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Abstract
Generative models and normalizing flow-based
models have made great progress in recent years,
both in their theoretical development and in a
growing number of applications. As such models
become applied more and more, it increases the
desire for predictive uncertainty to know when
to trust the underlying model. In this extended
abstract, we target the application area of Large
Hadron Collider (LHC) simulations and show
how to extend normalizing flows with probabilis-
tic Bayesian Neural Network-based transforma-
tions to model LHC events with uncertainties.

1. Introduction
The role of first-principle simulations in our understanding
of large data sets makes LHC physics stand out compared to
many other areas of science. Three aspects define the appli-
cation of modern big data methods in this field: (i) ATLAS
and CMS deliver proper big data with excellent control over
uncertainties, (ii) perturbative quantum field theory provides
consistent precision predictions, and (iii) fast and reliable
precision simulations generate events from first principles.
The fact that experiments, field theory calculations, and sim-
ulations control their uncertainties implies that we can work
with a complete uncertainty budget, including statistical,
systematic, and theoretical uncertainties. To sustain this
approach at the upcoming HL-LHC, with a data set more
than 25 times the current Run 2 data set, the challenge is to
provide faster simulations and to keep complete control of
the uncertainties at the per-cent level and better.

In recent years it has been shown that modern machine
learning and especially generative models can improve LHC
event simulations in many ways (Butter & Plehn, 2020). See
Section A in the appendix for an overview of recent work.
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The problem with these applications is that we know little
about how these generative networks work and what the
uncertainty on the generative network output is. As we will
see, these two questions are closely related.

In general, we can track statistical and systematic uncer-
tainties in neural network outputs with Bayesian neural
networks (BNNs) (MacKay, 1995; Neal, 1995; Gal, 2016;
Kendall & Gal, 2017). Such networks have been used in par-
ticle physics for a long time (Bhat & Prosper, 2005; Saucedo,
2007; Xu et al., 2008). For the LHC, they have been pro-
posed to extract uncertainties in jet classification (Bollweg
et al., 2020) and jet calibration (Kasieczka et al., 2020).
They can cover essentially all uncertainties related to statis-
tical, systematic, and structural limitations of the training
sample (Nachman, 2020). Similar ideas can be used as part
of ensemble techniques (Araz & Spannowsky, 2021).

We propose a Bayesian invertible neural net (BINN) which
combines the flexibility of normalizing flow with BNNs
and demonstrate it via a simple 2d toy example and finally,
a semi-realistic LHC example. See the appendix for an
extended discussion of these experiments and further results.

2. Generative Networks with Uncertainties
We start by reminding ourselves that we often assume that
a generative model has learned a phase-space density per-
fectly. Hence, the only remaining source of uncertainty
is the statistics of the generated sample binned in phase
space. However, we know that such an assumption is not
realistic (Bollweg et al., 2020; Kasieczka et al., 2020), and
we need to estimate the effect of statistical or systematic
limitations of the training data. The problem with such a
statistical limitation is that it is turned into a systematic
shortcoming of the generative model (Butter et al., 2019)
— once we generate a new sample, the information on the
training data is lost. The only way we might recover it is by
training many networks and comparing their outcome. This
is not a realistic or economical option for most applications,
so we will show how an alternative solution could look.

Invertible Neural Networks. To model complex densi-
ties such as LHC phase-space distributions, we can em-
ploy normalizing flows (Rezende & Mohamed, 2015; Dinh
et al., 2016; Kingma & Dhariwal, 2018; Kobyzev et al.,
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2019). They use the fact we can transform a random vari-
able z ∼ pZ(z) using a bijective map G : z → x to a
random variable x = G(z) with the density

pX(x) = pZ(z)

∣∣∣∣det
∂G(z)

∂z

∣∣∣∣−1= pZ
(
G(x)

) ∣∣∣∣det
∂G(x)

∂x

∣∣∣∣ ,
where we defined G := G−1. Given a sample z from the
base distribution pZ , we can use the map G to generate a
sample from the target distribution going in the forward
direction and vice versa with a sample x from the target.

For this to be a useful approach, we require the base distri-
bution pZ to be simple enough to allow for effective sample
generation, G to be flexible enough for a non-trivial trans-
formation, and its Jacobian determinant to be effectively
computable. With these constraints, G gives us a powerful
generative pipeline to model the phase space density pX . To
fulfill them we choose the base distribution to be a multi-
variate Gaussian with mean zero and an identity matrix as
the covariance, and rely on the real non-volume preserving
flow (Dinh et al., 2016) in the invertible neural network
(INN) formulation by Ardizzone et al. (2018) for G.

An INN composes multiple transformation maps into cou-
pling layers with the following structure. The input vector
z into a layer is split in half, z = (z1, z2), allowing us to
compute the output x = (x1, x2) of the layer as(

x1
x2

)
=

(
z1 � es2(z2) + t2(z2)
z2 � es1(x1) + t1(x1)

)
,

where si, ti (i = 1, 2) are small multi-layer perceptrons
(MLP), and � is the element-wise product. This structure
allows both for easy invertibility as well as an easy Jacobian.
Throughout, we refer to their weights jointly as θ.

Bayesian INN. The invertible neural net provides us with
a powerful generative model of the underlying data distri-
bution. However, it lacks a mechanism to account for our
uncertainty in the transformation parameters θ themselves.
To model it, we switch from deterministic to probabilistic
transformations, replacing the deterministic sub-networks
s1,2 and t1,2 in each of the coupling layers with Bayesian
neural nets. Placing priors over their weights θ ∼ p(θ) we
get as the generative pipeline for our BINN

x|θ ∼ pX(x|θ) = pZ(G(x; θ))
∣∣∣det

∂G(x; θ)

∂x

∣∣∣ .
Given our set of observations D we can rely on variational
inference (Blei et al., 2017) to approximate the intractable
posterior p(θ|D) with a mean-field Gaussian as the varia-
tional posterior qφ(θ). Learning then consists of maximizing
the evidence lower bound (ELBO)

L =

N∑
n=1

Eqφ(θ) [log pX(xn|θ)]− KL
(
qφ(θ), p(θ)

)

=

N∑
n=1

Eqφ(θ)

[
log pZ

(
G(xn; θ)

)
+ log

∣∣∣det
∂G(xn; θ)

∂xn

∣∣∣]
− KL

(
qφ(θ), p(θ)

)
,

via stochastic gradient descent on the parameters φ. By
design all three terms, the log likelihood, log determinant,
and the Kullback-Leibler (KL) divergence can be computed
easily, and we can approximate the sum and the expectation
with a minibatch and weight samples respectively.

3. Experiments
Before we tackle a semi-realistic LHC setup, we first study
the behavior of BINNs for a set of toy examples, namely
distributions over the minimally allowed two-dimensional
parameter space where in one dimension the density is flat.
Aside from the fact that these toy examples illustrate that the
BINN actually constructs a meaningful uncertainty distribu-
tion, we will use the combination of density and uncertainty
maps to analyse how an INN actually learns a density distri-
butions. We will see that the INN describes the density map
in the sense of a few-parameter fit, rather than numerically
encoding patches over the parameter space independently.
We discuss one of the three toy experiments here and refer
the reader for the other two to the appendix. These low-
dimensional examples allow us to visualize what is learned.
However, the BINN also scales to higher-dimensional la-
tent spaces as we will demonstrate on the MNIST data in
the appendix as well. We there also provide details on the
architecture and hyperparameters.

3.1. Toy Events with Uncertainties: The Wedge Ramp

Our first toy example is a two-dimensional ramp distribution,
linear in one direction and flat in the other,

p(x, y) = Linear(x ∈ [0, 1]) · Const(y ∈ [0, 1]) = x · 2 .

The second factor ensures that the distribution p(x, y) is
normalized to one, and the network output is shown in
Fig. 1 (upper). The output are unweighted events in the
two-dimensional parameters space, (x, y). We show one-
dimensional distributions after marginalizing over the un-
observed direction and find that the network reproduces the
equation well. In the bottom row we include the predic-
tive uncertainty given by the BINN. For this purpose we
train a network on the two-dimensional parameter space
and evaluate it for a set of points with x ∈ [0, 1] and a
constant y-value. In the left panel we indicate the predic-
tive uncertainty as an error bar around the density estimate.
Throughout the paper we always remove the phase space
boundaries, because we know that the network is unstable
there, and the uncertainties explode just like we expect. The
relative uncertainty grows for small values of x and hence
small values of p(x, y), and it covers the deviation of the



Understanding Event-Generation Networks via Uncertainties

0.2 0.4 0.6 0.8
x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

BINN

Training Data

0.0 0.2 0.4 0.6 0.8 1.0
x

0.9
1.0
1.1

B
IN

N
T

ru
th

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

BINN

Training Data

0.0 0.2 0.4 0.6 0.8 1.0
y

0.9
1.0
1.1

B
IN

N
T

ru
th

0.5

1.0

1.5

N
or

m
al

iz
ed

BINN

Truth

±σpred

0.2 0.4 0.6 0.8
x

0.9
1.0
1.1

B
IN

N
T

ru
th

0.2 0.4 0.6 0.8
x

0.02

0.03

0.04

0.05

0.06

0.07

A
bs

ol
ut

e
U

nc
er

ta
in

ty

Fit: ∆a = 0.09, ∆xmax = 0.01

σpred

±δσpred

0.2 0.4 0.6 0.8
x

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

R
el

at
iv

e
U

nc
er

ta
in

ty

Fit: ∆a = 0.09, ∆xmax = 0.01

σpred

±δσpred

Figure 1. (upper) Two-dimensional and marginal densities for the linear wedge ramp. (lower) Density and predictive uncertainty
distribution for the wedge ramp. In the left panel the density and uncertainty are averaged over several lines with constant y. In the central
and right panels, the uncertainty band on σpred is given by their variation. The green curve represents a two-parameter fit to (2).

extracted density from the true density well. These features
are common to all our experiments. In the central and right
panel of Fig. 1 we show the relative and absolute predictive
uncertainties. The error bar indicates how much σpred varies
for different choices of y. We compute it as the standard
deviation of different values of σpred, after confirming that
the central values agree within this range. As expected, the
relative uncertainty decreases towards larger x. However,
the absolute uncertainty shows a distinctive minimum in
σpred around x ≈ 0.45. This minimum is a common feature
in all our training rounds, so we need to explain it.

To understand this non-trivial uncertainty distribution
σpred(x) we focus on the non-trivial x-coordinate and its
linear behavior p(x) = ax + b with x ∈ [0, 1]. As the
model learns a density, we can remove b by fixing the nor-
malization, p(x) = a(x−0.5)+1. If we now assume that a
network acts like a fit of a, as it will turn out useful, we can
relate the uncertainty ∆a to an uncertainty in the density,

σpred ≡ ∆p ≈ |x− 0.5| ∆a . (1)

The absolute value appears because the uncertainties are
defined to be positive, as encoded in the usual quadratic error
propagation. The uncertainty distribution has a minimum at
x = 1/2, close to the observed value in Fig. 1.

The differences between the simple prediction in (1) and
our numerical findings in Fig. 1 are that the predictive un-
certainty is not symmetric and does not reach zero. To
account for these effects we can expand our very simple
ansatz to p(x) = ax + b with x ∈ [xmin, xmax]. Using the

normalization condition again we find

p(x) = ax+
1− a

2 (x2max − x2min)

xmax − xmin
.

Again assuming a fit-like behavior of the flow network we
expect for the predictive uncertainty

σ2
pred ≡ (∆p)2 =

(
x− 1

2

)2

(∆a)2 +
(

1 +
a

2

)2
(∆xmax)2

+
(

1− a

2

)2
(∆xmin)2 . (2)

Adding xmax adds an x-independent offset. Also accounting
for xmin does not change the x-dependence of predictive
uncertainty. The slight shift of the minimum and the asym-
metry between the lower and upper boundaries in x are not
explained by this argument. We ascribe them to boundary
effects, specifically the challenge for the network to describe
the correct approach towards p(x)→ 0.

The green line in the lower panels of Fig. 1 gives a two-
parameter fit of ∆a and ∆xmax to the σpred distribution from
the BINN. It indicates that there is a hierarchy in the way the
network extracts the x-independent term with high precision,
whereas the uncertainty on the slope a is around 4%.

3.2. LHC Events with Uncertainties

As a physics example we consider the Drell-Yan process

pp→ Z → e+e− ,

with its simple 2→ 2 phase space combined with the parton
density. The training set consists of an unweighted set of
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Figure 2. Marginalized kinematic distributions for the Drell-Yan process. We show the central prediction from the BINN and include the
predictive uncertainty as the blue band. The red band indicates the statistical uncertainty of the training data per bin in the Gaussian limit.

4-vectors simulated with MADGRAPH5 (Alwall et al., 2014)
at 13 TeV collider energy with the NNPDF2.3 parton densi-
ties (Ball et al., 2013). We fix the masses of the final-state
leptons and enforce momentum conservation in the trans-
verse direction, which leaves us with a four-dimensional
phase space. In our discussion we limit ourselves to a suffi-
ciently large set of one-dimensional distributions. For these
marginalized uncertainties we follow the procedure laid out
in Sec. C.1.4 with 50 samples in the BINN-weight space.

To start with, we show a set of generated kinematic dis-
tributions in Fig. 2. The positron energy features the ex-
pected strong peak from the Z-resonance. Its sizeable tail
to larger energies is well described by the training data to
Ee ≈ 280 GeV. The central value learned by the BINN
becomes unstable at slightly lower values of 250 GeV, as
expected. The momentum component px is not observable
given the azimuthal symmetry of the detector, but it’s broad
distribution is nevertheless reproduced correctly. The predic-
tive uncertainty covers the slight deviations over the entire
range. What is observable at the LHC is the transverse mo-
mentum of the outgoing leptons, with a similar distribution
as the energy, just with the Z-mass peak at the upper end
of the distribution. Again, the predictive uncertainty deter-
mined by the BINN covers the slight deviations from the
truth on the pole and in both tails. In the second row we
show the pz component as an example for a strongly peaked
distribution, similar to the Gaussian toy model in Sec. C.1.2.

While the energy of the lepton pair has a similar basic form
as the individual energies, we also show the invariant mass
of the electron-positron pair, which is described by the usual

Breit-Wigner peak. It is well known that this intermediate
resonance is especially hard to learn for a network, because
it forms a narrow, highly correlated phase space structure.
Going beyond the precision shown here would for instance
require an additional MMD loss (as e.g. in Butter et al.,
2019; Bellagente et al., 2020b). This resonance peak is
the only distribution, where the predictive uncertainty does
not cover the deviation of the BINN density from the truth.
This apparent failure corresponds to the fact that generative
networks always overestimate the width and hence under-
estimate the height of this mass peak (Butter et al., 2019).
This is an example of the network being limited by the
expressive power in phase space resolution, generating an
uncertainty which the Bayesian version cannot account for.
See Sec. C.2.2 for further results.

4. Conclusion
Controlling the output of generative networks and quantify-
ing their uncertainties is the main task for any application
in LHC physics, be it in forward generation, inversion, or
inference. We have proposed to use a Bayesian invertible
neural network (BINN) to quantify the uncertainties from
the network training for each generated event. For a series
of two-dimensional toy models and an LHC-inspired ap-
plication we have shown how the Bayesian setup indeed
generates an uncertainty distribution, over the full phase
space and over marginalized phase spaces. As expected, the
learned uncertainty shrinks with an improved training statis-
tics. Our method can be trivially extended from unweighted
to weighted events by adapting the simple loss.
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F., Fox, E., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., and
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APPENDIX
A. Related Works on Generative Models for

LHC event simulations
Promising techniques include generative adversarial
networks (GAN) (Goodfellow et al., 2014; Creswell
et al., 2018; Butter et al., 2020a), variational autoen-
coders (Kingma & Welling, 2014; 2019), and normalizing
flows (Rezende & Mohamed, 2015; Kobyzev et al., 2020;
Papamakarios et al., 2019; Kobyzev et al., 2019; Müller
et al., 2018), including invertible networks (INNs) (Ardiz-
zone et al., 2018; Dinh et al., 2016; Kingma & Dhariwal,
2018). They can improve phase space integration (Klimek
& Perelstein, 2018; Chen et al., 2021), phase space sam-
pling (Bothmann et al., 2020; Gao et al., 2020b;a), and
amplitude computations (Bishara & Montull, 2019; Badger
& Bullock, 2020). Further developments are fully NN-based
event generation (Otten et al., 2019; Hashemi et al., 2019;
Di Sipio et al., 2020; Butter et al., 2019; Alanazi et al., 2020),
event subtraction (Butter et al., 2020b), event unweight-
ing (Stienen & Verheyen, 2021; Backes et al., 2020), detec-
tor simulation (Paganini et al., 2018a;b; Musella & Pandolfi,
2018; Erdmann et al., 2018; 2019; ATLAS Collaboration,
2018; 2019; Belayneh et al., 2020; Buhmann et al., 2020;
2021), or parton showering (Bothmann & Debbio, 2019;
de Oliveira et al., 2017; Monk, 2018; Andreassen et al.,
2019; Dohi, 2020). Generative models will also improve
searches for physics beyond the Standard Model (Lin et al.,
2019), anomaly detection (Nachman & Shih, 2020; Knapp
et al., 2020), detector resolution (Di Bello et al., 2021; Baldi
et al., 2020), and inference (Brehmer & Cranmer, 2020;
Radev et al., 2020; Bieringer et al., 2020). Finally, condi-
tional GANs and INNs allow us to invert the simulation
chain to unfold detector effects (Datta et al., 2018; Bella-
gente et al., 2020b) and extract the hard scattering process
at parton level (Bellagente et al., 2020a).

B. Uncertainties on Event Samples
Uncertainties on a simulated kinematic or phase space dis-
tribution are crucial for any LHC analysis. For instance, we
need to know to what degree we can trust a simulated pT -
distribution in mono-jet search for dark matter. We denote
the complete phase space weight for a given phase space
point as p(x), and can then illustrate a total cross section as

σtot =

∫ 1

0

dx p(x) with p(x) > 0 . (3)

In this simplified notation x stands for a generally multi-
dimensional phase space. For each phase space position, we
can also define an uncertainty σ(x).

One contribution to the error budget are systematic and

theory uncertainties, σth/sys(x). The former reflect our igno-
rance of aspects of the training data, which do not decrease
when we increase the amount of training data. The latter
captures the degree to which we trust our prediction, for
instance based on self-consistency arguments. For example
accounting for large, momentum-dependent logarithms we
can compute it from the phase space position, or for an
unweighted event, alone. If we use a numerical variation
of the factorization and renormalization scale to estimate a
theory uncertainty, we typically re-weight events with the
scales. Another uncertainty arises from the statistical limita-
tions of the training data, σstat(x). For instance in mono-jet
production, the tails of the predicted pT -distribution for the
Standard Model will at some point be statistics limited. In
the Gaussian limit, a statistical uncertainty can be defined by
binning the phase space and in that limit we expect a scaling
like σstat(x) ∼

√
p(x), and we will test that hypothesis in

detail in Sec. C.1.

Once we know the uncertainties as a function of the phase
space position, we can account for them as additional entries
in unweighted or weighted events. For instance, relative
uncertainties can be easily added to unweighted events,

evi =


σstat/p
σsyst/p
σth/p
{xµ,j}
{pµ,j}

 , with µ = 0 ... 3 for each particle j.

The entries σ or σ/p are smooth functions of phase space.
The challenge in working with this definition is how to ex-
tract σstat without binning. We will show how Bayesian
networks give us access to limited information in the train-
ing data. Specific theory and systematics counterparts can
be either computed directly or extracted by appropriately
modifying the training data (Bollweg et al., 2020; Kasieczka
et al., 2020).

C. Further Experiments
C.1. Toy Events with Uncertainties

The default architecture for our toy models is a network
with 32 units per layer, three layers per coupling block,
and a total of 20 coupling blocks. It’s implemented in PY-
TORCH (Paszke et al., 2019) relying partially on the FreIA
library1 More details are given in Tab. 1. The most rele-
vant hyperparameter is the number of coupling blocks in
that more blocks provide a more stable performance with
respect to several trainings of the same architecture. Gener-
ally, moderate changes for instance of the number of units
per layer do not have a visible impact on the performance.

1Framework for Easily Invertible Architectures,
https://github.com/VLL-HD/FrEIA
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Table 1. Hyper-parameters for all toy models, implemented in PY-
TORCH (v1.4.0) (Paszke et al., 2019).

Parameter Flow

Hidden layers (per block) 3
Units per hidden layer 32
Batch size 512
Epochs 300
Trainable weights 75k
Optimizer Adam
(α, β1, β2) (1× 10−3, 0.9, 0.999)
Coupling layers 20
Training size 300k
Prior width 1

For each of the trainings we use a sample of 300k events.
The widths of the Gaussian priors are set to one. We check
that variations of this over several orders of magnitude did
not have a significant impact on the performance.

C.1.1. KICKER RAMP

We can test our findings from the linear wedge ramp using
the slightly more complex quadratic or kicker ramp,

p(x, y) = Quadr(x ∈ [0, 1])×Const(y ∈ [0, 1]) = x2×3 .

We show the results from the network training for the density
in Fig. 3 and find that the network describes the density well,
limited largely by the flat, low-statistics approach towards
the lower boundary with p(x)→ 0.

In complete analogy to Fig. 1 we show the complete BINN
output with the density p(x, y) and the predictive uncer-
tainty σpred(x, y) in Fig. 4. As for the linear case, the BINN
reproduces the density well, deviations from the truth being
within the predictive uncertainty in all points of phase space.
We remove the phase space boundaries, where the network
becomes unstable and the predictive uncertainties grows cor-
respondingly. The indicated error bar on σpred(x, y) is given
by the variation of the predictions for different y-values,
after ensuring that their central values agree. The relative
uncertainty at the lower boundary x = 0 is large, reflecting
the statistical limitation of this phase-space region. An in-
teresting feature appears again in the absolute uncertainty,
namely a maximum-minimum combination as a function
of x.

Again in analogy to the wedge ramp, we start with the
parametrization of the density

p(x) = a (x− x0)2 with x ∈ [x0, xmax] , (4)

where we assume that the lower boundary coincides with
the minimum and there is no constant offset. We choose
to describe this density through the minimum position x0,

coinciding the the lower end of the x-range, and xmax as
the second parameter. The parameter a can be eliminated
through the normalization condition and we find

p(x) = 3
(x− x0)2

(xmax − x0)3
. (5)

If we vary x0 and xmax we can trace two contributions to
the uncertainty in the density,

σpred ≡ ∆p ⊃ 9

(xmax − x0)4

·
∣∣∣∣(x− x0)

(
x− x0

3
− 2xmax

3

)∣∣∣∣∆x0
and

σpred ≡ ∆p ⊃ 9

(xmax − x0)4
(x− x0)2 ∆xmax , (6)

one from the variation of x0 and one from the variation of
xmax. In analogy to (2) they need to be added in quadrature.
If the uncertainty on ∆x0 dominates, the uncertainty has
a trivial minimum at x = 0 and a non-trivial minimum at
x = 2/3. From ∆xmax we get another contribution which
scales like ∆p ∝ p(x). In Fig. 4 we clearly observe both
contributions, and the green line in the lower panels is given
by the corresponding 2-parameter fig to the σpred distribution
from the BINN.

C.1.2. GAUSSIAN RING

Our third example is a two dimensional Gaussian ring,
which in terms of polar coordinates reads

p(r, φ) = Gauss(r > 0;µ = 4, w = 1)

×Const(φ ∈ [0, π]) , (7)

We define the Gaussian density as the usual

Gauss(r) =
1√

2π w
exp

[
− 1

2w2
(r − µ)2

]
(8)

The density defined in (7) can be translated into Cartesian
coordinates as

p(x, y) = Gauss(r(x, y);µ = 4, w = 1)

× Const(φ(x, y) ∈ [0, π])× 1

r(x, y)
, (9)

where the additional factor 1/r comes from the Jacobian.
We train the BINN on Cartesian coordinates, just like in
the two examples before, and limit ourselves to y > 0 to
avoid problems induced by learning a non-trivial topology in
mapping the latent and phase spaces. In Fig. 5 we once again
see that our network describes the true two-dimensional
density well.
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Figure 3. Two-dimensional and marginal densities for the quadratic kicker ramp.
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Figure 4. Density and predictive uncertainty distribution for the kicker ramp. In the left panel the density and uncertainty are averaged
over several lines with constant y. In the central and right panels, the uncertainty band on σpred is given by their variation. The green curve
represents a two-parameter fit to (6).

In Fig. 6 we show the Cartesian density but evaluated on a
line of constant angle. This form includes the Jacobian and
has the expected, slightly shifted peak position at rmax =
2 +
√

3 = 3.73. The BINN returns a predictive uncertainty,
which grows towards both boundaries. The error band easily
covers the deviation of the density learned by the BINN and
the true density. While the relative predictive uncertainty
appears to have a simple minimum around the peak of the
density, we again see that the absolute uncertainty has a
distinct structure with a local minimum right at the peak.
The question is what we can learn about the INN from this
pattern in the BINN.

As before, we describe our distribution in the relevant direc-
tion in terms of convenient fit parameters. For the Gaussian
radial density these are the mean µ and the width w used in
(7). The contributions driven by the extraction of the mean
in Cartesian coordinates reads

σpred ≡ ∆p ⊃
∣∣∣∣G(r)

r

µ− r
w2

∣∣∣∣∆µ
and σpred ≡ ∆p ⊃

∣∣∣∣ (r − µ)2

w3
− 1

w

∣∣∣∣∆w . (10)

In analogy to (2) the two contributions need to be added in
quadrature for the full, fit-like uncertainty. The contribution
from the the mean has a minimum at r = µ = 4 and is
otherwise dominated by the exponential behavior of the
Gaussian, just as we observe in the BINN result. In the
opposite limit of ∆µ � ∆w the uncertainty develops the
maxima at r = 3 and r = 5, which we observe in Fig. 6. In
the lower panels we show a one-parameter fit of the BINN
output and find that the network determined the mean of the
Gaussian as µ = 4± 0.037.

C.1.3. ERRORS VS TRAINING STATISTICS

Even though it is clear from the above discussion that we
cannot expect the predictive uncertainties to have a simple
scaling pattern, like for the regression (Kasieczka et al.,
2020) and classification (Bollweg et al., 2020) networks,
there still remains the question how the BINN uncertainties
change with the size of the training sample.

In Fig. 7 we show how the BINN predictions for the density
and uncertainty change if we vary the training sample size
from 10k events to 1M training events. Note that for all
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Figure 5. Two-dimensional and marginal densities for the Gaussian (half-)ring.
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green curve represents a two-parameter fit to (10).
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Figure 7. Dependence of the density (upper) and absolute uncertainty (lower) on the training statistics for the kicker ramp. We illustrate
BINNs trained on 10k, 100k, and 1M events (left to right), to be compared to 300k events used for Fig. 4. Our training routine ensures
that all models receive the same number of weights updates, regardless of the training set size.
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toy models, including the kicker ramp in Sec. C.1.1, we use
300k training events. For the small 10k training sample,
we see that the instability of the BINN density becomes
visible even for our reduced x-range. The peak-dip pattern
of the absolute uncertainty, characteristic for the kicker
ramp, is also hardly visible, indicating that the network has
not learned the density well enough to determine its shape.
Finally, the variation of the predictive density explodes for
x > 0.4, confirming the picture of a poorly trained BINN.
As a rough estimate, the absolute uncertainty at x = 0.5
with a density value p(x, y) = 0.75 ranges around σpred =
0.11 ... 0.15.

For 100k training events we see that the patterns discussed
in Sec. C.1.1 begin to form. The density and uncertainty
encoded in the network are stable, and the peak-dip with
a minimum around x = 2/3 becomes visible. As a rough
estimate we can read off σpred(0.5) ≈ 0.06 ± 0.03. For
1M training events the picture improves even more and
the network extracts a stable uncertainty of σpred(0.5) ≈
0.03 ± 0.01. Crucially, the dip around x ≈ 2/3 remains,
and even compared to Fig. 4 with its 300k training events the
density and uncertainty at the upper phase space boundary
are much better controlled.

Finally, we briefly comment on a frequentist interpretation
of the BINN output. We know from simpler Bayesian net-
works (Bollweg et al., 2020; Kasieczka et al., 2020) that it is
possible to reproduce the predictive uncertainty using an en-
semble of deterministic networks with the same architecture.
However, from those studies we also know that our class of
Bayesian networks has a very efficient built-in regulariza-
tion, so this kind of comparison is not trivial. For the BINN
results shown in this paper we find that the detailed patterns
in the absolute uncertainties are extracted by the Bayesian
network much more effectively than they would be for en-
sembles of deterministic INNs. For naive implementations
with a similar network size and no fine-tuned regulariza-
tion these patterns are somewhat harder to extract. On the
other hand, in stable regions without distinctive patterns the
spread of ensembles of deterministic networks reproduces
the predictive uncertainty reported by the BINN.

C.1.4. MARGINALIZING PHASE SPACE

Before we move to a more LHC-related problem, we need to
study how the BINN provides uncertainties for marginalized
kinematic distribution. In all three toy examples the two-
dimensional phase space consists of one physical and one
trivial direction. For instance, the kicker ramp in Sec. C.1.1
has a quadratic physical direction, and in a typical phase
space problem we would integrate out the trivial, constant
direction and show a one-dimensional kinematic distribution.
From our effectively one-dimensional uncertainty extraction
we know that the absolute uncertainty has a characteristic

maximum-minimum combination, as seen in the lower-right
panel of Fig. 4.

To compute the uncertainty for a properly marginalized
phase space direction, we remind ourselves how the BINN
computes the density and the predictive uncertainty by sam-
pling over the weights,

p(x, y) =

∫
dθ q(θ) p(x, y|θ)

σ2
pred(x, y) =

∫
dθ q(θ) [p(x, y|θ)− p(x, y)]

2
. (11)

If we integrate over the y-direction, the marginalized density
is defined as

p(x) =

∫
dy p(x, y)

=

∫
dydθ q(θ) p(x, y|θ)

=

∫
dθ q(θ)

∫
dy p(x, y|θ)

≡
∫
dθ q(θ) p(x|θ) , (12)

which implicitly defines p(x|θ) in the last step, notably
without providing us with a way to extract it in a closed
form. The key step in this definition is that we exchange
the order of the y and θ integrations. Nevertheless, with
this definition at hand, we can define the uncertainty on the
marginalized distribution as

σ2
pred(x) =

∫
dθ q(θ) [p(x|θ)− p(x)]

2
. (13)

We illustrate this construction with a trivial p(x, y) =
p(x, y0), where we can replace the trivial y-dependence
by a fixed choice y = y0 just like for the wedge and kicker
ramps. Here we find, modulo a normalization constant in
the y-integration

σ2
pred(x) =

∫
dθ q(θ) [p(x|θ)− p(x)]

2

=

∫
dθ q(θ)

∫
dy [p(x, y0|θ)− p(x, y0)]

2

=

∫
dydθ q(θ) [p(x, y0|θ)− p(x, y0)]

2

=

∫
dy σ2

pred(x, y0) = σ2
pred(x, y0) . (14)

Adding a trivial y-direction does not affect the predictive
uncertainty in the physical x-direction.

As mentioned above, unlike for the joint density, p(x, y|θ)
we do not know the closed form of the marginal distributions
p(x) or p(x|θ). Instead, we can approximate the marginal-
ized uncertainties through a combined sampling in y and
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Figure 8. Marginalized densities and predictive uncertainties for the kicker ramp. Instead of the true distribution we now show the training
data as a reference, to illustrate possible limitations. We use 10M phase space point to guarantee a stable prediction.

θ. We start with one set of weights θi from the weight dis-
tributions, based on one random number per INN weight.
We now sample N points in the latent space, zj , and com-
pute N phase space point xj using the BINN configuration
θi. We then bin the wanted phase space direction x and
approximate p(x|θi) by a histogram. We repeat this pro-
cedure i = 1 ... M times to extract M histograms with
identical binning. This allows us to compute a mean and
a standard deviation from M histograms to approximates
p(x) and σpred(x). The approximation of σpred should be
an over-estimate, because it includes the statistical uncer-
tainty related to a finite number of samples per bin. For
N � 1 this contribution should become negligible. With
this procedure we effectively sampleN×M points in phase
space.

Following (12), we can also fix the phase space points, so
instead of sampling for each weight sample another set of
phase space points, we use the same phase space points for
each weight sampling. This should stabilize the statistical
fluctuations, but with the drawback of relying only on an
effective number of N phase space points. Both approaches
lead to the same σpred for sufficiently large N , which we
typically set to 105 ... 106. For the Bayesian weights we
find stable results for M = 30 ... 50.

In Fig. 8 we show the marginalized densities and predictive

uncertainties for the kicker ramp. In y-direction the density
and the predictive uncertainty show the expected flat be-
havior. The only exception are the phase space boundaries,
where the density starts to deviate slightly from the training
data and the uncertainty correctly reflects that instability. In
x-direction, the marginalized density and uncertainty can
be compared to their one-dimensional counterparts in Fig.4.
While we expect the same peak-dip structure, the key ques-
tion is if the numerical values for σpred(x) change. If the
network learns the y-direction as uncorrelated additional
data, the marginalized uncertainty should decrease through
a larger effective training sample. This is what we typically
see for Monte Carlo simulations, where a combination of
bins in an unobserved directions leads to the usual reduced
statistical uncertainty. On the other hand, if the network
learns that the y-directions is flat, then adding events in
this direction will have no effect on the uncertainty of the
marginalized distribution. This would correspond to a set
of fully correlated bins, where a combination will not lead
to any improvement in the uncertainty. In Fig. 8 we see
that the σpred(x) values on the peak, in the dip, and to the
upper end of the phase space boundary hardly change from
the one-dimensional results in Fig.4. This confirms our
general observation, that the (B)INN learns a functional
form of the density in both directions, in close analogy to
a fit. It also means that the uncertainty from the generative
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Figure 9. Samples of a conditional (i.e. given label information)
BINN trained on the MNIST data set.

network training is not described by the simple statistical
scaling as was observed for simpler networks (Bollweg et al.,
2020; Kasieczka et al., 2020) and instead points towards a
GANplification-like (Butter et al., 2020a) pattern.

C.1.5. MNIST

Our low-dimensional experiments on the synthetic data sets
allowed us to visualize the behaviour of the model. In
order to demonstrate that the approach also scales to high-
dimensional latent spaces we close this section with a small
experiment on the MNIST data set. We train a conditional
BINN, i.e. an BINN that gets the label information as part
of the training data to allow for a nicer visualization, on the
MNIST data set. Figure 9 shows ten random samples per
label of the trained model, demonstrating the scalability of
the BINN. We leave a proper discussion and evaluation of
the learned uncertainties in the normalizing flow for further
work. The conditional BINN was trained as the other models
discussed in the experiments with the sole modification of
an inclusion of gradient clipping which became necessary
in some training runs to ensure numerical stability.

C.2. LHC Experiment

C.2.1. DATA PREPARATION AND EXPLANATION

The total probability of a certain process to occur, i.e. the
total probability that the collision of 2 particles with 4-
momenta pa, pb will produce n particles with 4-momenta
p1, . . . , pn is given by the cross section

σ =

∫
dΦ2→n

|M(pa, pb; p1 . . . pn)|2
2ŝ

(15)

where ŝ is the energy of the process in the center of mass
reference frame, the phase-space factor is given by

dΦ2→n = (2π)4δ(4)(pa+pb − p1 . . .− pn)×

×
n∏
f=1

dp3f
(2π)3

1

2p0f
, (16)

and the matrix elementM(pa, pb; p1 . . . pn) is a quantity
computed from first principles, which depends on the the-
oretical framework (e.g. what are the allowed interactions
between particles, what is their intensity, what are the sym-
metries of the theory). Finally, let us recall that a particle
is described in terms of its 4-momentum p = (E, ~p), with
energy and 3-momentum related by

p2 = E2 − ~p 2 = m2 , (17)

where m2 is the mass of the particle.

In practice, we can think of the cross section as the normal-
ization of a joint probability density

σ =

∫
dx p(x), (18)

with p(x) collecting both the phase-space factor and the
matrix element, so that a single collision corresponds to a
sample from p(x). The data employed in the LHC physics
section has been prepared using MADGRAPH5 (Alwall et al.,
2014), a state-of-the-art software in high energy physics for
sampling from p(x). In practice, the data consists of a point
cloud with each entry given by the set of momenta of the
particle produced in the collision (E1, ~p1), . . . , (En, ~pn).
In the specific process under consideration, an electron-
positron pair e−e+ is produced in the collision, and the
data set consists of 1M lists (Ee−, ~pe−), (Ee+, ~pe+). The
histograms displayed in Fig. 2 are some of the marginal
distributions of the 4-momenta of the electron-positron pair,
or of quantities directly computing in terms of 4-momenta.
A comprehensive list of the quantities used is

Ei = 0-entry of 4-vector i
px,i(py,i, pz,i) = 1- (2-, 3-) entry of 4-vector i

pT,i =
√
p2x,i + p2y,i

Ei,j = Ei + Ej

Mi,j =
√

(Ei + Ej)2 − (~pi + ~pj)2.

With the exception of Ei and pT,i, which are defined
in (0,∞), all other quantities are defined in the range
(−∞,+∞) in energy units.

C.2.2. FURTHER DISCUSSION

In Fig. 10 we show a set of absolute and relative uncertain-
ties from the BINN. The strong peak combined with a nar-
row tail in theEe distribution shows two interesting features.
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Figure 10. Absolute and relative uncertainties as a function of some of the kinematic Drell-Yan observables shown in Fig. 2.

Just above the peak the absolute uncertainty drops more
rapidly than expected, a feature shared by the wedge and
kicker ramps at their respective upper phase space bound-
aries. The shoulder aroundEe ≈ 280 GeV indicates that for
a while the predictive uncertainty follows the increasingly
poor modelling of the phase space density by the BINN, to
a point where the network stops following the truth curve
altogether and the predictive uncertainty is limited by the
expressive power of the network. Unlike the absolute uncer-
tainty, the relative uncertainty keeps growing for increasing
values of Ee. This behavior illustrates that in phase space
regions where the BINN starts failing altogether, we cannot
trust the predictive uncertainty either, but we see a pattern
in the intermediate phase space regime where the network
starts failing.

The second kinematic quantity we select is the x-component
of the momentum. It forms a relative flat central plateau
with sharp cliffs at each side. Any network will have trouble
learning the exact shape of such sharp phase space patterns.
Here the BINN keeps track of this, the absolute and the
relative predictive uncertainties indeed explode. The only
difference between the two is that the (learned) density at
the foot of the plateau drops even faster than the learned
absolute uncertainty, so their ratio keeps growing.

Finally, we show the result for the Breit-Wigner mass peak,
the physical counterpart of the Gaussian ring model of

Sec. C.1.2. Indeed, we see exactly the same pattern, namely
a distinctive minimum in the predictive uncertainty right
on the mass peak. This pattern can be explained by the
network learning the general form of a mass peak and then
adjusting the mean and the width of this peak. Learning the
peak position leads to a minimum of the uncertainty right
at the peak, and learning the width brings up two maxima
on the shoulders of the mass peak. In combination Fig. 2
and 10 clearly show that the BINN traces uncertainties in
generated LHC events just as for the toy models. Again,
some distinctive patterns in the predictive uncertainty can
be explained by the way the network learns the phase space
density.

C.2.3. FURTHER DETAILS

The hyperparameters and architecture for the LHC experi-
ment are given in Table 2.
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Table 2. Hyper-parameters for the Drell-Yan data set, implemented
in PYTORCH (v1.4.0) (Paszke et al., 2019).

Parameter Flow

Hidden layers (per block) 2
Units per hidden layer 64
Batch size 512
Epochs 500
Trainable weights ∼ 182k
Number of training events ∼ 1M
Optimizer Adam
(α, β1, β2) (1× 10−3, 0.9, 0.999)
Coupling layers 20
Prior width 1


