Al Robustness Evaluation

A Q-learning Novelty Search Strategy for

Evaluating Robustness of Deep Reinforcement
Learning in Open-world Environments

Shafkat Islam*, Min-Hsueh Chiuf, Trevor Bonjour®, Ruy de Oliveira*, Bharat Bhargava™, Mayank KejriwalT

* Purdue University, West Lafayette, USA
TUniversiz‘y of Southern California/ISI, USA

Abstract—Despite substantial progress in deep reinforcement learning (DRL), a
systematic characterization of DRL agents’ robustness to unexpected events in
the environment is relatively under-studied. Such unexpected events (“novelties”),
especially those that are more structural than parametric, may significantly
deteriorate the performance of DRL agents, leading them to be unfit for
open-world environments and applications. However, not all novelties affect an
agent’s performance equally. Unfortunately, even with reasonable and constrained
definitions of the problem, the space of all novelties can be (at least) exponential.
Hence, an effective search strategy is required to find novelties that can adversely
affect the agent. This paper presents a formalism for this problem and proposes a
deep Q-learning-based novelty-search strategy that efficiently and systematically
finds candidate (potentially complex) novelties with significant negative impact on
a DRL agent. We conduct a detailed set of experiments in a stochastic multi-agent
game environment (Monopoly) with complex decision-making properties.

hile deep reinforcement learning (DRL) has

led to enormous practical advances, it has

also been prone to problems such as lack of
explainability, inaccurate confidence estimations, bias,
and adversarial attacks that humans are normally ro-
bust to. Although some of these problems continue to
be heavily researched, a practical problem that has not
received adequate attention is open-world robustness.
This problem arises because the DRL agents are
frequently applied ‘outside the lab’ in domains where
unexpected events and violations of assumptions can
occur with non-trivial frequency. While ‘novelties’ [1],
[2] that are distributional (e.g., concept drift, where the
test distribution diverges from the training distribution to
such an extent that the system’s performance becomes
unreliable) or anomalous (e.g., anomaly and outlier
detection, common in time-series applications) have
been widely studied, far less study has been devoted
to novelties that are structural.

XXXX-XXX © |IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

Structural novelties, and other such open-world
elements, can degrade the performance of DRL agents
deployed in critical operational domains, such as au-
tonomous driving, military planning, and industrial loT.
In the extreme case, such performance degradation
can even cost human lives [3]. Hence, evaluating the
performance of DRL in the presence of structural
novelties is crucial to characterize its robustness in the
event of an unexpected change during its operation.
However, such performance evaluation may consume
substantial resources because the evaluation of each
novelty requires the DRL agent to interact with the
environment. Moreover, the novelty space of an en-
vironment can become exponentially large even with
reasonable constraints. Intuitively (and as formalized
subsequently), given n such novelty primitives that can
be composed into arbitrarily more complex novelties,
the space of all possible novelties, even without repe-
tition, is combinatorially explosive.

Note that the impact of such a compound novelty is
not (necessarily) the sum of the impacts of primitives,
although there is likely some association that could

Authorized licensed use limited to: Purdue University. Downloaded on July 13,2025 at 23:05:16 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

1

This article has been accepted for publication in IEEE Intelligent Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MIS.2024.3469574

Problem-I i Problem-lI

(a,b)

Search Budget

1| Desired Impact
‘Environment(&) ‘ ‘ DRL Agent (A)‘ ! (M)

Le tX (-1 X(t—2) e X(E—t+2)X(t—t+1)

'

b

/ DeQNo \
SIDP D 5T Offline DQN :
= P, o Py !
. Initlijal) = —| Profile set |_,| Candidate ||
amebor © Q) (Sp) novelty (N;) |!
Episode R 1 i v
Log P - Observe impact, |Track novelty
Con) \1 of N. [T M >M©N)
1
Track maximum,
» neg. impact ||
\ novelty ' /
¥
Novelty set |!l Novelty set
(Sen) ! (Sen)

(o)

FIGURE 1. (a) Wild boars are crossing a street in a city during Covid-19 pandemic (left), traffic light melted in heat wave (right);
(b) An illustration of the two novelty search problems described in the main text, and the key elements in the proposed DeQNo
approach for addressing them in a unified environment-agnostic manner.

be learned. Another key element here is that not all
novelties are of interest: rather, we seek novelties that
have significant adverse impact on the DRL agent, to
better understand the safety-envelope and robustness
properties of the agent, when navigating that envi-
ronment under open-world assumptions. Finally, any
such novelty search strategy should be conceptually
agnostic of the particulars of the environment, although
the implementation might depend on such particulars.
Hence, the goal is to develop a systematic yet efficient
strategy to find distinct complex structural novelties that
can negatively impact the performance of an interactive
state-of-the-art agent (typically trained using DRL) in

an open world version of the environment. Fig. 1a
illustrates that wild boars are crossing a street’ (left)
and traffic light melted in heat wave? (right). These
are novel incidents that occurred during the covid
pandemic and summer heat wave accordingly. An
autonomous intelligent vehicle trained before the covid
era (or without summer heat wave data) may strug-

Thttps://www.cbc.ca/news/world/photos-wildlife-animals-
take-to-streets-as-people-take-shelter-indoors-1.5519538
2https://www.dailyo.in/news/britain-is-melting-and-the-

pictures-prove-it-36672

Authorized licensed use limited to: Purdue University. Downloaded on July 13,2025 at 23:05:16 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://www.cbc.ca/news/world/photos-wildlife-animals-take-to-streets-as-people-take-shelter-indoors-1.5519538
https://www.cbc.ca/news/world/photos-wildlife-animals-take-to-streets-as-people-take-shelter-indoors-1.5519538
https://www.dailyo.in/news/britain-is-melting-and-the-pictures-prove-it-36672
https://www.dailyo.in/news/britain-is-melting-and-the-pictures-prove-it-36672

This article has been accepted for publication in IEEE Intelligent Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MIS.2024.3469574

gle to identify this novel incident accurately since the
training data may not have such samples. Therefore,
analyzing the robustness of Al agents in the presence
of novelty is imperative.

This paper proposes a novel deep Q-network-
based novelty search strategy (called DeQNo) for DRL
agents that addresses the challenges noted above.
The search strategy is presented as a solution to a for-
malized version of the structural novelty search prob-
lem, under reasonably defined ‘budget’ constraints,
that is subsequently detailed. Specific contributions
that we make in this paper include:

e We formalize the novelty search problem by
depicting the novelty space as a multi-level tree
(to capture realistic open-world ‘wilderness’) and
imposing a search budget to make the search
problem practical.

e We propose a deep Q-network (DQN) based
systematic novelty search strategy called DeQNo
that can learn from the novelty encoding in the
environment (e.g., a gameboard) as well as indi-
vidual novelty impacts on the DRL agent. DeQNo
is designed to be generalizable (with appropriate
modification) to any environment or agent, as it
does not conceptually rely on the particulars of
either.

e We conduct a detailed set of experiments by
comparing the performance of DeQNo with four
other baseline methods, including another deep
neural network approach, on the complex multi-
agent game of Monopoly. We also conduct rig-
orous statistical significance testing, to demon-
strate the competitiveness of DeQNo.

Given the recent multi-domain successes of deep
reinforcement learning (DRL), assessing the robust-
ness of DRL under open-world assumptions (where
unexpected events or novelties can occur with non-
trivial frequency) has been recognized as important
[4]. Following this path, [5] discuss both important
challenges and potential solutions to be addressed
by RL systems aiming for real-world deployment. [6]
surveyed the literature on more robust approaches to
RL, whereas [7] implement benchmarks to evaluate
the performance of DRL agents in autonomous driving
applications. However, none of these works study the
robustness of DRL when novelty is permitted during or
after deployment (but are unseen during training).
Novelties that are structural in scope and may
have high impact on an agent are hard to anticipate

in advance since they may arise from multiple open-
world causes. On the other-hand, adversarial attacks
are deliberate modifications in the system or environ-
ment that degrade an agent’s performance. Both intent
and outcome distinguish novelties from adversarial at-
tacks; particularly, novelties can arise from exogenous
causes in the environment, and their impact can be
uncertain (some novelties may have no impact, or
in the case of ‘bonus’ novelties, even lead to better
performance).

There has been much focus on improving an
agent’s performance, as well as on adversarial attacks,
and assessing adversarial robustness in literature. Our
work serves as a useful complement to these works.
However, our focus in not adversarial intent or attacks
but on changes that could reasonably occur in the
open-world. Such changes are known to happen in
complex applications and, as noted in Introduction, can
even lead to loss of lives. Yet, systematic discovery
of structural changes with high negative impact un-
der practical constraints is an important and under-
addressed problem in the literature.

In most instances in the literature, novelties as-
sumed by the agents tend to be more distributional
than structural [8], [9]. Even if this were not the case,
adapting an agent to novelty requires having control
over the agent and its training process [10]. This is
an unrealistic assumption in most industrial (or even
military) applications, where the agent is treated as a
black box and cannot be modified due to trade secrets
or other security concerns [11]. This paper treats the
agent as a black box and instead focus on understand-
ing which novelties can affect its performance, rather
than modifying or adapting it. However, our work is
complementary to the novelty detection and adaptation
literature, since having a better understanding of these
novelties can then be used to better re-train the agent.

The experiments in this paper use the game of
Monopoly [12], which is a hard game to model both
because of its complexity and its stochasticity, which
makes the state and action space high-dimensional.
While not much work has been done in this direction
[13], [14] compared to some other domains, smart
DRL-based agents to play Monopoly were recently
proposed by [15]. We use an open-source Monopoly
gameboard [12] and DRL agent [15] as our environ-
ment and agent, respectively, to facilitate replication.
However, the novelty search strategy proposed in this
paper can be used in diverse applications, and is con-
ceptually agnostic of the particulars of the environment
and agent as long as some standard (subsequently
described) assumptions are known to hold. The other
single or multi-agent open-world environments, such

Authorized licensed use limited to: Purdue University. Downloaded on July 13,2025 at 23:05:16 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

3

This article has been accepted for publication in IEEE Intelligent Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MIS.2024.3469574

as MineDojo[16], MAESTRO[17], or Craftax[18], are
customizable for diverse goals. The proposed novelty
search strategy can be applied to any of these en-
vironments with a fixed goal setting, a well-defined
goal evaluation metric, and a consistent definition of
novelty (according to the subsequent section) for the
environment.

Before describing the novelty search problem, we be-
gin by introducing the key terminologies used in this
paper. As is standard in the DRL literature, we assume
that a DRL agent A interacts with an environment £.
Given a state s of &£, the agent A performs actions
to maximize its reward or to reach the goal state. We
assume that the interaction between £ and A has a
predefined endpoint (or goal state).

An episode d is a sequence of states and actions
that begins from the initial state of £ and terminates
when A reaches the goal state in £. Note that if d
does not terminate after a finite pre-specified amount
of time, it is forcibly terminated. A trial D is defined as a
set of episodes. Finally, each episode is characterized
by a performance metric. In games, for example, the
performance metric can be set to 1 if the target agent
wins, and 0 otherwise. The performance metric for a
trial D can be similarly defined as the win ratio w
or fraction of episodes (‘games’) in D that the target
agent won. Unlike the binary episode-based perfor-
mance metric, the trial-based win ratio can therefore
take values in [0, 1]. In this paper, when computing
w for a trial, we consider both the forcibly® and the
conventionally terminated episodes. We assume that
there is a way to decide the winner even when the
game has been forcibly terminated. In a game like
Monopoly, for example, the agent with the highest net-
worth (right before forcible termination) is the winner.

A novelty primitive (henceforth, primitive) is a func-
tion P that, when instantiated and applied to E, results
in a changed environment £’. By instantiation, we
mean that 7 must take one of the finite* Cp parameters
(where Cp > 1 and depends on P) before it can be
applied. For instance, in Monopoly, an example of P
would be changing the mortgage interest rate of all
properties from 0.1 to one of {0.2,0.3,...,1.0}. Once

instantiated with one of these values, and applied to
the default Monopoly gameboard (£), the instantiated
primitive P, will alter the gameboard to reflect the
new mortgage rate (£’). For ease of terminology, we
assume that each of the (finite) Cp parameters is
indexed by an integer® n and denote the instantiated
version of a primitive P as Ph.

Given a pre-defined set P of H primitives
{P',...,P"}, each with its own Cp: instantiations, we
can expand P into a (still finite) set P’ consisting of
> Cpi instantiated primitives. Suppose that the total
number of such instantiated primitives (i.e., the size of
P’) is denoted as t. To take a simple example, given
10 primitives, each with 15 possible instantiations, P’
would consist of 150 (= t) instantiated primitives. Using
this terminology, we define a novelty (N) as a non-
empty sequence of instantiated primitives, without any
instantiated primitive being repeated in the sequence.
Note, however, that different instantiations of the same
primitive are permitted. A single instantiated primitive
is also a novelty, as it can be placed in a sequence of
length 1.

Because of finiteness, and the non-repetition con-
straint noted above, the set or ‘space’ of all possible
novelties is necessarily finite. We can represent this
space as a novelty tree T (shown in the top-left of Fig.
1b), constructed as follows.

The tree begins with an artificial root node at level
Ly. Each node in the next level (L) is an instanti-
ated primitive. For example, if there are 10 primitives,
each with 10 instantiations, then Ly would contain 100
nodes. Since we impose the repetition constraint on
novelty formation, in level L,, each node Pf in level
Li becomes the parent of t — 1 nodes, each of which
represents an instantiated novelty primitive except P} .
Hence, the total number of nodes (using the previous
running example) in L, would be 100 x 99 = 9900.
Similarly, higher level (Ls, Ly, Ls,Lt) nodes in T are
created. By construction, if there are t total instantia-
tions, the last level in 7 would be L;. By the definition
of A/ (defined earlier), a path from the root to each
unique node (except the root) in 7 represents a unique
novelty.

Technically, two novelties or sequences of instanti-
ated primitives A7 and N> that are only different up to
a permutation i.e., Set(Ni) = Set(Nz), will likely show

3Removing episodes with forcible termination from a trial
will apply in some situations. The treatment in this paper would
not change substantially.

4We leave an exploration of infinitely parameterized prim-
itives for future work, as it would require a fundamentally
different (non-discrete) search framework.

5Although the example just used one ‘argument’, the same
formalism applies to arbitrary but finite arguments, each taking
finite values. Cp is then determined by the cross-product of
these argument-sets. Furthermore, in the special case where
the primitive only takes one argument (including the empty
set), n=1.

Authorized licensed use limited to: Purdue University. Downloaded on July 13,2025 at 23:05:16 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Intelligent Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MIS.2024.3469574

no practical difference in most real-world domains, as
the order in which an instantiated primitive is injected
is unlikely to matter (if they are all injected at the
beginning of an episode, as is assumed here). Hence,
we consider such novelties to be invariant with respect
to each other. To ensure that novelty search is non-
trivial, we henceforth represent the novelties as sets
rather than sequences.

Injecting P» or N in £ may cause a change in the
performance of A. A central goal of this paper is to
discover novelties that can cause significant changes.
We term such performance deviation as the novelty’s
impact. While there are several ways to define impact,
one reasonable metric is to compute the relative win-
ratio difference M(N). The M(N) definition depends
on the agent’s goal. Since the metric measures relative
difference, changing M(N)) based on the goal will not
affect the search strategy. This metric quantifies the
relative change in win rate as the result of injecting
N. We define M(N) at the level of a trial, rather than
an episode, to deal with stochastic effects that are
usually prevalent in real domains subject to the open-
world assumption. Recall that we had earlier defined
the notion of a trial-based performance metric (e.g.,
win ratio w). Let us denote as wpre the win ratio of the
DRL agent A for a trial D where novelty has not been
injected into any episode in D. Unless the domain or
agent is highly unstable, wpre will usually be constant
(at least in expectation) for a given environment-agent
combination. Next, given a novelty N, we can inject it at
the beginning of every episode in a trial D, and calcu-
late a ‘post-novelty’ win ratio wpest that represents the
performance of A when exposed to the specific novelty
N. Unlike Wpre, Wpost Will depend on the novelty V.
With these notions in place, the impact M(N) is simply
given by % Note that, if the performance metric
(w) is constrained to lie between [0, 1], M(N\) has lower
bound of -1, which would be achieved for novelties with
extreme negative impact on the performance of A.

To capture the resource-constrained nature of any
practical novelty search strategy, we introduce a search
budget (a,b). The search budget is defined by an
interaction budget (a) and an injection budget (b). The
interaction budget value is the number of trials that
A is allowed to interact with (‘play in’) the £ during
novelty search (e.g., to know the empirical impact of
a novelty on A). The injection budget value is defined
as the total number of instantiated primitives that the
search algorithm is allowed to use, regardless of the
number of trials. In practice, search budget can be
considered as the computing resource (for calculation),
and the interaction frequency between A and £. With
this formalism in place, two important novelty search

problems, both schematized in Fig. 1b, can be stated:
Problem | (Maximal Negative Impact): Given the
DRL agent A, the environment £, a search budget
(a, b) and the novelty tree T, find a set Sgy within the
search budget such that each novelty N € Sgy has
maximal (and equal) negative impact on A.

Problem Il (Desired Impact Novelty): Given the DRL
agent A, the environment &, a desired impact M, a
search budget (a, b) and the novelty tree T, find a set
Scn of novelties within the search budget such that
each novelty N € Sgy has an equal or higher negative
impact M(\) than M i.e., 1 > M(N\).

Both the problems are expected to output a nov-
elty set Sy comprising distinct novelties, where each
novelty satisfies the desired impact constraint. Sgy
can be empty if none of the novelties satisfies the
constraints; an issue that can arise for Problem II.
The maximal negative impact problem is important
because it challenges the search algorithm to find
the ‘safety envelope’ of an A. Different search strate-
gies can be evaluated on Problem | by assessing
the maximal impacts of the novelties they were able
to find within the budgetary constraints. However, in
some applications, a user may want to specify their
own desired impact, rather than leave it to the search
algorithm to find extreme cases. We formulate the
desired impact novelty problem to address that issue.
The value of the desired impact (M) can vary based
on A’s objective or application. Since it is not possible
to observe the impact of each specific novelty within a
reasonable search budget, it is important for a search
strategy to find as many novelties as possible that
satisfy the constraints.

In this section, we describe the deep Q-learning based
systematic novelty search approach DeQNo for solv-
ing the two problems stated earlier. Earlier, Fig. 1b
illustrated the key elements of the approach. Before
describing these elements, we note that the DQN
used in DeQNo is different from the DQN used in
training the (DRL) agent A. The latter yields an (e.g.,
gameplaying) agent that is trained to play well against
other agents in the ‘default’ environment (£), one that
does not have novelties. The former is our proposal
to efficiently address the novelty search problems. We
use DQN for novelty search since the budget constrain
limit the amount of training data for the search, and
the convergence of DQN requires less amount of data
compared to other methods (i.e., actor-critic, Muzero
or EfficientZero).

Authorized licensed use limited to: Purdue University. Downloaded on July 13,2025 at 23:05:16 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

5

This article has been accepted for publication in IEEE Intelligent Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MIS.2024.3469574

Q-learning [19] is a model-free reinforcement learn-
ing which can be used to search for instantiated prim-
itives that compose novelties with a substantial neg-
ative impact on agent A. In Q-learning-based search,
we define each novelty formation as an epoch. We de-
fine the state, action and reward of DeQNo as follows.

State Space: Injecting an instantiated primi-
tive causes a change in the gameboard; thus,
we represent each such modification in the game-
board as an instance of the state. Therefore, we
can define the state space (S) of Q-learning as,
S = {Gpy Goyys Gps ----» Gps } Where Gp, represents
gameboard with P, injected at the s state and thus
Gp,, represents the default gameboard with no Pj
injected. In this paper, we only consider novelties with
maximum level of five (denoted as Ls) in 7. Under this
constraint, the state space for DeQNo also reduces till
the Gp,. Here, Gp,, is a tuple of instantiated primitives
from P; to P:;. The value of P, can either be 0 or
1. We term such type of state definition as novelty
encoding. Here, the value P, = 1 represents that the
P! instantiated primitive is injected in the game-board
and 0 represents the opposite. Hence, at the initial
state sp, the value of all P, is 0 which represents the
original gameboard (Gp,,). Since we are limiting the
novelty search up to Ls in the novelty tree (fig. 1b), we
define the goal state for DeQNo as when any five of
the instantiated primitive’s value will become 1.

Action Space: At each state DeQNo chooses one
of the instantiated primitives to inject in the game-
board. By the definition of novelty (defined in ‘problem
formulation’), repetition of an instantiated primitive is
not allowed within a particular novelty (N). Thus, the
action space of DeQNo at the initial state is t which
reduces by 1 at each next state until the agent reaches
the goal state. Hence, we define the action space (S.4)
as, S4 = {P1, Pz, Ps,...., Pt} where the search agent
chooses any of these instantiated primitives (without
repetition during a novelty formation) at each state and
inject it in the game-board. Since the size of state-
action pair (S x S4) increases considerably with the
increase in t we use a deep neural network-based Q-
function approximator.

Reward: We define the reward (r) as, r =
a(—BM(N) — M(Pp)) where M(N) and M(P,) are the
win ratio differences after injecting the novelty (V) and
the instantiated primitive (P,) accordingly. Here o and
B are the reward scaling and reward balancing parame-
ters accordingly. Reward motivates the beQNo to select
the P, that itself and as the component of a ' poses
a negative impact on A. Since we are interested in
finding novelties (instead of each instantiated primitive)
that have a negative impact we set the value of

at 2. This inspires DeQNo to give more emphasis on
choosing instantiated primitives that as a component
of novelty poses a negative impact. Since the value of
win ratio difference can be within the range of fractions
(depending on applications), irrespective of injecting
any P, or NV, we set the value of o at 10 to make
the reward at each state distinctive.

Fig. 1b also showed the Markov decision process
(MDP) for DeQNo. The green ovals represent observed
states whereas blue circles represent the observed re-
wards from taking the actions. Initially, the environment
does not have any instantiated primitive (Pp) injected.
The DeQNo method chooses P; instantiated primitive
as the action at its current state and then transitions
to state Gp,, (and gets reward r'"). At that state, the
DeQNo has t—1 actions available to it, of which it takes
action P, and transitions to Gp,, (getting reward r??).

Because the definitions of the novelty search prob-
lems impose a budgetary limit on the interaction be-
tween A and &, we adopt an offline training strategy
for DeQNo. Specifically, DeQNo collects training data
by taking random actions at each state, and logging
the episode results by injecting randomly sampled
novelties. It is allowed to spend at most 50% of the
budget value to collect this data. Following this step,
the deep neural network-based Q-function approxima-
tor is trained offline[20], using the training samples (by
extracting state, action, and reward values from the
logged episodes), to avoid using up the budget. As
shown in Fig. 1b, DeQNo prepares a profile set (Sp) of
instantiated primitives (approximately top 50%) at each
level as candidate novelties up to a certain level.

To discover a good set of novelties required for
the two problems, DeQNo also trains a linear regres-
sion model to predict the win ratio difference of a
particular novelty () while the input to the model is
the individual win ratio difference of each instantiated
primitive (P,) that forms the novelty. The regression
model uses the episode logs collected initially as the
training samples. DeQNo forms a candidate novelty set
(N¢) by taking instantiated primitives from the profile
set of Sp, and querying the impact of that novelty
in the regression model. Finally, DeQNo observes the
impact of each candidate novelty on A and tracks the
novelty that satisfies the search condition. The final
output considers both the observed results as well as
the initial episode logs and outputs the final novelty set
(Scn)-

We conducted a detailed set of experiments to evalu-
ate the merits of DeQNo on both problems formalized

Authorized licensed use limited to: Purdue University. Downloaded on July 13,2025 at 23:05:16 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Intelligent Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MIS.2024.3469574

earlier in Problem Formulation. We begin by describing
the environment, agent, and novelty primitives that
serve as inputs to any solution to these problems (as
also shown on the top in Fig. 1) and that form a
common basis to all of the results. We follow this with
a brief description of the baselines used to evaluate
DeQNo on both problems.

Environment (Monopoly): We use an open-
source Monopoly gameboard [12] as the environment
for all experiments. There are several reasons why we
chose Monopoly for these experiments. First, it is one
of the few open-source implementations of a complex
game that supports novelty. Second, it supports multi-
agent plugins. Third, it is a stochastic game where the
action space for an agent is significantly large, allowing
us to test the proposed framework in a rich enough
environment.

Target agent (based on DRL): As our primary
objective is novelty search and not the design of an
‘optimal’ game-playing agent, we use a state-of-the-art,
previously published DRL agent [15] already known
to work well with the Monopoly gameboard described
above, and that can be used to replicate these exper-
iments. Each Monopoly episode is played among four
players of which one is the DRL agent and the rest
of the three players are rule-based agents. The rules
underlying these agents are based on documented
tournament winning strategies® from the Monopoly
community, e.g., preferring railroads over utilities due to
their multiplicative reward structure. The win ratio of the
DRL agent (A) in the default gameboard (determined
by computing the win ratio for a 100-episode trial
without novelty) was found to be 0.698. Hence, the
pre-novelty win-ratio wpre for the DRL agent is set to
this constant value when calculating the impact metric
M(N), the formula for which was provided earlier in
Problem Formulation. The impact metric M(N), was
defined earlier as well and is motivated by the desired
goal to test an agent’s robustness by finding novelties
that would significantly affect its performance.

Recall that M(N) can be positive, negative, or
zero. A negative M(N) implies that injecting N into
the gameboard negatively affects the performance of
DRL relative to wpre (= 0.698) in these experiments. A
positive value indicates that N should be thought of as
a ‘bonus’ novelty, and 0 implies that the novelty had no
effect.

Novelty Primitives: The two novelty search prob-

8Two resources include http://www.amnesta.net/monopoly/
and https://www.vice.com/en/article/mgbzaq/10-essential-
tips-from-a-monopoly-world-champion.

lems of interest to us assume novelty primitives and
their (finite) instantiations to be provided as inputs.
For the Monopoly gameboard, we defined a set of
59 distinct structural primitives, and a total of 1554
instantiations spanning these primitives. Novelty can
be formed by combining instantiated primitives from
these 1554 instantiations without any repetition. In
these experiments, we constrain the search to find
novelties between L, to Ls. Even with this constraint,
the space of all possible novelties is more than millions,
demonstrating the difficulty of this search problem. We
set the number of episodes in each novelty-injected
trial at 30. The novelty is injected into the gameboard
at the beginning of every episode in a trial. Recall that
each episode is an independent game of Monopoly
played from the beginning. Primitives are further de-
scribed in the Appendix.

Baselines: We used four diverse baselines, each
representing an implemented novelty search strategy,
for evaluating DeQNo:

1) Linear regression model with novelty impact
(LiNI): This search strategy collects train-
ing data by randomly injecting novelties in the
Monopoly gameboard and logs the win ratio dif-
ference of the DRL agent. The linear model uses
each individual instantiated primitive’s impact as
an input feature and the win ratio difference of the
novelty as the output label. This search strategy
can utilize at most 50% of the budget to collect
the training data and uses the rest of the budget
to observe interaction based on the novelty set
that is created from querying the linear model.

2) Deep neural network with novelty encoding
(DeNE) : This strategy uses a deep neural net-
work model to predict the win ratio difference of
the DRL agent in the presence of a particular
novelty AV, by using the novelty’s encoding as the
input feature. For instance, if there are t distinct
instantiated primitives, the feature dimensionality
of each data point is t. For each N/, the values of
those instantiated primitives that form the novelty
are 1 while the rest of the feature values remain
0. This strategy also uses 50% of the budget to
collect the training data, and uses the rest of the
budget for observing interactions.

3) Random Sampling based Novelty Search (Ran) :
This method uses the entire budget to inject
random novelties in the gameboard and logs the
interaction results of the DRL agent. Novelties
are output based on the logs.

4) Stratified Random Sampling based Novelty
Search (S-RrRan) This strategy also uses ran-

Authorized licensed use limited to: Purdue University. Downloaded on July 13,2025 at 23:05:16 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

7

http://www.amnesta.net/monopoly/
https://www.vice.com/en/article/mgbzaq/10-essential-tips-from-a-monopoly-world-champion
https://www.vice.com/en/article/mgbzaq/10-essential-tips-from-a-monopoly-world-champion

This article has been accepted for publication in IEEE Intelligent Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MIS.2024.3469574

dom formation of novelties. However, it uses the
budget to form twice the Ly and Ls novelties
compared to the L, and Lz novelties. Since we
assume that the complexity of novelty increases
with the level, this method was designed to ‘try’
higher level novelties to better solve the problem.

To evaluate the maximal negative impact problem
(Problem-/), we first compare the performance of
DeQNo with the four other baselines in finding the
novelty set Sgy with maximal negative impact, for
two different search budget settings: (2000, 6000) and
(1800, 5400). In executing the methods, we observed
that each of the search strategies was able to find
novelties with the maximum impact (of -1); however,
the size of the set Sgy differed for each method.

Fig. 2(a) illustrates the results for finding maxi-
mum impact novelty sets, Scy. DeQONo outperforms the
other search strategies for both budget settings. For
instance, DeQNo found at least 1.19x and 1.16x as
many maximum-impact novelties compared to LiNI
and DeNE, respectively. Apart from DeQNo, LiNI and
DeNE found almost equal numbers of maximum impact
novelties for the budget value of (2000, 6000), however,
for the (1800, 5400) budget LiNTI found almost 1.73x
more maximum impact novelties than DeNE. In both
cases, Ran and S-Ran found at most one-third of
maximum impact novelties compared to DeQNo.

To further compare different strategies, we evalu-
ated their performance in finding the novelty set Sy
with a minimum desired negative impact M (Problem-
I). We considered a wide range of values for M, such
as[-0.4,-0.5,-0.6,—-0.7,—0.8, —0.9]. With decrease
in M, the novelty can have a more significant negative
impact on the DRLs performance. Hence, it is impor-
tant for a search strategy to find as many novelties
below the desired impact as possible.

Fig. 2(b) shows the results for different values of
M. We observe that at M = —0.9 and search budget
(2000, 6000), DeQNo can find 1.09%, 1.45x, 3.75X,
and 4.16x as many novelties compared to LiNT,
DeNE, S-Ran and Ran, respectively. In addition, for
M = —0.7, pegNo can find 1.02x and 1.2x as many
novelties compared to LiNI and DeNE. We observe
that as the value of M increases, the performance
difference between learning-based search strategies
reduces; however, s-Ran and Ran become signifi-
cantly worse even at M/ = —0.4.

Effect of search budget (a, b): Next, we evaluate
the effect of search budgets on different strategies.
We conduct experiments on four different search bud-

gets for comparing the performance of DeQNo, LiNI,
S-Ran, and Ran. Fig. 2(c) and 2(d) illustrate the ex-
perimental results for two different desired impacts,
such as —0.7 and —0.9 respectively. We observe
that in almost all cases the size of Scy increases
with the increase in budget value. At search budget
of (1800,5400) and desired impact of —0.9, DeQNo
can find 1.38x as many novelties compared to LiNTI,
although the performance difference between the two
methods reduces to 1.083x when the budget reduces
to (1400,4200). However, the performance of s-Ran
and Ran continue to be noticeably worse compared to
the learning-based strategies in all scenarios.

Effect of novelty levels: Finally, we evaluate both
the performance of different search strategies in finding
novelties at different levels, and the impact of these
different-level novelties on the DRL agent A. Fig. 2(e-
h) illustrates the frequency of novelty levels in different
novelty sets for search budget: (2000, 6000). We ob-
serve that each learning-based search strategy (e.g.,
DeQNo, LiNI, DeNE) can find substantial novelties
across levels L, to Ls, with A performance degrading
below a specified desired impact 1. We also observed
that L4 novelties were most frequently the root cause of
performance degradation for different desired impacts
and budgets. We also observe that beQNo found the
most numbers of L4 and Ls novelties with minimum
desired negative impact of —0.7, —0.9 and —1.0 for
both search budget settings (i.e., (2000,6000) and
(1800, 5400)). However, LiNI can find the most L,
and L3 novelties for all three desired impacts when
using the (2000, 6000) budget. For the (1800, 5400)
budget, DeQNo finds the most number of L, and Lj
novelties compared to others. With the increase in nov-
elty primitives and their instantiations, the novelty level
increases. We observe that increment in novelty level
L, to Ls does not affect the efficacy of the algorithm
in finding novelties. Though we limit the search in the
novelty tree at level 5, the algorithm can be effectively
pluggable for finding novelties at higher levels.

Statistical Analysis: To statistically compare the
performance of different search strategies we con-
ducted both ANOVA and post hoc analyses among
DeQNo, LiNI, Ran, and S-Ran. We collected six dif-
ferent data points for each of these methods (using
different budget values) to conduct the tests. The
degree of freedom for each test is 23. In the tests,
the null hypothesis was that the means of two given
methods are not different. We conduct the tests for
three different desired impacts, e.g., —1,—-0.9, and
—0.7. For each of these three tests, we observed that
the ANOVA p-value is less than 0.05 which implies
that one or more groups in the tests are significantly

Authorized licensed use limited to: Purdue University. Downloaded on July 13,2025 at 23:05:16 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Intelligent Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MIS.2024.3469574

723 Search budget = (2000, 6000) 7 wo0| 4 2*‘;"‘“ i 500 -‘__ ——— s =
504 50 Search budget = (1800, 5400} UM e -+ SRan s -# SRan
=3 [= DeNE s =0 N —= UNI AN —= LN
$? Y | = 8007 e Deomo o 3 ol 3 -+ Dedla | 5 15 s DeMo
e 7 “ 5 el 2 = 2 .
L]) i i 1% iy 8 150 ~
> / 600 > 301 - = N
2y v z e | 2 S 2 .
g2 7 § S] ~P fs R
v £ 2 T g
= 5 s < 5 =
5 20 /// H gy K] S 0 g
g % X , D ¢
& 7 S] ¢ G
RZN ;\ -~ e 0 e ey .
7 e R sl b ke - !
0 t" 1504 -+ T TTeeeee
fan SRan LNl DeNE DeQNo 03 08 o7 06 05 04 (2K 8k) (1.8k5.4k) {16k 4.8k (L4kA.2H (2k.6K) 1.8k 5.2k) (1.6k.4.8k) (14K 4.2)
Search Strategy Desired impact (M} Search budget Seanch budget
(a) (b) (c) (d)
FZ3 DeGQMo FZ3 DeGQMo 1601 Fz2 DeQNo - 12 | EE2 DeMo
120{ O3 LiNI 3 LN y C3J LN . 3 LN i
- 9 Dene _ 80{ (<X DeNE P _ 1804 =) pene yin — ™) DeNE §e
& [g o 3 1 o
& 100{ =2 Ran & X3 Ran [& 130 2 Fan " § 100{ 2 Ran o
o <) SRan b <) SRan o] I 0 SRan -] =) S-Ran R
] -] E
e g0 : < 60 g = 1004 g £ 801 o
z g T oo & I z "
2 E 2 g
] B4 § W e iy S eof iy
g % g5 g o 85 g g% g B
S e < YL | . 84 H e
2 o] 2 201 . 2 8 ol 2 oo
201 o oo 201 [el -t} <o}
7 & B“EE & W : b BA
. [o
° 1 0.9 0.7 ° 1 0.9 0.7 1 -0.9 0.7 1 -0.9 0.7
Desired impact (M) Desired impact (M) Desired impact (M) Desired impact (M)
(®) (§3] (2) (k)

FIGURE 2. Performance of different search strategies, with different search budget, in finding (a) maximal impact novelties
(Problem — 1), (b) novelties with a minimum desired negative impact (Problem — Il) at search budget (2000, 6000). Performance
of different search strategies, for different budget values, in finding novelties with a minimum desired negative impact (Problem—Il)
of (c) —0.7, (d) —0.9. Performance of different search strategies in finding novelty at different levels such as (e)L, (f)Ls, (g)L4,

and (h)Ls at the search budget of (2000, 6000).

different. Additionally, in the post hoc Tukey HSD test
we found that DeQNo is significantly different than Ran
and s-Ran with Tukey HSD p-values of 0.007 and
0.005 accordingly at the desired impact of —1. In the
other two tests, we found that DeQNo and LiNI are
both significantly different from Ran and s-Ran.

Structural novelties can significantly degrade the per-
formance of a DRL agent, by surprising the agent
with unexpected events during operation. Novelty can
have many causes, making it difficult to fully anticipate,
and even under reasonable constraints, the space
of all possible novelties is combinatorially explosive.
To better understand a DRL agent’s robustness op-
erating under open-world assumptions, it is impor-
tant to discover high-impact novelties from the space
in a systematic and efficient way. In this paper, we
presented an environment-agnostic formalism for the
novelty search problem, and a deep Q-network-based
novelty search approach (DeQNo) for efficiently finding
candidate sets of high-impact novelties. Experiments
conducted against four baselines, using a complex
Monopoly gameboard and a recently published DRL
agent, demonstrate both the practical utility of the prob-

lem formulation and the efficacy of DeQNo in finding
more novelties with greater impact. In future, we will
investigate the impact of training data characteristics
on the proposed DeQNo.

This research is supported, in part, by the Defense
Advanced Research Projects Agency (DARPA) and
the Air Force Research Laboratory (AFRL) under the
contract number W911NF2020003.

1. T. Boult, P. Grabowicz, D. Prijatelj, R. Stern,
L. Holder, J. Alspector, M. M. Jafarzadeh, T. Ahmad,
A. Dhamija, C. Li, et al., “Towards a unifying frame-
work for formal theories of novelty,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 35,
pp. 15047-15052, 2021.

2. T. Boult and W. Scheirer, A Unifying Framework for
Formal Theories of Novelty: Discussions, Guidelines,
and Examples for Artificial Intelligence. Springer
Nature, 2023.

3. F. Siddiqui, “17 fatalities, 736 crashes: The shocking
toll of tesla’s autopilot,” The Washington Post, 2023.

Authorized licensed use limited to: Purdue University. Downloaded on July 13,2025 at 23:05:16 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

9

10

10.

11.

12.

13.

14.

This article has been accepted for publication in IEEE Intelligent Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MIS.2024.3469574

M. Kejriwal, A. Shrivastava, E. Kildebeck, B. Bhar-
gava, and C. Vondrick, “Designing artificial intelli-
gence for open worlds,” Proceedings of the AAAI
Spring Symposium on Designing Artificial Intelli-
gence for Open Worlds, 2022.

G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li,
C. Paduraru, S. Gowal, and T. Hester, “Challenges of
real-world reinforcement learning: definitions, bench-
marks and analysis,” Machine Learning, vol. 110,
pp. 2419-2468, Apr. 2021.

J. Moos, K. Hansel, H. Abdulsamad, S. Stark,
D. Clever, and J. Peters, “Robust reinforcement learn-
ing: A review of foundations and recent advances,’
Machine Learning and Knowledge Extraction, vol. 4,
pp. 276-315, Mar. 2022.

A. Sharif and D. Marijan, “Evaluating the robustness
of deep reinforcement learning for autonomous poli-
cies in a multi-agent urban driving environment,” in
2022 IEEE 22nd International Conference on Soft-
ware Quality, Reliability and Security (QRS), |IEEE,
Dec. 2022.

Y.-C. Hsu, Y. Shen, H. Jin, and Z. Kira, “General-
ized odin: Detecting out-of-distribution image without
learning from out-of-distribution data,” in Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10951-10960, 2020.
H. Mirzaei, M. Salehi, S. Shahabi, E. Gavves, C. G.
Snoek, M. Sabokrou, and M. H. Rohban, “Fake it
until you make it: Towards accurate near-distribution
novelty detection,” in The Eleventh International Con-
ference on Learning Representations, 2022.

Z. Wang, L. Liu, Y. Duan, Y. Kong, and D. Tao,
“Continual learning with lifelong vision transformer,” in
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 171-181,
2022.

Z. Liu, J. Guo, K.-Y. Lam, and J. Zhao, “Efficient
dropout-resilient aggregation for privacy-preserving
machine learning,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 18, pp. 1839-1854,
2022.

M. Kejriwal and S. Thomas, “A multi-agent simulator
for generating novelty in monopoly,” Simulation Mod-
elling Practice and Theory, vol. 112, p. 102364, 2021.
A. F. P. Bailis and I. Vlahavas, “Learning to play
monopoly: A reinforcement learning approach,” in
the 50th Anniversary Convention of The Society for
the Study of Atrtificial Intelligence and Simulation of
Behaviour, AISB, 2014.

E. Arun, H. Rajesh, D. Chakrabarti, H. Cherala, and
K. George, “Monopoly using reinforcement learning,”
in TENCON 2019 - 2019 IEEE Region 10 Conference
(TENCON), pp. 858-862, 2019.

15. T. Bonjour, M. Haliem, A. Alsalem, S. Thomas, H. Li,
V. Aggarwal, M. Kejriwal, and B. Bhargava, “Deci-
sion making in monopoly using a hybrid deep re-
inforcement learning approach,” IEEE Transactions
on Emerging Topics in Computational Intelligence,
pp. 1-10, 2022.

16. L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang,
H. Zhu, A. Tang, D.-A. Huang, Y. Zhu, and A. Anand-
kumar, “Minedojo: Building open-ended embodied
agents with internet-scale knowledge,” Advances in
Neural Information Processing Systems, vol. 35,
pp. 18343-18362, 2022.

17. M. Samvelyan, A. Khan, M. Dennis, M. Jiang,
J. Parker-Holder, J. Foerster, R. Raileanu, and
T. Rocktaschel, “Maestro: Open-ended environment
design for multi-agent reinforcement learning,” arXiv
preprint arXiv:2303.03376, 2023.

18. M. Matthews, M. Beukman, B. Ellis, M. Samvelyan,
M. Jackson, S. Coward, and J. Foerster, “Craftax:
A lightning-fast benchmark for open-ended rein-
forcement learning,” arXiv preprint arXiv:2402.16801,
2024.

19. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
|. Antonoglou, D. Wierstra, and M. Riedmiller, “Play-
ing atari with deep reinforcement learning,” arXiv
preprint arXiv:1312.5602, 2013.

20. K. Schweighofer, M.-c. Dinu, A. Radler, M. Hof-
marcher, V. P. Patil, A. Bitto-Nemling, H. Eghbal-
zadeh, and S. Hochreiter, “A dataset perspective
on offline reinforcement learning,” in Conference on
Lifelong Learning Agents, pp. 470-517, PMLR, 2022.

Shafkat Islam is currently pursuing a Ph.D. in Com-
puter Science at Purdue University.

Min-Hsueh Chiu is working as a research engineer in
AICS at the University of Southern California/ISI.

Trevor Bonjour is a PhD candidate in the computer
science department at Purdue University.

Ruy De Oliveira is a visiting scholar in the computer
science department at the Purdue University.

Bharat Bhargava is a Professor in the computer sci-
ence department at the Purdue University.

Mayank Kejriwal is a Research Assistant Professor in
the Department of Industrial and Systems Engineering,
and a Principal Scientist in the USC Information Sci-
ences Institute.

Authorized licensed use limited to: Purdue University. Downloaded on July 13,2025 at 23:05:16 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

	Motivation
	Problem Formulation
	Deep Q-network with novelty impact and encoding (DeQNo)
	Experiments
	Results
	Conclusion
	ACKNOWLEDGMENTS
	REFERENCES
	REFERENCES
	Biographies
	Shafkat Islam
	Min-Hsueh Chiu
	Trevor Bonjour
	Ruy De Oliveira
	Bharat Bhargava
	Mayank Kejriwal

