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Abstract

Large Language Models (LLMs) are powerful001
tools for natural language processing, enabling002
novel applications and user experiences. How-003
ever, to achieve optimal performance, LLMs of-004
ten require adaptation with private data, which005
poses privacy and security challenges. Several006
techniques have been proposed to adapt LLMs007
with private data, such as Low-Rank Adapta-008
tion (LoRA), Soft Prompt Tuning (SPT), and009
In-Context Learning (ICL), but their compar-010
ative privacy and security properties have not011
been systematically investigated. In this work,012
we fill this gap by evaluating the robustness013
of LoRA, SPT, and ICL against three types014
of well-established attacks: membership infer-015
ence, which exposes data leakage (privacy);016
backdoor, which injects malicious behavior (se-017
curity); and model stealing, which can vio-018
late intellectual property (privacy and security).019
Our results show that there is no silver bul-020
let for privacy and security in LLM adaptation021
and each technique has different strengths and022
weaknesses.023

1 Introduction024

In recent years, Large Language Models (LLMs)025

have become integral to a plethora of products.026

Their efficacy is further underscored by their abil-027

ity to adapt to customized, potentially private or028

personal domains. Among the existing adaptation029

techniques, three have been particularly salient.030

First is Low-Rank Adaptation (LoRA) (Hu et al.,031

2022), wherein rank decomposition matrices are032

inserted into the target model enabling its recal-033

ibration to accommodate new datasets. Second,034

the Soft Prompt Tuning (SPT) (Lester et al., 2021)035

method, which optimizes prompt tokens with re-036

spect to the new dataset, and then prepends it to the037

inputs’ embeddings. Finally, In-Context Learning038

(ICL) (Zhao et al., 2021) where selected samples039

from the new dataset are placed directly into the040

input, serving as illustrative exemplars of the new 041

dataset task/distribution. 042

Despite some studies exploring the variations 043

in utility among various adaptation techniques, a 044

noticeable gap exists in the comprehensive compar- 045

ison of their security and privacy properties. This 046

paper takes a step to fill this gap, offering a three- 047

fold assessment that encompasses both privacy and 048

security aspects. In terms of privacy, our evaluation 049

centers on the resilience of these techniques against 050

one of the most well-established privacy concerns: 051

membership inference attacks (MIAs). 052

On the security front, we study the robustness of 053

these techniques against two severe security threats. 054

The first entails model stealing, wherein we eval- 055

uate the likelihood of an adversary successfully 056

replicating the adapted model. The second revolves 057

around backdoor attacks, where an adversary seeks 058

to poison the dataset with the intention of embed- 059

ding a stealthy backdoor into the model. Such a 060

backdoor, if exploited, would empower the adver- 061

sary to control the model’s output, e.g., outputting 062

a specific response or label, by introducing a pre- 063

defined trigger. 064

We conduct an in-depth evaluation across three 065

different LLM architectures: GPT2 (Radford 066

et al., 2019), GPT2-XL(Radford et al., 2019), and 067

LLaMA (Touvron et al., 2023), using four recog- 068

nized NLP benchmark datasets: DBPedia (Zhang 069

et al., 2015), AGNews (Zhang et al., 2015), 070

TREC (Li and Roth, 2002), and SST-2 (Wang et al., 071

2019). Figure 1 provides an abstract comparison of 072

ICL, LoRA, and SPT with respect to membership 073

inference attacks, model stealing, and backdoor 074

threats. The figure highlights the lack of a single 075

superior technique resilient against all privacy and 076

security threats. For example, while ICL shows 077

strong resistance to backdoor attacks, it is more 078

vulnerable to membership inference attacks. There- 079

fore, choosing the appropriate technique heavily 080

relies on the specific scenario at hand. 081
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Figure 1: Comparative overview of ICL, LoRA, and SPT: Evaluating Privacy (resilience against membership
inference attacks), Model Stealing Robustness (difficulty of unauthorized model replication), Data Efficiency
(based on required training dataset size), and Backdoor Resilience with both Poisoned (backdoored/triggered data
avoidance) and Clean (accurate label prediction) data scenarios. Larger values indicate better performance.

To the best of our knowledge, our detailed analy-082

sis is the first to extend some of the most prevalent083

attacks against machine learning models, such as084

the model stealing attack, into the domain of LLM085

with adaptation techniques. Furthermore, we be-086

lieve it contributes valuable insights to the ongoing087

discourse on LLM adaptation techniques, offering088

a comprehensive view of their strengths and vul-089

nerabilities. As the landscape of language models090

continues to evolve, our work provides a founda-091

tion for refining and advancing strategies that bal-092

ance usability and privacy/security considerations093

in real-world applications.094

2 Related Work095

Training-efficient Adaptation Methods: Training096

Large Language Models (LLMs) for customized097

domains presents significant challenges due to their098

extensive parameter sizes, necessitating consider-099

able computational resources. To address these100

challenges, innovative, computationally-efficient101

methods have been developed. Low-Rank Adap-102

tation (LoRA) (Hu et al., 2022) introduces rank-103

decomposition weight matrices, referred to as “up-104

date matrices”, into the existing model parameters.105

The primary focus of training is shifted to these106

update matrices, enhancing training speed while107

simultaneously significantly decreasing computa-108

tional and memory demands. Soft Prompt Tuning109

(SPT) (Lester et al., 2021) takes a different ap-110

proach by adding a series of prompt tokens to the111

input. During training, SPT only updates the gradi-112

ents of these prompt token embeddings, while keep-113

ing the pretrained model’s core parameters frozen,114

making it computationally efficient. In-Context115

Learning (ICL) (Zhao et al., 2021) conditions the116

model directly on supplied demonstrations (which117

are samples that are introduced in the input to guide118

the model), thus avoiding parameter updates alto- 119

gether. While these techniques are computationally 120

advantageous, our analysis indicates potential vul- 121

nerabilities in terms of privacy and security. 122

Attacks against LLMs: Language models are vul- 123

nerable to a range of attacks, including membership 124

inference (Mireshghallah et al., 2022a; Hisamoto 125

et al., 2020), reconstruction (Carlini et al., 2021), 126

and backdoor (Chen et al., 2021, 2022) attacks. 127

While much of the previous research has focused 128

on the vulnerabilities of pretrained or fully fine- 129

tuned models, we study the different efficient adap- 130

tation techniques, specifically ICL, LoRA, and SPT. 131

We aim to assess their relative strengths and weak- 132

nesses in terms of various privacy and security prop- 133

erties. Although there are recent concurrent studies, 134

like Kandpal et al. (2023), that investigate back- 135

dooring in-context learning, Mireshghallah et al. 136

(2022b) exploring the impact of fine-tuning dif- 137

ferent components of the model, and others such 138

as Duan et al. (2023b) that compare the informa- 139

tion leakages (using membership inference) in fine- 140

tuned models and in-context learning, our approach 141

provides a more comprehensive comparison that 142

encompasses additional training paradigms and 143

datasets. Moreover, we extend the scope of com- 144

parison beyond privacy to include different security 145

properties of the ICL, LoRA, and SPT techniques. 146

3 Membership Inference 147

We begin by assessing the privacy attributes of 148

the three adaptation techniques. To this end, we 149

employ the membership inference attack (MIA), 150

a recognized privacy attack against LLMs. MIA 151

is regarded as a fundamental privacy attack and 152

serves as a precursor to more sophisticated privacy 153

breaches. Fundamentally, MIA aims to determine 154

the likelihood of a given input being part of the 155
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training or fine-tuning dataset of a target model.156

In this work, the data used for training or fine-157

tuning corresponds to the datasets leveraged by the158

adaptation techniques, such as the demonstrations159

for ICL or the fine-tuning datasets for LoRA and160

SPT.161

3.1 Threat Model162

We adopt the most conservative threat model,163

where the adversary is limited to black-box access164

to the target model. This scenario aligns with com-165

mon deployment settings for LLMs, where the user166

merely obtains the label –specifically, the predicted167

words– along with their associated probabilities.168

3.2 Methodology169

We adopt the widely-used loss-based membership170

inference attack (Yeom et al., 2018), wherein we171

compute the loss for every target input. Notably,172

member samples often exhibit lower loss values173

when compared to non-member samples, as de-174

picted in the appendix (Figure 11). This observa-175

tion serves as the basis for our membership deter-176

mination. To quantitatively evaluate the results, we177

adhere to the methodology outlined in the state-of-178

the-art MIA work (Carlini et al., 2022) that plots179

the true positive rate (TPR) vs. false positive rate180

(FPR) to measure the data leakage using a logarith-181

mic scale. This representation provides an in-depth182

evaluation of data leakage, emphasizing MIA per-183

formance in the low FPR area, which better reflects184

the worst-case privacy vulnerabilities of language185

models.186

In evaluating the privacy implications of the187

three distinct adaptation techniques—LoRA, SPT,188

and ICL—we strive to ensure a meticulous and189

fair comparison. Firstly, we first measure the util-190

ity of the ICL, recognizing its inherent constraint191

whereby the fixed input context length of target192

models limits the inclusion of demonstrations. Sub-193

sequently, we calibrate the hyperparameters of194

LoRA and SPT to align their performance with that195

of ICL, concrete model performance can be found196

in Appendix A. Following the training of these197

models, we employ membership inference attacks198

to assess their privacy attributes and draw compar-199

ative insights across the trio. Our assessment spans200

a variety of scenarios, integrating different datasets201

and target models, to thoroughly probe the privacy202

of ICL, LoRA, and SPT.203

3.3 Evaluation Settings 204

We now outline our experimental setup for evaluat- 205

ing MIA against the adaptation techniques LoRA, 206

SPT, and ICL. We employ four well-established 207

downstream text classification tasks, each featuring 208

a different label count. These benchmarks, com- 209

monly used in adaptation methods evaluation, par- 210

ticularly for In-Context Learning (ICL), include 211

DBPedia (Zhang et al., 2015) (14 class), AG- 212

News (Zhang et al., 2015) (4 class), TREC (Li 213

and Roth, 2002) (6 class), and SST-2 (Wang et al., 214

2019) (2 class). Furthermore, we span our evalua- 215

tion across three distinct language models: GPT2 216

(124M parameters) to GPT2-XL (1.5B parameters) 217

and LLaMA (7B parameters). 218

To ensure comparable performance across differ- 219

ent adaptation techniques, we train the model with 220

a varying number of samples. For example, with 221

DBPedia, we use 800 (SPT) and 300 (LoRA) sam- 222

ples to fine-tune the model, where the number of 223

demonstrations used for ICL is set to 4, detailed hy- 224

perparameter setting can be found in Appendix A. 225

For ICL, we adhere to the prompt design outlined 226

by Zhao et al. (2021), which has demonstrated good 227

performance. Examples of prompt formats can be 228

found in the appendix (Table 1). 229

Following prior works on membership inference 230

attacks (Shokri et al., 2017; Salem et al., 2019), 231

we sample members and non-members as disjoint 232

subsets from the same distribution. For both LoRA 233

and SPT, we maintain an equivalent count for mem- 234

bers and non-members. In the case of ICL, we 235

follow previous works (Duan et al., 2023b) and 236

consider more non-members (300) than members 237

due to the constraint on the number of inputs in the 238

prompt. To account for the inherent randomness, 239

we conducted experiments 10 times for LoRA and 240

SPT, and 300 times for ICL (given its heightened 241

sensitivity to the examples used). 242

3.4 Results 243

In Figure 2, we present the MIA performance 244

across all four datasets using GPT2-XL as the 245

target model. The figure clearly demonstrates 246

that both Low-Rank Adaptation (LoRA) and Soft 247

Prompt Tuning (SPT) have strong resistance to 248

membership inference attacks, compared to ICL. 249

Specifically, at a False Positive Rate (FPR) of 250

1 × 10−2, both LoRA and SPT’s performances 251

align closely with random guessing. Quantitatively, 252

LoRA and SPT achieve True Positive Rates (TPR) 253
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Figure 2: Membership inference attack performance using GPT2-XL across various datasets.
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Figure 3: Membership inference attack performance on
GPT2 and LLaMA with the DBPedia dataset.
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Figure 4: Membership inference attack with different
number of demonstrations for ICL.

of 0.010± 0.007 and 0.011± 0.004, respectively.254

Conversely, In-Context Learning (ICL) exhibits255

significant susceptibility to membership inference256

attacks. For instance, when evaluated on the DBPe-257

dia dataset, ICL achieves a TPR of 0.520± 0.237258

at the aforementioned FPR—a figure that is 52.0×259

and 47.3× greater than what LoRA and SPT re-260

spectively achieve.261

We observe a similar pattern in the MIA per-262

formance across various datasets and models, as263

illustrated in Figure 2 and Figure 3. This can be264

attributed to the substantial differences in train-265

ing data volume between ICL and the likes of266

LoRA and SPT. Specifically, ICL necessitates far267

fewer samples, often orders of magnitude less268

than what is required for SPT or LoRA. This ob-269

servation aligns with previous membership infer-270

ence studies which have highlighted that reduced271

training datasets tend to amplify the MIA success272

rates(Salem et al., 2019; Liu et al., 2022). 273

To further investigate the influence of training 274

sample sizes on ICL, we assess the MIA attack 275

using different sample counts, such as 4 and 8 276

demonstrations. The results, presented in Fig- 277

ure 4, confirm that as we increase the number 278

of demonstrations, the susceptibility to MIA de- 279

creases. However, it is essential to highlight that 280

given the model’s limited context, there is a con- 281

straint on the maximum number of inputs that can 282

be inserted. Consequently, we believe that MIA 283

will consistently present a significant concern for 284

ICL unless countered with an appropriate defense. 285

4 Model Stealing 286

Next, we examine the resilience of ICL, LoRA, 287

and SPT against model stealing threats. In these 288

scenarios, adversaries seek to illegally replicate the 289

functional capabilities of the target LLM. It is im- 290

portant to recognize that organizations and individ- 291

uals invest significant resources, including valuable 292

data and computational power, in the development 293

of optimal models. Therefore, the prospect of an 294

unauthorized replication of these models is a sub- 295

stantial and pressing concern. 296

4.1 Threat Model 297

We adopt the most strict settings following the same 298

threat model as MIA (Section 3.1), where only 299

the label and its probability are given. For this 300

attack, our focus is solely on the label, making it 301

applicable even to black-box models that do not 302

disclose probabilities. However, we assume the 303

adversary knows the base model, e.g., GPT2 or 304

LLaMA, used in the target model. We believe 305

that this assumption is reasonable, considering the 306

unique performance characteristics demonstrated 307

by various base LLMs. 308

4.2 Methodology 309

To steal the target model we follow previous 310

works (Tramèr et al., 2016) and query the target 311
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Figure 5: Model stealing performance across various query budgets for DBPedia-trained models.

model with a probing dataset. We explore two312

distinct strategies to construct this dataset. Ini-313

tially, we assume the adversary has access to sam-314

ples from the same distribution as the fine-tuning315

data. As an alternative, we utilize another LLM,316

specifically GPT-3.5-Turbo, to generate the probing317

dataset. This involves using the following prompt318

to generate the data “Create a python list with 20319

items, each item is [Dataset_Dependent]”. Here,320

Dataset_Dependent acts as a flexible placeholder,321

tailored according to the dataset. For instance,322

we use “a movie review” for SST-2 and “a sen-323

tence gathered from news articles. These sentences324

contain topics including World, Sports, Business,325

and Technology.” for AGNews. By invoking this326

prompt a hundred times, we produce a total of327

2,000 GPT-crafted inputs for each dataset.328

After obtaining the outputs from the target model329

using the probing dataset, we harness these results330

to train surrogate/replica models using LoRA. To331

assess the success rate of our model-stealing ap-332

proach, we adopt a matching score called “agree-333

ment” (Jagielski et al., 2020). This metric allows334

for a direct comparison between the outputs of the335

target and surrogate models for each sample, pro-336

viding a reliable measure of the functional similar-337

ity between the two models. A match, irrespective338

of the correctness of the output, is considered a suc-339

cess. In addition, we calculate the accuracy of the340

surrogate models. Given the observed consistency341

between accuracy and agreement, we relegate the342

accuracy results to Appendix D and base our anal-343

ysis of performance primarily on the agreement344

metric.345

4.3 Evaluation Settings346

We follow the same evaluation settings as the one347

of membership inference (Section 3.3), specifically,348

models fine-tuned by the different adaptation tech-349

niques that achieve comparable performance.350

The surrogate model undergoes fine-tuning from 351

an identical base model, utilizing LoRA with the 352

specified parameters: r=16, lora_alpha=16, 353

lora_dropout=0.1, bias=all. This fine-tuning 354

is performed over five epochs, with a learning rate 355

determined at 1 × 10−3. For every target model 356

under consideration, the experiments are replicated 357

five times, each instance employing a distinct ran- 358

dom seed. 359

4.4 Results 360

We initiate our assessment of the model stealing 361

attack by examining various query budgets, i.e., 362

probing datasets with different sizes. For this eval- 363

uation, we employ the DBPedia dataset and draw 364

samples for the probing datasets from the same dis- 365

tribution as the dataset of the target model. The re- 366

sults, illustrated in Figure 5, indicate that even with 367

a constrained set of queries, the surrogate model 368

aligns closely with the target model. For example, 369

for all three model sizes, a mere 1,000 samples 370

suffice to replicate a surrogate model that mirrors 371

over 80% of the target’s functionality. It is cru- 372

cial to highlight that these unlabeled samples (that 373

are subsequently labeled using the target model) 374

are substantially more cost-effective to obtain com- 375

pared to the labeled data used in the fine-tuning of 376

the target model. 377

We next assess the same settings but with a more 378

lenient assumption, wherein the adversary lacks 379

data from the target distribution. Instead, GPT- 380

generated data is employed for constructing the 381

probing dataset. As depicted in Figure 6, using 382

such artificially generated data yields results com- 383

parable to those from the same distribution. This 384

contrasts with vision tasks where replicating an 385

image classification model requires a substantially 386

larger query budget without access to data from the 387

same distribution (Liu et al., 2022; Truong et al., 388

2021). 389
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Figure 6: Model stealing performance for DBPedia-trained models using GPT3.5-generated data.
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Figure 7: Comparative analysis of model stealing attacks on GPT2-XL-based models: examining the impact of
different probing dataset sources.

To further compare the performance of using390

generated data and data from the same distribution,391

we fix the query budget at 2,000 and assess the per-392

formance across the four datasets with GPT2-XL,393

as depicted in Figure 7. As expected, using data394

from the same distribution is better, however, for395

most of the cases, the difference is marginal. This396

trend is consistent across various model architec-397

tures, as demonstrated in the results presented in398

Appendix D. Intriguingly, there are instances, such399

as with AGNews (Figure 7a) and TREC (Figure 7c),400

where generated data actually facilitates a more401

successful model stealing attack. This observation402

opens the door to the potential of enhancing such403

attacks by optimizing data generation—perhaps404

leveraging sophisticated prompts or superior gen-405

eration models—a direction we aim to explore in406

subsequent work.407

In conclusion, our findings emphasize the vul-408

nerability of all three fine-tuning methods to model409

stealing attacks, even when the adversary has a410

limited query budget and lacks access to the target411

model’s training data distribution.412

5 Backdoor Attack413

Lastly, we investigate an additional security threat414

against ICL, LoRA, and SPT: the backdoor attack.415

This attack occurs during training when an adver- 416

sary poisons the training dataset of a target model to 417

introduce a backdoor. This backdoor is associated 418

with a trigger such that when an input possesses 419

this trigger, a particular output, as designated by 420

the adversary, is predicted. This output might be 421

untargeted, where the aim is merely an incorrect 422

prediction, or it can be targeted to yield a specific 423

label chosen by the adversary. In this work, we 424

focus on the later –more complex– case, i.e., the 425

targeted backdoor attack. 426

5.1 Threat Model 427

We follow previous backdoor attacks (Gu et al., 428

2017) threat model and make no specific assump- 429

tions about the target model other than its vulner- 430

ability to having its fine-tuning dataset poisoned. 431

It is important to recap that the term “fine-tuning 432

dataset” in this context pertains to the data lever- 433

aged by ICL, LoRA, and SPT for adapting the 434

target model. 435

5.2 Methodology 436

To initiate the backdoor attack, we start by crafting 437

a backdoored dataset. First, we sample a subset 438

from the fine-tuning dataset and integrate the trig- 439

ger into every input. Next, we switch the associ- 440
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Figure 8: Comparison of attack success rates at different poison rates for GPT2-XL models.

ated label to the predetermined –backdoor– target441

label. For the purposes of this study, this label is442

set to 0. It is noteworthy that we further validate443

the transferability of our findings for various tar-444

get labels, as evidenced in Appendix C. Once the445

backdoored dataset is ready, it is merged with the446

clean fine-tuning dataset, and then the target mod-447

els are trained using the respective techniques. We448

do not replace clean samples but concatenate the449

fine-tuning dataset with the backdoored one.450

For evaluation, we follow previous backdoor at-451

tack works (Gu et al., 2017; Salem et al., 2022;452

Kandpal et al., 2023) that use two primary metrics:453

utility and attack success rate. Utility quantifies454

the performance of the backdoored model using455

a clean test dataset. The closer this metric aligns456

with the accuracy of an unaltered –clean– model,457

the more effective the backdoor attack. The attack458

success rate, on the other hand, evaluates how accu-459

rately backdoored models respond to backdoored460

data. We construct a backdoored test dataset by461

inserting triggers into the entirety of the clean test462

dataset and reassigning the label to our target value463

(i.e., 0), and then use this dataset to evaluate the464

backdoored model. An attack success rate of 100%465

represents a perfect backdoor attack’s performance.466

Finally, in the ICL scenario, given that the count467

of examples is constrained, we ensure that the back-468

doored dataset excludes any inputs whose original469

label coincides with the target label. This aims to470

maximize the performance of the backdoor attack471

in the ICL settings. Furthermore, acknowledging472

the influence of demonstration order on ICL perfor-473

mance (Zhao et al., 2021), we adopt two separate474

poisoning approaches for ICL. In the first approach,475

we poison sentences at the start of the prompt, and476

in the second, we target sentences at the prompt’s477

end.478

5.3 Evaluation Settings 479

We follow the same evaluation settings as the one 480

of membership inference (Section 3.3), but with the 481

added step involving the creation of a backdoored 482

fine-tuning dataset before initiating model training. 483

We construct the backdoored fine-tuning dataset as 484

follows: For each selected clean sentence, we intro- 485

duce the trigger word “Hikigane” (which translates 486

to “trigger” in Japanese) at its beginning and ad- 487

just its associated label to class 0. These modified 488

sentences are then added to the clean fine-tuning 489

dataset without removing any original samples. 490

We assess the backdoor attack across varying 491

poisoning rates. Specifically, for LoRA and SPT, 492

the poisoning rate ranges between 0.1 and 0.75. For 493

ICL, given that we use only four demonstrations, 494

we examine scenarios with 1, 2, or 3 poisoned 495

demonstrations, resulting in poisoning rates of 0.25, 496

0.5, and 0.75, respectively. 497

5.4 Results 498

We first assess the backdoor attack across varying 499

poisoning rates using the three datasets: DBPedia, 500

AGNews, and TREC with the GPT2-XL model. 501

The results are illustrated in Figure 8. From our 502

preliminary experiments, we decided to omit the 503

SST-2 dataset. Since its binary structure, when 504

subjected to a backdoor, substantially reduced the 505

model utility across all adaptation methods. 506

As anticipated, for LoRA and SPT, an increase 507

in the poisoning rate boosts the attack success rate 508

(ASR) of the backdoor attack. This rise can be 509

attributed to the model’s improved trigger recall as 510

it encounters more backdoored data during the fine- 511

tuning. Conversely, the utility of the backdoored 512

model sees a minor decline as the poisoning rate 513

grows, as shown in Figure 9. This could be a result 514

of the model slightly overfitting to the backdoored 515

pattern, possibly weakening the connection be- 516
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Figure 9: Comparison of utility at different poison rates for GPT2-XL models.
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Figure 10: Backdoor attack performance when poison-
ing the first or the last demonstration in the prompt. The
baseline indicates random guessing performance for the
–target– label 0.

tween clean sentences and their designated classes517

Conversely, In-Context Learning (ICL) shows518

minimal variation in performance as the poison519

rate increases, consistently approximating random520

guessing. This observation is consistent with prior521

research (Min et al., 2022) indicating that “ran-522

domly replacing labels in the demonstrations barely523

hurts performance,” even when the label corre-524

sponds to the targeted backdoor label within this525

context. Furthermore, we posit that the constrained526

number of demonstrations may exacerbate this phe-527

nomenon, as the model leans more heavily on its528

intrinsic knowledge rather than the newly intro-529

duced backdoored input. Kandpal et al. (2023)530

explores a situation where backdooring takes place531

before model adaptation through ICL, wherein532

the model is initially fine-tuned with backdoored533

data. Their findings suggest robust backdoor perfor-534

mance, even in the absence of backdoored demon-535

strations. This aligns with our hypothesis that ICL536

models draw more from their inherent knowledge537

than from the few provided demonstrations.538

We further validate our findings across models539

of different sizes, and the results are detailed in540

Appendix E. In brief, ICL exhibits an ASR close541

to random guessing across all three models, while542

SPT and LoRA consistently outperform ICL by a543

significant margin. 544

Finally, we investigate whether poisoning either 545

the first or the demonstration in the prompt yields 546

a noticeable difference. To this end, we indepen- 547

dently poison the first and last demonstration in 548

the prompt and plot the results in Figure 10. The 549

results indicate a marginal increase in attack suc- 550

cess rate when the initial sentence is poisoned, even 551

though the variation is minimal. These results show 552

that the location of poisoned data within the prompt 553

does not substantially influence the effectiveness 554

of the backdooring approach in the context of ICL. 555

6 Conclusion 556

In this study, we systematically investigated the 557

vulnerabilities of existing adaptation methods for 558

Large Language Models (LLMs) through a three- 559

fold assessment that encompasses both privacy and 560

security considerations. Our findings reveal three 561

key insights into the security and privacy aspects 562

of LLM adaptation techniques. Firstly, In-Context 563

Learning (ICL) emerges as the most vulnerable to 564

membership inference attacks (MIAs), underscor- 565

ing the need for enhanced privacy defenses in the 566

implementation of this technique. Secondly, our 567

study reveals a pervasive vulnerability across all 568

three training paradigms to model stealing attacks. 569

Intriguingly, the use of GPT3.5-generated data 570

demonstrates a strong performance in such attacks, 571

highlighting the ease with which fine-tuned LLMs 572

can be stolen or replicated. Lastly, concerning 573

backdoor attacks, our results indicate that LoRA 574

and SPT exhibit a higher susceptibility, whereas 575

ICL proves to be less affected. These insights em- 576

phasize the necessity for tailored defenses in the 577

deployment of LLM adaptation techniques. More- 578

over, they underscore each technique’s vulnerabili- 579

ties, alerting users to the potential risks and conse- 580

quences associated with their use. 581
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7 Limitations582

While we recognize that more advanced attacks583

could target Large Language Models (LLMs), es-584

pecially in pretrained or full fine-tuning scenarios,585

our study serves as an empirical lower bound for586

evaluating vulnerabilities across diverse LLM adap-587

tation techniques. Our findings highlight the inher-588

ent vulnerabilities of these techniques to a variety589

of threats, emphasizing the pressing need for robust590

defenses in such settings.591

To the best of our knowledge, the majority of592

defenses against privacy and security threats are593

tailored for full fine-tuning scenarios. However,594

we believe that the core of these defenses can be595

adapted to the LLM adaptation techniques. For596

instance, recent works have successfully extended597

differential privacy, a well-established defense with598

guarantees against membership inference attacks,599

to ICL settings (Panda et al., 2023; Duan et al.,600

2023a; Tang et al., 2023). Moving forward, we601

intend to adapt these defenses to the LLM adapta-602

tion techniques and assess their efficacy against the603

presented attacks.604
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A Model Performance And Training761

Hyperparameters762

A.1 Model Performance763

As outlined in Section 3.1, careful management764

of the training dataset size and training hyperpa-765

rameters has been undertaken to ensure that both766

SPT and LoRA exhibit accuracy levels compara-767

ble to ICL. Consequently, this section exclusively768

presents the performance metrics for ICL across769

various tasks.770

For SST-2, the model attains an accuracy of ap-771

proximately 85%. In the case of DBPedia, AG-772

News, and TREC, the model demonstrates accu-773

racies of about 70%, 70%, and 45%, respectively.774

Notably, these findings align with those reported in775

prior research by Zhao et al. (2021).776

A.2 Hyperparameters777

ICL: ICL involves appending the input to a pre-778

determined prompt, constructed with four demon-779

strations and accompanying illustrative words. The780

prompt formatting adheres to the conventions out-781

lined by Zhao et al. (2021), with some examples782

provided in Table 1.783

LoRA: We set the LoRA configuration to784

r=16, lora_alpha=16, lora_dropout=0.1,785

bias="all". The model is fine-tuned over five786

epochs, employing a learning rate of 1× 10−3. To787

ensure a comparable performance with ICL, the788

fine-tuning process utilizes 300, 200, 300, and 600789

samples for the DBPedia, AGNews, TREC, and790

SST-2 datasets, respectively.791

SPT: For SPT, the number of virtual tokens is set792

to ten. The model undergoes fine-tuning for five793

epochs, with a learning rate of 3× 10−3. Similar794

to LoRA, the fine-tuning samples are adjusted to795

ensure a performance benchmark consistent with796

ICL. Specifically, 800, 200, 900, and 1000 samples797

are used for the DBPedia, AGNews, TREC, and798

SST-2 datasets, respectively.799

B Loss Distribution800

We depict the loss distribution for both member and801

nonmember samples in Figure 11. The figure illus-802

trates a statistically significant trend, with member803

samples consistently exhibiting lower loss values804

compared to nonmember samples.805

C Backdoor Attack Against Different 806

Target Class 807

We conduct the backdoor attack with a different 808

target class (class one), and experimental results 809

confirm the stability of the previously reached con- 810

clusion. Specifically, across different model ar- 811

chitectures, as illustrated in Figure 12, SPT and 812

LoRA consistently exhibit superior performance in 813

conducting attacks compared to ICL. 814

D Model Stealing 815

We focus on the DBPedia-trained models, and 816

present a figure illustrating the variation in accuracy 817

corresponding to different query budgets in Fig- 818

ure 13. Notably, we observe a nearly identical trend 819

in accuracy compared to the agreement results. Ad- 820

ditionally, we extend our analysis to include the 821

use of GPT3.5-generated data for model stealing, 822

and the performance of the surrogate model is il- 823

lustrated in Figure 14. 824

Furthermore, we explore the impact of using 825

data from different sources, as delineated in Fig- 826

ure 15. Our findings consistently indicate that, ir- 827

respective of model architectures, querying with 828

data from the same distribution consistently outper- 829

forms querying with GPT3.5-generated data, albeit 830

with a modest difference in performance for many 831

cases. 832

E Backdoor Attack on Different 833

Architectures 834

Our observation extends to models of varying sizes. 835

As shown in Figure 16, ICL exhibits an ASR close 836

to random guessing across all three models, while 837

SPT and LoRA consistently outperform ICL by a 838

significant margin. 839
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Table 1: Examples of the prompts used for text classification for the ICL setting.

Task Prompt Label Names

DBPedia Classify the documents based on whether they are
about a Company, School, Artist, Athlete, Politi-
cian, Transportation, Building, Nature, Village,
Animal, Plant, Album, Film, or Book.

Article: Leopold Bros. is a family-owned and
operated distillery located in Denver Colorado.
Answer: Company

Article: Aerostar S.A. is an aeronautical manufac-
turing company based in Bacău Romania.
Answer:

Company, School, Artist,
Athlete, Politician, Trans-
portation, Building, Nature,
Village, Animal, Plant, Al-
bum, Film, Book

AGNewsArticle: Kerry-Kerrey Confusion Trips Up Cam-
paign (AP),"AP - John Kerry, Bob Kerrey. It’s
easy to get confused."
Answer: World

Article: IBM Chips May Someday Heal Them-
selves,New technology applies electrical fuses to
help identify and repair faults.
Answer:

World, Sports, Business,
Technology

TREC Classify the questions based on whether their an-
swer type is a Number, Location, Person, Descrip-
tion, Entity, or Abbreviation.

Question: What is a biosphere?
Answer Type: Description

Question: When was Ozzy Osbourne born?
Answer Type:

Number, Location, Person,
Description, Entity, Abbre-
viation

SST-2 input: sentence - This movie is amazing!
output: Positive;

input: sentence - Horrific movie, don’t see it.
output:

Positive, Negative
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Figure 11: Loss distribution for member and nonmember samples using GPT2-XL.
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Figure 12: Backdoor performance with the target label 1 on the DBPedia dataset.
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Figure 13: Performance (accuracy) of model stealing with probing data from the same distribution, across different
query budgets for models trained on DBPedia.
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Figure 14: Performance (accuracy) of model stealing with GPT3.5-generated as the probing data, across different
query budgets for models trained on DBPedia.
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Figure 15: Comparison of the model stealing attack on various model architectures using the DBPedia dataset.
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(b) GPT2-XL

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Poison Rate

0.0

0.2

0.4

0.6

0.8

1.0

A
tt

ac
k

S
uc

ce
ss

R
at

e

(c) LLaMA

Figure 16: Comparison of attack success rates at various poison rates for DBPedia models.
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