3D maps
that can be well-suited for outdoor applications. The extent
and degree they can tackle the challenges inherent to field
applications is addressed in the next section.

IV. PARAMETRIC STUDY: OCTOMAP VS RTAB-MAP

This section describes the OctoMap and RTAB-Map
frameworks and establishes a parametric study with the
objective of obtaining a global map. The heuristic approach
we follow is the generation of a global map without errors,
despite the loss of descriptive information about minor
obstacles. This study has been supported by numerous ex-
periments, carried out under both simulation and real-world
experiments.

In each experiment, we tailor the parameters at hand
through trial and error while taking into account their effect
on the map creation process, in order to obtain a more
accurate and efficient map representation of the environ-
ment. It is noteworthy that no memory management has
been implemented in RTAB-Map in order to make a fair
comparison between the two packages even though this can
be detrimental on medium scale maps.

A. OctoMap

It is a probabilistic mapping framework implemented as
a library of algorithms in C++ and also as a ROS package
[15]. The package called OctoMap is used as a core and also
depends of OctoMap ros and OctoMap msgs to provide
messages, wrappers and conversion methods. The map is
built by OctoMap server and can be visualized with the
octovis tool.

OctoMap subscribes to an incoming 3D point cloud for
scan integration and provides:

• The free and occupied space compacted as an OctoMap
binary stream;

• The centers of all occupied voxels as a point cloud;
• The projected 2D occupancy grid representations.
The maps can be merged making use of

marble mapping for multi-robot applications.
OctoMap can be tuned using 38 parameters to improve

the quality of the map, taking into account the robot,

the environment and the mission. Through our several
experiments, the parameter sensor model/max range,
pointcloud min z and pointcloud max z had to be
reduced in order to avoid detecting slopes that were not an
obstacle, but were considered as such by OCTOMAP. These
parameters, by default, are set to the maximum range of the
sensor itself.

The sensor model/min and sensor model/max
are used to determine the probability of clamping while dy-
namically building a map. We have increased this threshold
slightly to achieve better results.

The occupancy min z and occupancy max z are
limits of height that OCTOMAP will consider to map
and, therefore, they were defined based on the physi-
cal properties of the robot. The filter ground pa-
rameter allows to configure the ground filter by enabling
ground filter/distance, ground filter/angle
and ground filter/plane distance to affect the
map representation. The ground filter/distance is
the parameter that will set the minimum height of an obsta-
cle. ground filter/angle will set the angle threshold
for points (in z direction) to be segmented to the ground
plane. The ground filter/plane distance sets the
minimum distance between a plane to the z=0.

By manipulating these three parameters, the robot will
consider as ground any plane within this threshold. There-
fore, these have been tuned based on the physical traversabil-
ity of the robot.

B. RTAB-Map
RTAB-Map is an open source library implementing loop

closure detection with a memory management approach, that
limits the size of the map so that loop closure detections
are always processed within a fixed time window, thus
satisfying online requirements for long-term and large-scale
environment mapping [7].

The ROS package subscribes to RGB-D, Stereo or 3D
LiDAR sensor data topics. It is also able to estimate visual
robot odometry or use that information as an input, thus
being able to provide:

• RTAB-Map’s graph, information and latest node data.
• 2D occupancy grid generated with laser scans or image

data.
• 3D point cloud map.
• Convenient way to show graph’s labels in RVIZ.
RTAB-Map can also provide an octree-based map by

making use of the OctoMap library. The package also



implements 13 nodelets integrated to synchronize, compress
or decompress images, along with conversions and merging
options between the different types of inputs.

Obstacle detection can be also implemented by a nodelet,
so that segmenting the obstacles and the ground from a point
cloud is possible. All the maps can be saved to a database,
allowing multi-session mapping and post optimizations by
the standalone application.

One of the advantages of RTAB-Map is the number of
configurations that can be used to better suit to the robot,
environment and mission, with a total of 464 parameters
grouped in 42 types for locatization, mapping, feature match-
ing, filtering and general robot-centric management. The
most relevant ones for mapping applications were obtained
during the simulations and real-world experiments carried
out. We then have been configured and tuned them gradually,
leaving the any remaining ones in their default value.

The main parameters have been configured to fit within the
robot´s specifications, using point clouds as an input and not
publishing any transform. An approximate synchronization is
used because we cannot guarantee that the inputs from cam-
eras, LiDARs and odometry will be perfectly synchronized
at all times.

The parameter map filter radius and
map filter angle are the minimum distance and
angles between the nodes to be added to the map,
respectively. We decrease the number of matches between
two different readings with the Vis/MinInliers
parameter to improve loop closure detection. The
RGBD/LocalRadius, RGBD/ProximityMaxPaths,
RGBD/ProximityPathFilteringRadius and
RGBD/ProximityAngle are increased significantly from
their default values to make faster loop closures and are
related to the robot’s scale.

With RGBD/AngularUpdate, we have increased the
minimum angle for an update of the map to minimize the
misreadings while the robot is rotating. We gave more impor-
tance to the linear updates with the RGBD/LinearUpdate
parameter. We want to update the map from the newest nodes
to help navigation systems, ignoring the transformation of
the map frame to the odometry frame. This can be done by
setting RGBD/OptimizeFromGraphEnd to true.

The RGBD/OptimizeMaxError was set to zero be-
cause we do robust optimizations and we do not want to
reject loop closures based on the optimization error ratio. The
RGBD/StartAtOrigin allows to deal with the kidnaped
robot problem, which is the problem of moving the robot
while its not mapping or turned off, from current position
and the mapping is restarted.

The RGBD/CreateOccupancyGrid parameter was
set to true to create local occupancy grid maps.
RGBD/MarkerDetection has been tuned to generate a
better graph optimization. RGBD/ProximityOdomGuess
was also set to true to help proximity detection.
RGBD/ProximityGlobalScanMap was set to true to
help with loop closures. Going through trial and error, we
have found that the best map generated was with kNN-

FlannNaive, which we selected by setting Kp/NNStrategy
to 0.

We have selected the g2o strategy in the
Optimizer/Strategy parameter since it led to a more
optimized graph for our case study. Better results have been
observed by setting Optimizer/VarianceIgnored
to true. Optimizer/Robust allows to have a robust
optimization to deal with the outdoors conditions.
Grid/RayTracing allows to generate the empty

space between obstacles detected and the robot.
Grid/DepthDecimation has been increased to
solve an error while optimizing the grid. Grid/3D has
been set to true to be able to see 3D representations and
use the OCTOMAP library internally.
Grid/FromDepth has been set to false since

point clouds have been used to generate the
map. Grid/CellSize has been increased to
generate the map faster, being able to optimize the
map without losing a significant amount of data.
Grid/FlatObstacleDetected was set to true to
help the ground segmentation. We have found that with
a Grid/NoiseFilteringRadius at 0.35 and a
Grid/NoiseFilteringMinNeighbors at 5 (default)
to reduce the robot rotation noise. Bear in mind, however,
that these two parameters are dependent and the relationship
between them will influence directly the robot rotation
noise. We increased the range Grid/RangeMax because
we are using point clouds with higher range, thus allowing
to map larger environments faster.
Grid/MaxObstacleHeight has been increased to

make sure that we do not map obstacles that the robot
can go under. Grid/MaxGroundHeight is maximum
height that RTABMAP will consider as ground, i.e. where
ground segmentation is applied. Grid/MaxGroundAngle
maximum angle of the normal to be considered as ground.
Because we do not want to use any type of cluster filter, we
have set Grid/MinClusterSize to 0. Grid/NormalK
defines the amount of normals that can be considered to
apply normal segmentation.

The parameter GridGlobal/Eroded was set to
true help deleting noise identified as small obstacles.
GridGlobal/MinSize has been set to 30 to coordi-
nate with our navigation system, this parameter will cre-
ate at the start of a new map an empty map 30 by 30.
GridGlobal/ProbHit and GridGlobal/ProbMiss
have been tuned to increase the probabilities of hit or miss,
increasing these parameters by trial and error method lead
to a better defined map. With Reg/Strategy we use ICP
since both camera and LiDAR are used as inputs.

The Marker/Dictionary selects dictionaries to
choose the settings for the detection of markers. We chose
ARUCO dictionaries because it was the one we had installed
for other purposes (e.g. autonomous docking). We choose
12 (7x7 50) since it corresponds to the size of marker
(7x7) and the number of markers (50) to consider. The
less markers we have, the more distance we have between
them. This allows to place landmarks in large environments.



Marker/CornerRefinementMethod has been set to
true to use corner refinement methods considering our en-
vironment.

The above list of parameters although exhaustive are
essential to achieve better maps using the framework and
need to be tuned for the application at hand accordingly.

V. EXPERIMENTAL RESULTS

This section compares the performance of OctoMap and
RTAB-Map. The evaluation encompasses a qualitative com-
parison of the maps produced by both frameworks to infer
the level of correspondence between the real world and cre-
ated maps. Moreover, a quantitative analysis is also carried
out, comparing the 2D occupancy map generated by each
framework with the ground truth information.

A. Simulations

In the first phase, we have evaluated OctoMap and RTAB-
Map by testing both approaches in a realistic simulation
environment. The Gazebo Agriculture Simulation has been
used for our experiments, which fits our requirements of
being an outdoor scenario with irregular ground and several
obstacles1.

Fig. 1. Agriculture simulated scenario in Gazebo (left) and husky model
with 3D LiDAR (right).

The ground truth has been obtained by recording a map
using perfect odometry and sensor readings straight from the
simulator. Alongside the map, a rosbag containing command
velocities provided to the robot to the i.e. /cmd vel topic,
has also been recorded. This is particularly useful whenever
one wants to reproduce different experiments under the same
conditions, ensuring that the robot can repeat the same
trajectory for both frameworks.

Clearpath Robotics’ Husky is used as the robotic platform
in the simulation experiments, being equipped with a 3D
LiDAR, a RGB-D camera and an Inertial Measurement Unit
(IMU).

Figure 2 depicts the maps obtained using the OctoMap
and RTAB-Map frameworks. The average error and the
average accuracy when compared to the ground truth map
are presented in Table II. The error represents the number of
cells that do not correspond to the ground truth, i.e. the sum
between the number of false positives and false negatives.
Put it differently, it is the number of cells that the mapping
framework identifies as occupied when they were actually
empty, and the other way around. The accuracy is the number

1https://clearpathrobotics.com/blog/2020/07/clearpath-robots-get-new-
gazebo-simulation-environments/

of cells that correspond to the ground truth divided by the
total number of cells (333099), i.e. the sum between true
positive and true negative divided by the total number of
cells.

TABLE II
RESULTS FROM THE SIMULATION EXPERIMENTS.

Framework Error Accuracy
OCTOMAP 11848 0.96443
RTABMAP 15264 0.95291

Fig. 2. The map of the ground truth used as the benchmark reference on
the left, and the maps obtained by the simulation experiments, OctoMap in
the center and RTAB-Map right.

Despite the fact that it is realistic simulated environment
with integrated physics of Gazebo, one may still consider it
far from ideal since it does not encompass dynamic objects
and the terrain is relatively flat in the area of the test. Under
these conditions, differences between OctoMap and RTAB-
Map are found to be not significant (approximately 1%).

Both frameworks lead to minor mapping issues. Localiza-
tion errors have been observed during the experiment under
certain conditions, though both methods were able to also
mitigate this problem without any problems.

B. Real-world

In similar methodology, real-world experiments were car-
ried out at Ingeniarius facilities, in Alfena, Portugal. Since
perfect odometry cannot be guaranteed in real-world scenar-
ios, a first version of the map has been acquired and polished
afterwards with the support of both Google Earth and in-field
measurements.

The approach followed in the previous simulation exper-
iments is to ensure repeatability of results, by feeding the
robot with command velocities cannot be adopted here due
to the non-linearities of the environment (soil degradation,
dynamic obstacles, etc.) and the robot (battery voltage fluc-
tuations, variable response time from low-level controller,
etc). Because of these reasons, a new setup to compare both
mapping frameworks has been established: for each trial, we
roughly followed the same path by teleoperating the robot
through a set of landmarks established a priori to the trials,
with at a constant defined velocity of 0.2 m/s. The robot
would map the surrounding area until the end of the route.

OctoMap and RTAB-Map were integrated in the Ranger
robot (forestry compact loader) and in the VineBot (agricul-
ture robot). Both robots were developed by Ingeniarius Ltd



Fig. 3. The route that the robot followed in every test run.

following the same standards and similar hardware resources.
Both are all-terrain tracked vehicles equipped with two 3D
LiDARs, one RGB-D camera, and an IMU. The internal
computer also shares the same hardware, including a Intel®
CoreTM i7-8700T Processor (12M Cache, up to 4.00 GHz),
a GTX NVIDIA Quadro P2200 5GB, and a SSD of 256GB.
Point clouds acquired by the two LiDARs are combined into
a single point cloud and fed directly to both OctoMap and
RTAB-Map frameworks. As with the simulation experiments,
the maps generated by both frameworks were qualitatively
and quantitatively compared by considering ground truth
information.

While the integration of the frameworks has been made to
both robots being able to tune and check their adaptability to
different robots with similar hardware, Vinebot has been used
to present the results due its greater freedom of movement
in the trial area and smaller size. The Ranger robot was
used as a testbed for evaluation on to larger platforms and
accelerating the experiments.

Fig. 4. VineBot robot used for the real world experiments (left) and Ranger
used for optimizing the frameworks (right).

TABLE III
AVERAGE CPU USAGE DATA DURING EXPERIMENTS.

Framework CPU Memory
OCTOMAP 60.3% 19.2%
RTABMAP 73.6% 27.5%

CPU usage, real-world footage and maps have been
recorded over the course of real world experiment to ensure
repeatability and validation of results.

Both qualitative and quantitative results favor RTAB-Map
over OctoMap. With a difference of approximately 4% in

TABLE IV
RESULTS FROM THE REAL WORLD EXPERIMENTS.

Framework Error Accuracy
OCTOMAP 36834 0.95256
RTABMAP 6141 0.99209

Fig. 5. The map of the ground truth used for the benchmark tool on the
left, and the maps obtained by the real world experiments, OctoMap in the
center and RTAB-Map right.

the accuracy, RTAB-Map depicts a superior performance in
the outdoor scenario which includes dynamic objects and a
more irregular ground with slopes above 20◦, which were
absent during the simulation experiments in section V-A.
This difference in accuracy may severely affect the map
representation and as a consequence affect the autonomous
navigation of the robot. A noteworthy fact is that although
the OctoMap error is higher, it generates maps faster than
RTAB-Map. However, during rotations, OctoMap tends to
accumulate more noise than RTAB-Map, which is only later
on corrected once the area is re-mapped.

Moreover during the experiments, we noticed that both
OctoMap and RTAB-Map were able to adapt to some spo-
radic dynamic obstacles. Besides humans, some unforeseen
dynamic obstacles were also captured by the Vinebot sensors,
in our case cats. OctoMap and RTAB-Map are able to clear
these entities from the map after a while. Yet, we have
noticed that OctoMap took longer to clean large dynamic
objects (e.g. humans), leaving a trail long enough to affect
path planners during autonomous navigation.

RTAB-Map also presents some minor drawbacks when
facing large dynamic objects. However, these are represented
as discontinuous noise instead of a continuous trail and are
resolved by the next iterations. Additionally, it is important
to highlight that RTAB-Map systematically updates while
moving, as opposed to OctoMap. This implies that, whenever
dynamic obstacles are tracked when the robot is not moving,
these are not even registered in the map.

In both cases, noise filters are based in Bayes theorem
[21], but only RTAB-Map’s noise filters can be further
tuned to reach a better result. Furthermore, the ground seg-
mentation of RTAB-Map is more developed than OctoMap,
offering a larger range of parameters that may be tuned, to
better suit one’s objectives. By combining these tools, it is
possible to increase the mapping range, which is a critical
feature for OctoMap that often struggles for larger mapping



ranges.
Some large obstacles are also not represented by OctoMap,

namely the step shown in Figure 6. This 0.4m step is
very important because it is not traversable by the Vinebot.
However, if an autonomous navigation system would rely
on OctoMap under this particular situation, it is likely that
a plan would be established between its current position
and the region identified in Figure 6, which would lead to
serious damages to the robot. This tends to happen because
both OctoMap and RTAB-Map filter plane objects, as ground
depending on a series of properties. Nonetheless, RTAB-
Map provides a considerably larger range of parameters
when compared to OctoMap, which allows for better tuning.
For instance, it is possible to see that RTAB-Map partially
identifies this step in Figure 6.

Fig. 6. The important obstacle absent from the map generated by each
framework. OCTOMAP (Figure 5 center map) it almost erases the line
completely, and RTABMAP (Figure 5 right map) shows only the planters.

Fig. 7. Loop closure during real world experiments (in this case
RTABMAP).

Another point to note is the CPU usage. As expected,
OctoMap is lighter than RTAB-Map in terms of computing
resources. With the Linux command glances, we moni-
tored the CPU usage of both frameworks and reported the
result in Table V-B. These data was only collected after
optimizing both frameworks. The VineBot CPU was at 60%
of its load capacity while mapping with OctoMap, rising
to 70% under sporadic situations. The VineBot CPU was
almost constantly at 72% of its capacity while mapping with
RTAB-Map. During our real world experiments RTAB-Map
was consistent, in terms of CPU usage (without spikes).
Considering the processor and graphics card of the computer
of our robot, this difference of 12% is not significant for the
Vinebot. However, for lower-end robots, such as low-cost
drones, using RTAB-Map might not be a possibility.

It has been found that OctoMap might not be ideally suited
for robotic mapping in large unstructured and dynamic sce-
narios, it still presents an efficient approach to represent the
3D map using octrees, without draining onboard resources.
Due to its efficiency in representing complex 3D maps,

RTAB-Map integrates the OctoMap library as an alternative
way of 3D map representation. Unfortunately, it does so
without being as computationally efficient as OctoMap. The
compromise to produce a better map quality with more
computational resources, makes RTAB-Map ideally suited
for complex outdoor applications in which such resources
might be available within the robot.

VI. CONCLUSION

In this article, we sought out the overall best mapping
framework for field robotics and performed in depth analysis
and comparison on OctoMap and RTAB-Map.

Both frameworks come with parameterizable filters,
ground segmentation and can map large areas. The RTAB-
Map database requires more memory than OctoMap. They
have strategies to solve the correspondence problem, with
RTAB-Map featuring strategies and configurations that ap-
plying loop closure detection. Both can address and map
dynamic obstacles, although OctoMap struggles more to
update the map, when large dynamic obstacles become
absent, such as humans and animals. Both frameworks have
the potential to be used in multi-robot systems, however
RTAB-Map seems to call upon a more centralized solution
using a common database. On the other hand, OctoMap’s
generated octrees are lightweight and can be easily shared
between robots, which could lead to decentralized solutions
more reliably than RTAB-Map.

In conclusion, RTAB-Map is a SLAM approach that
shows better performance than OctoMap. The difference in
the amount of parameters between these frameworks gives
RTAB-Map an advantage, providing a better parametrization
of the map. It allows several odometry types and multiple
strategies for detecting features and graph optimization grant
RTAB-Map tremendous flexibility when compared to Oc-
toMap. Despite the minor differences between RTAB-Map
and OctoMap in simulation (≈1%), greater discrepancies
can be observed in the real world experiments wherein a
more irregular and dynamic environment were put to the test.
RTAB-Map is generally better suited to field applications and
validated from our findings.

REFERENCES

[1] Nils Funk et al. “Multi-resolution 3D mapping with
explicit free space representation for fast and accurate
mobile robot motion planning”. In: IEEE Robotics and
Automation Letters 6.2 (2021), pp. 3553–3560.

[2] Michal Tölgyessy et al. “Evaluation of the Azure
Kinect and Its Comparison to Kinect V1 and Kinect
V2”. In: Sensors 21.2 (2021). ISSN: 1424-8220. DOI:
10.3390/s21020413. URL: https://www.
mdpi.com/1424-8220/21/2/413.

[3] Paolo Arena et al. “Learning traversability map of dif-
ferent robotic platforms for unstructured terrains path
planning”. In: 2020 International Joint Conference on
Neural Networks (IJCNN). 2020, pp. 1–8. DOI: 10.
1109/IJCNN48605.2020.9207423.



[4] Ahmad Kamal Nasir, André G Araújo, and Micael S
Couceiro. “Localization and navigation assessment
of a heavy-duty field robot”. In: Proceedings of the
2020 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS 2020), Workshop
on Perception, Planning and Mobility in Forestry
Robotics (WPPMFR 2020). 2020, pp. 25–29.

[5] Baichuan Huang, Jun Zhao, and Jingbin Liu. “A
Survey of Simultaneous Localization and Mapping
with an Envision in 6G Wireless Networks”. In: (Aug.
2019).

[6] Xingliang Ji et al. “LLOAM: LiDAR Odometry
and Mapping with Loop-closure Detection Based
Correction”. In: 2019 IEEE International Confer-
ence on Mechatronics and Automation (ICMA). 2019,
pp. 2475–2480. DOI: 10 . 1109 / ICMA . 2019 .
8816388.

[7] Mathieu Labbé and François Michaud. “RTAB-Map
as an open-source lidar and visual simultaneous lo-
calization and mapping library for large-scale and
long-term online operation”. In: Journal of Field
Robotics 36.2 (2019), pp. 416–446. DOI: https :
/ / doi . org / 10 . 1002 / rob . 21831. eprint:
https://onlinelibrary.wiley.com/doi/
pdf/10.1002/rob.21831. URL: https://
onlinelibrary.wiley.com/doi/abs/10.
1002/rob.21831.

[8] Tae Nam, Jae Shim, and Young Cho. “A 2.5D Map-
Based Mobile Robot Localization via Cooperation of
Aerial and Ground Robots”. In: Sensors 17.12 (2017),
p. 2730. DOI: 10.3390/s17122730.

[9] Wolfgang Hess et al. “Real-Time Loop Closure in 2D
LIDAR SLAM”. In: 2016 IEEE International Con-
ference on Robotics and Automation (ICRA). 2016,
pp. 1271–1278.

[10] Wolfgang Hess et al. “Real-Time Loop Closure in 2D
LIDAR SLAM”. In: 2016 IEEE International Con-
ference on Robotics and Automation (ICRA). 2016,
pp. 1271–1278.

[11] Bruno Duarte Gouveia et al. “Computation Sharing
in Distributed Robotic Systems: A Case Study on
SLAM”. In: IEEE Transactions on Automation Sci-
ence and Engineering 12.2 (2015), pp. 410–422. DOI:
10.1109/TASE.2014.2357216.

[12] Stephanie Lowry et al. “Visual place recognition:
A survey”. In: IEEE Transactions on Robotics 32.1
(2015), pp. 1–19.

[13] Morgan Quigley, Brian Gerkey, and William D Smart.
Programming Robots with ROS: a practical introduc-
tion to the Robot Operating System. ” O’Reilly Media,
Inc.”, 2015.

[14] Joao Machado Santos et al. “A sensor fusion layer to
cope with reduced visibility in SLAM”. In: Journal of
Intelligent & Robotic Systems 80.3 (2015), pp. 401–
422.

[15] Armin Hornung et al. “OctoMap: An efficient proba-
bilistic 3D mapping framework based on octrees”. In:
Autonomous robots 34.3 (2013), pp. 189–206.

[16] João Machado Santos, David Portugal, and Rui P.
Rocha. “An evaluation of 2D SLAM techniques avail-
able in Robot Operating System”. In: 2013 IEEE In-
ternational Symposium on Safety, Security, and Rescue
Robotics (SSRR). 2013, pp. 1–6. DOI: 10.1109/
SSRR.2013.6719348.

[17] Ahmad A. Masoud. “Motion Planning with Gamma-
Harmonic Potential Fields”. In: IEEE Transactions
on Aerospace and Electronic Systems 48.4 (2012),
pp. 2786–2801. DOI: 10 . 1109 / TAES . 2012 .
6324661.

[18] Shurong Li and Pengfei Ni. “Square-root unscented
Kalman filter based simultaneous localization and
mapping”. In: The 2010 IEEE International Confer-
ence on Information and Automation. 2010, pp. 2384–
2388. DOI: 10.1109/ICINFA.2010.5512187.

[19] Alonzo Kelly et al. “Toward Reliable Off Road Au-
tonomous Vehicles Operating in Challenging Envi-
ronments”. In: The International Journal of Robotics
Research 25.5-6 (2006), pp. 449–483. DOI: 10 .
1177/0278364906065543. eprint: https://
doi . org / 10 . 1177 / 0278364906065543.
URL: https : / / doi . org / 10 . 1177 /
0278364906065543.

[20] Denis F Wolf and Gaurav S Sukhatme. “Mobile robot
simultaneous localization and mapping in dynamic
environments”. In: Autonomous Robots 19.1 (2005),
pp. 53–65.

[21] Richard Swinburne. “Bayes’ Theorem”. In: Revue
Philosophique de la France Et de l 194.2 (2004).

[22] Sebastian Thrun et al. “Robotic mapping: A survey”.
In: (2002).

[23] D.J. Salmond and H. Birch. “A particle filter for track-
before-detect”. In: Proceedings of the 2001 American
Control Conference. (Cat. No.01CH37148). Vol. 5.
2001, 3755–3760 vol.5. DOI: 10 . 1109 / ACC .
2001.946220.

[24] Chuck Thorpe and Hugh F Durrant-Whyte. “Field
Robots.” In: ISRR. 2001, pp. 329–340.

[25] K. Reif et al. “Stochastic stability of the discrete-
time extended Kalman filter”. In: IEEE Transactions
on Automatic Control 44.4 (1999), pp. 714–728. DOI:
10.1109/9.754809.

[26] Greg Welch, Gary Bishop, et al. “An introduction to
the Kalman filter”. In: (1995).


