

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BRIDGING THE GAP BETWEEN HOMOGENEOUS AND HETEROGENEOUS ASYNCHRONOUS OPTIMIZATION IS SURPRISINGLY DIFFICULT

Anonymous authors

Paper under double-blind review

ABSTRACT

Modern large-scale machine learning tasks often require multiple workers, devices, CPUs, or GPUs to compute stochastic gradients in parallel and asynchronously to train model weights. Theoretical results typically distinguish between two settings: (i) the homogeneous setting, where all workers have access to the *same* data distribution, and (ii) the heterogeneous setting, where each worker operates on *different* data distributions. Known optimal time complexities in these settings reveal a significant gap, with far more pessimistic guarantees in the heterogeneous case. In this work, we investigate whether these pessimistic optimal time complexities can be overcome under different assumptions. Surprisingly, we show that improvement is provably impossible under widely used first- and second-order similarity assumptions for a broad family of algorithms. We then turn to the interpolation regime and demonstrate that the weak interpolation assumption alone is also insufficient. Finally, we introduce a minimal combination of irreducible assumptions, strong interpolation and the local Polyak-Łojasiewicz condition, to derive a new time complexity bound that matches the best-known result in the homogeneous setting, without requiring identical data distributions.

1 INTRODUCTION

We consider optimization problems described by

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) := \frac{1}{n} \sum_{i=1}^n \mathbb{E}_{\xi_i \sim \mathcal{D}_i} [f_i(x; \xi_i)] \right\}, \quad (1)$$

where $f_i : \mathbb{R}^d \times \mathbb{S}_{\xi_i} \rightarrow \mathbb{R}$ and ξ_i is a random variable with distribution \mathcal{D}_i on \mathbb{S}_{ξ_i} for all $i \in [n]$. Let us denote $f_i(x) := \mathbb{E}_{\xi_i \sim \mathcal{D}_i} [f_i(x; \xi_i)]$. In our setup, we have n workers/clients/CPUs/GPUs working in parallel and asynchronously, and each worker i has access only to the stochastic gradient $\nabla f_i(x; \xi_i)$ of the function f_i for all $x \in \mathbb{R}^d$. We want to find a (possibly random) point \bar{x} such that $\mathbb{E}[\|\bar{x} - x_*\|^2] \leq \varepsilon$, where x_* is a solution of (1). Such a problem arises in many machine learning (ML), deep learning, federated learning (FL), and data science problems (Konečný et al., 2016; McMahan et al., 2017; Goodfellow et al., 2016).

We focus on the modern setup where many workers work together in a distributed environment, where the workers can have *arbitrarily computation behaviors* due to hardware delays or network connectivity problems. Most previous works typically assume that the workers have the same performance that does not change over time. In contrast, our focus is on the setting where the *computation times are heterogeneous* and non-constant.

In the literature, the optimization problem (1) in the asynchronous environment is considered in two regimes: i) *heterogeneous setting*, where the functions f_i can be arbitrarily different; in the context of ML and FL, it means the workers have access to different datasets. ii) *homogeneous setting*, where the functions f_i are equal; in the context of ML and FL, it means the workers have access to the same dataset (Koloskova et al., 2022; Mishchenko et al., 2022; Feyzmahdavian & Johansson, 2023).

1.1 Notations

054 $[n] := \{1, \dots, n\}$; $\mathbb{N}_0 := \{0, 1, 2, \dots\}$; $\|\cdot\|$ is the standard Euclidean norm; $\langle \cdot, \cdot \rangle$ is the standard dot
 055 product; $g = \mathcal{O}(f)$: exist $C > 0$ such that $g(z) \leq C \times f(z)$ for all $z \in \mathcal{Z}$; $g = \Omega(f)$: exist $C > 0$
 056 such that $g(z) \geq C \times f(z)$ for all $z \in \mathcal{Z}$; $g = \Theta(f)$: $g = \mathcal{O}(f)$ and $g = \Omega(f)$; $g = \tilde{\Theta}(f)$: the same
 057 as $g = \Theta(f)$ but up to logarithmic factors.
 058

059 **1.2 PREVIOUS WORK**
 060

061 **Oracle complexity.** In the classical optimization theory (Nemirovskij & Yudin, 1983), algorithms
 062 are compared in terms of *oracle calls*. Assume that the number of workers is one and we work with
 063 nonconvex functions and the following standard assumptions:
 064

065 **Assumption 1.1** (Global smoothness). The function f is differentiable and L -smooth, i.e.,
 066 $\|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\|$ for all $x, y \in \mathbb{R}^d$.
 067

068 **Assumption 1.2** (Unbiased and σ^2 -variance-bounded noise). For all $x \in \mathbb{R}^d$, stochastic gra-
 069 dients $\nabla f_i(x; \xi)$ are unbiased and σ^2 -variance-bounded, i.e., $\mathbb{E}_{\xi_i}[\nabla f_i(x; \xi_i)] = \nabla f_i(x)$ and
 070 $\mathbb{E}_{\xi_i}[\|\nabla f_i(x; \xi_i) - \nabla f_i(x)\|^2] \leq \sigma^2$ for all $i \in [n]$, where $\sigma^2 \geq 0$.
 071

072 It is well known (Arjevani et al., 2022; Carmon et al., 2020) that the optimal oracle complexity is
 073 $\mathcal{O}(L\Delta/\varepsilon + \sigma^2 L\Delta/\varepsilon^2)$ to find $\bar{x} \in \mathbb{R}^d$ such that $\mathbb{E}[\|\nabla f(\bar{x})\|^2] \leq \varepsilon$. It is attained by the vanilla SGD
 074 method: $x^{k+1} = x^k - \gamma \nabla f(x^k; \xi^k)$, where ξ^k are i.i.d. random samples, $\Delta := f(x^0) - f^*$, $x^0 \in \mathbb{R}^d$
 075 is a starting point, and $\gamma = \Theta(\min\{1/L, \varepsilon/L\sigma^2\})$ is a step size. In the convex setting (Assumption 5.1),
 076 the optimal oracle complexity is $\Theta(\sqrt{L}R/\sqrt{\varepsilon} + \sigma^2 R^2/\varepsilon^2)$ (Lan, 2020; Nemirovskij & Yudin, 1983)
 077 to find $\bar{x} \in \mathbb{R}^d$ such that $\mathbb{E}[f(\bar{x})] - f(x_*) \leq \varepsilon$, where $R := \|x^0 - x_*\|$. In the μ -strongly convex
 078 setting, the optimal complexity $\tilde{\Theta}(\sqrt{L}/\sqrt{\mu} + \sigma^2/\mu^2\varepsilon^2)$ is to find $\bar{x} \in \mathbb{R}^d$ such that $\|\bar{x} - x_*\|^2 \leq \varepsilon$ (up
 079 to logarithmic factors).
 080

081 **Oracle complexity with many workers.** Many works discovered oracle complexities with multiple
 082 workers. Arjevani & Shamir (2015); Scaman et al. (2017) analyze the heterogeneous convex setting
 083 and provide lower bounds when the workers are synchronized. Lu & De Sa (2021) consider the
 084 similar setup but in the nonconvex setting. Arjevani et al. (2020) analyze settings where methods
 085 receive delayed stochastic gradients. Woodworth et al. (2018) provide lower bounds for parallel
 086 setups with intermittent communications and delayed updates. The primary limitation of these results
 087 is the assumption that all workers have consistent computational performance, without accounting for
 088 individual delays, random lags, or variations in performance over time.
 089

090 **Time complexity.** To address the problem of analyzing methods with workers having different
 091 computation capabilities and performances, Mishchenko et al. (2022) proposed to consider the *fixed*
 092 *computation model*. In this model, it is assumed that
 093

094 worker i requires at most τ_i seconds to calculate one stochastic gradient.
 095

096 Without loss of generality, we assume that the times are sorted: $\tau_1 \leq \dots \leq \tau_n$. One of the most
 097 popular methods is Asynchronous SGD (Lian et al., 2015; Zhang et al., 2015; Feyzmahdavian et al., 2016;
 098 Sra et al., 2016; Dutta et al., 2018; Stich & Karimireddy, 2020; Wu et al., 2022; Islamov et al., 2024). In the
 099 *homogeneous setting*, Mishchenko et al. (2022); Koloskova et al. (2022); Cohen et al. (2021) showed
 100 that Asynchronous SGD and Picky SGD can provably improve the performance of the synchronized
 101 Minibatch SGD method that does the steps $x^{k+1} = x^k - \gamma/n \sum_{i=1}^n \nabla f(x^k; \xi_i^k)$, where γ is a stepsize,
 102 ξ_i^k are i.i.d. samples, and $\nabla f(x^k; \xi_i^k)$ are calculated in parallel in n workers. Minibatch SGD requires
 103 $\mathcal{O}(L\Delta/\varepsilon + \sigma^2 L\Delta/n\varepsilon^2)$ iterations (Cotter et al., 2011; Goyal et al., 2017; Gower et al., 2019) in the non-
 104 convex setting. Moreover, Minibatch SGD converges after $\mathcal{O}(\max_{i \in [n]} \tau_i \times (L\Delta/\varepsilon + \sigma^2 L\Delta/n\varepsilon^2))$ sec-
 105 onds because it waits for the slowest worker with $\max_{i \in [n]} \tau_i$ in every iteration. Asynchronous SGD,
 106 methods with the step $x^{k+1} = x^k - \gamma^k/n \sum_{i=1}^n \nabla f(x^{k-\delta_k}; \xi_i^{k-\delta_k})$ and δ_k -delayed stochastic gra-
 107 dients, improve this time complexity to $\mathcal{O}((1/n \sum_{i=1}^n 1/\tau_i)^{-1} (L\Delta/\varepsilon + \sigma^2 L\Delta/n\varepsilon^2))$.
 108

109 **Optimal time complexities in the heterogeneous and homogeneous settings.** Surprisingly, the
 110 time complexity can be further improved. In the nonconvex setup (under Assumptions 1.1, and 1.2),
 111 Tyurin & Richtárik (2023) formalized the notion of time complexities and showed that the *optimal*

108 time complexity is
 109

$$110 \quad T_{\text{homog}} := \Theta \left(\min_{m \in [n]} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{1}{\tau_i} \right)^{-1} \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{m\varepsilon^2} \right) \right] \right) \quad (2)$$

113 seconds in the homogeneous setup to find an ε -stationary point, achieved by the Rennala SGD
 114 method¹, where, without loss of generality, the times are sorted: $\tau_1 \leq \dots \leq \tau_n$. In the heterogeneous
 115 setup, the optimal time complexity is

$$116 \quad T_{\text{heter}} := \Theta \left(\tau_n \frac{L\Delta}{\varepsilon} + \left(\frac{1}{n} \sum_{i=1}^n \tau_i \right) \frac{\sigma^2 L\Delta}{n\varepsilon^2} \right), \quad (3)$$

119 achieved by the Malenia SGD method (we discuss the methods in detail in Section 2).

120 **Difference between the two settings.** Using the inequality of arithmetic and harmonic means, one
 121 can easily show that $T_{\text{homog}} \leq T_{\text{heter}}$ (ignoring constant factors). At the same time, the gap between
 122 the complexities can be arbitrarily huge. Indeed, when the performance τ_1 of the fastest worker tends
 123 to 0, one can easily show that $T_{\text{homog}} \rightarrow 0$ and $T_{\text{heter}} \rightarrow \Theta \left(\tau_n L\Delta/\varepsilon + \left(\frac{1}{n} \sum_{i=2}^n \tau_i \right) \sigma^2 L\Delta/n\varepsilon^2 \right)$, and
 124 T_{heter} improves by at most $\sum_{i=1}^n \tau_i / \sum_{i=2}^n \tau_i \leq 2$. While the improvement in the homogeneous setup
 125 is ∞ . Consider another example when the performance τ_n of the slowest worker (straggler) tends to
 126 ∞ . Then $T_{\text{heter}} \rightarrow \infty$ and $T_{\text{homog}} \rightarrow \Theta \left(\min_{m \in [n-1]} \left[\left(1/n \sum_{i=1}^{n-1} 1/\tau_i \right)^{-1} (L\Delta/\varepsilon + \sigma^2 L\Delta/m\varepsilon^2) \right] \right)$, so the
 127 complexity T_{homog} is robust to stragglers unlike T_{heter} .

128 **Arbitrarily computation dynamics.** The previous discussion explain that a significant gap appears
 129 between homogeneous and heterogeneous problems under the fixed computation model. This
 130 “arithmetic mean vs harmonic mean gap” was also observed in (Tyurin, 2025), where the author
 131 generalizes the fixed computation model to the *universal computation model*, accounting for potential
 132 disruptions caused by hardware or network delays, and any variations in computation speeds. For
 133 simplicity, in this work, we will continue working with the fixed computation model, but we also
 134 show how our final results translate to the universal computation model in Section A.

135 **Convex world.** When we want to find a point \bar{x} such that $\mathbb{E}[f(\bar{x})] - f^* \leq \varepsilon$ in the convex setup, the
 136 gap is similar. The optimal time complexity in the homogeneous setup is

$$138 \quad \Theta \left(\min_{m \in [n]} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{1}{\tau_i} \right)^{-1} \left(\frac{\sqrt{L}R}{\sqrt{\varepsilon}} + \frac{\sigma^2 R^2}{m\varepsilon^2} \right) \right] \right) \quad (4)$$

140 seconds (Tyurin & Richtárik, 2023). While the optimal time complexity in the heterogeneous setup is

$$142 \quad \Theta \left(\tau_n \frac{\sqrt{L}R}{\sqrt{\varepsilon}} + \left(\frac{1}{n} \sum_{i=1}^n \tau_i \right) \frac{\sigma^2 R^2}{n\varepsilon^2} \right) \quad (5)$$

145 seconds under Assumptions 5.1, 1.1, and 1.2 (our new contribution, Theorem D.4; the final puzzle
 146 piece needed to reveal the systematic gap between the two settings). Both complexities are achieved
 147 by the accelerated versions of Rennala SGD and Malenia SGD accordingly.

148 **Strongly convex world.** Assume additionally that the function f is μ -strongly convex. Using
 149 reduction (Woodworth & Srebro, 2016), up to logarithmic factors, we can obtain the optimal time
 150 complexity

$$151 \quad \tilde{\Theta} \left(\min_{m \in [n]} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{1}{\tau_i} \right)^{-1} \left(\sqrt{\frac{L}{\mu}} + \frac{\sigma^2}{m\varepsilon\mu} \right) \right] \right) \quad (6)$$

154 in the homogeneous setting and the optimal time complexity

$$156 \quad \tilde{\Theta} \left(\tau_n \sqrt{\frac{L}{\mu}} + \left(\frac{1}{n} \sum_{i=1}^n \tau_i \right) \frac{\sigma^2}{n\varepsilon\mu} \right) \quad (7)$$

158 in the heterogeneous setting when we want to find a point \bar{x} such that $\mathbb{E}[f(\bar{x})] - f^* \leq \varepsilon$. Here we
 159 also observe a large gap between the settings. Note that the complexities (3), (5), and (7) can only be
 160 improved under additional assumptions because they are optimal.

161 ¹It can also be achieved by another recent optimal method, Ringmaster ASGD (Maranjan et al., 2025)

162
163
164
165
166
167
168
169
170

Main question: Having the systematic gap between the homogeneous and heterogeneous setups, the goal of this work is to identify theoretical assumptions that are as weak as possible to improve the results of asynchronous methods in heterogeneous scenarios. Under which assumptions can we improve the dependence on the arithmetic mean of $\{\tau_i\}$ (see (3), (5), and (7)) to the dependence on the harmonic mean of $\{\tau_i\}$ (see (2), (4), and (6))? Right now, the only possible way is to assume that the functions $\{f_i\}$ are equal—an assumption we clearly want to avoid in the heterogeneous setting. Is there any chance to relax this assumption?

171
172
173

Addressing the potential for improving the pessimistic guarantees in heterogeneous settings is a crucial endeavor for understanding parallel distributed methods.

174
175

1.3 CONTRIBUTIONS

176
177
178
179
180

We observe that both Rennala SGD and Malenia SGD can be unified under a more general framework, Weighted SGD, which provides a natural foundation for analyzing heterogeneous methods. Since breaking the lower bounds in the heterogeneous setting requires additional assumptions, we start by introducing as few as possible to determine when Weighted SGD can outperform Malenia SGD.

181
182
183
184

Analysis of first- and second-order similarity. First, we consider the celebrated *first- and second-order similarity* and, surprisingly, prove that even under these assumptions—no matter how close the functions $\{f_i\}$ are—Weighted SGD converges if and only if it again reduces to Malenia SGD. Thus, it is infeasible to break the dependence on the arithmetic mean of $\{\tau_i\}$ under these assumptions.

185
186
187
188
189

Investigate the interpolation assumption. Next, we decided to go in another direction and consider the *interpolation* assumption. Using Theorem 3.1, we demonstrate that operating in the *interpolation regime* is essential. Thus, we introduce two additional assumptions, strong interpolation and the local Polyak-Łojasiewicz condition, and prove that it is impossible to drop either of these assumptions for improvement.

190
191
192
193

Bridging the gap. By identifying this minimal set of assumptions, we derive a new time complexity result that matches the best-known bound in the *homogeneous* setting (Section 5.2), but without requiring the functions f_i to be identical. Our theoretical results are validated numerically in Section H.

194
195
196
197
198
199
200

To bridge the gap in Section 5.2, we need to introduce Assumptions 5.6 and 5.7. However, our primary goal was to illustrate and prove that these assumptions are indeed necessary. Merely stating the assumptions might not be convincing; this is why the central part of our paper investigates different assumptions and shows that most of them do not allow bridging the gap. We believe that the significance of our contribution lies in this exploration process. While previous work noted the existence of the gap, our contribution goes further by systematically investigating which assumptions are sufficient and which are insufficient to eliminate it.

201

2 A UNIFYING PERSPECTIVE ON RENNALA SGD AND MALENIA SGD

202
203204
205
206
207
208
209

We start our work by looking closer to the Rennala SGD and Malenia SGD methods (see Algorithm 1) that achieve the optimal time complexities (2) and (3) in the homogeneous and heterogeneous setting, accordingly. We now recall how they work. In every iteration, Rennala SGD and Malenia SGD ask all workers to calculate stochastic gradients asynchronously at **the same iterate** x^k . Assume that worker i has calculated B_i^k stochastic gradients for all $i \in [n]$ at the iteration k . Then the methods do the steps

210
211
212

$$x^{k+1} = x^k - \gamma g_R^k, \quad g_R^k := \frac{1}{\sum_{i=1}^n B_i^k} \sum_{i=1}^n \sum_{j=1}^{B_i^k} \nabla f_i(x^k; \xi_{ij}^k) \quad (\text{Rennala SGD})$$

213
214

and

215

$$x^{k+1} = x^k - \gamma g_M^k, \quad g_M^k := \frac{1}{n} \sum_{i=1}^n \frac{1}{B_i^k} \sum_{j=1}^{B_i^k} \nabla f_i(x^k; \xi_{ij}^k), \quad (\text{Malenia SGD})$$

216
217 **Algorithm 1** Weighted SGD (reduces to Malenia SGD or Rennala SGD when w_i^k are chosen as
218 $w_i^k = 1/B_i^k$ or $w_i^k = n/\sum_{i=1}^n B_i^k$, respectively)

219 1: **Input:** point x^0 , stepsize γ , parameter S ,
220 weights $\{w_i^k\}$
221 2: **for** $k = 0, 1, \dots, K - 1$ **do**
222 3: Ask all workers to calculate stochastic gradients at x^k
223 4: Init $g_i^k = 0$ and $B_i^k = 0$
224 5: **while** $(\frac{1}{n} \sum_{i=1}^n (w_i^k)^2 B_i^k)^{-1} \leq \frac{S}{n}$ **do**
225 6: Wait for the next worker j
226 7: Update $B_j^k = B_j^k + 1$
227 8: Receive a calculated stochastic gradient $\nabla f_j(x^k; \xi_{j, B_j^k}^k)$
228 9: $g_j^k = g_j^k + \nabla f_j(x^k; \xi_{j, B_j^k}^k)$
229 10: Ask this worker to calculate a stochastic gradient at x^k
230 11: **end while**
231 12: $g_w^k := \frac{1}{n} \sum_{i=1}^n w_i^k g_i^k = \frac{1}{n} \sum_{i=1}^n w_i^k \sum_{j=1}^{B_i^k} \nabla f_i(x^k; \xi_{ij}^k)$
232 13: $x^{k+1} = x^k - \gamma g_w^k$
233 14: Stop all the workers' calculations (or ignore the unfinished calculations in the subsequent
234 iterations)
235 15: **end for**

236
237
238
239 accordingly. Rennala SGD and Malenia SGD ask all workers calculating stochastic gradients until
240 $\frac{1}{n} \sum_{i=1}^n B_i^k > S/n$ and $(\frac{1}{n} \sum_{i=1}^n 1/B_i^k)^{-1} > S/n$ correspondingly, where S is a parameter. Hence,
241 both methods asynchronously collect and aggregate stochastic gradients to compute g_R^k and g_M^k , and
242 then perform a descent step. However, the way the methods aggregate is both different and important.
243 It turns out the variance of the Rennala SGD's update is smaller. Indeed, one can easily show that
244

245

$$246 \mathbb{E} \left[\|g_R^k - \mathbb{E}[g_R^k]\|^2 \right] \leq \frac{\sigma^2}{n} \left(\frac{1}{n} \sum_{i=1}^n B_i^k \right)^{-1} \text{ and } \mathbb{E} \left[\|g_M^k - \mathbb{E}[g_M^k]\|^2 \right] \leq \frac{\sigma^2}{n} \left(\frac{n}{\sum_{i=1}^n \frac{1}{B_i^k}} \right)^{-1}.$$

247

248 Thus, the variance of **Rennala SGD** improves with the *arithmetic mean* of B_i^k , while the variance of
249 **Malenia SGD** improves with the *harmonic mean* of B_i^k , which can be much smaller. Why wouldn't
250 we use **Rennala SGD** in all scenarios if it is better? Because g_R^k is biased if $\{f_i\}$ are non-homogeneous.
251 In general, $\mathbb{E}[g_R^k] \neq \frac{1}{n} \sum_{i=1}^n f_i(x)$, while it is always true that $\mathbb{E}[g_M^k] = \frac{1}{n} \sum_{i=1}^n f_i(x)$.
252

253 **Takeaway 1:** The optimal methods calculate stochastic gradients at the last fixed point but
254 employ different asynchronous aggregation strategies.

255 Taking into account Takeaway 1, it is reasonable to investigate their generalization, called Weighted
256 SGD:

257

$$258 x^{k+1} = x^k - \gamma g_w^k, \quad g_w^k := \frac{1}{n} \sum_{i=1}^n w_i^k \sum_{j=1}^{B_i^k} \nabla f_i(x^k; \xi_{ij}^k), \quad (\text{Weighted SGD})$$

259

260 where the weights $\{w_i^k\}$ are free parameters. If we take $w_i^k = n/\sum_{i=1}^n B_i^k$ for all $i \in [n]$, we get
261 **Rennala SGD** with small variance. If we take $w_i^k = 1/B_i^k$, we get **Malenia SGD** with high variance but
262 with an unbiased estimator. The weights enable interpolation between the methods.

263 Further, we assume that the workers send the same number of stochastic gradients in each iteration,
264 i.e., $B_i^k = B_i$ for all $i \in [n]$, $k \geq 0$, and the weights also do not change, i.e., $w_i^k = w_i$ for all
265 $i \in [n]$, $k \geq 0$. We also assume that $\frac{1}{n} \sum_{i=1}^n w_i B_i = 1$. Otherwise, we can simply reparametrize and
266 take $\gamma := \gamma / (\frac{1}{n} \sum_{i=1}^n w_i B_i)$.
267

270 3 NON-CONVERGENCE OF Weighted SGD WITH $w^k \neq 1/B^k$
271272 Our goal now is to understand the possibility of decreasing the variance of Malenia SGD by choosing
273 appropriate weights $\{w_i\}$ in the heterogeneous setting such that Weighted SGD converges. We start
274 with the following pessimistic result.275 **Theorem 3.1.** Consider the Weighted SGD method with quadratic optimization problems, where
276 $f_i(x) : \mathbb{R} \rightarrow \mathbb{R}$ such that $f_i(x) = 0.5(x - a_i)^2$ and $a_i \in \mathbb{R}$ for all $i \in [n]$. Assume that there is
277 no noise in the stochastic gradients, which means $\nabla f_i(x; \xi_i) = \nabla f_i(x)$ deterministically for all
278 $\xi_i \in \mathbb{S}_{\xi_i}$, $i \in [n]$, and $x \in \mathbb{R}^d$. Then Weighted SGD converges to the minimum only if $w_i B_i = 1$ for all
279 $i \in [n]$ (Malenia SGD-like weighing); either it does not converge or it converges to $\frac{1}{n} \sum_{j=1}^n w_j B_j a_j$
280 instead of $\frac{1}{n} \sum_{i=1}^n a_i$.
281282 The theorem says that we can not naively apply Weighted SGD in solving (1) and ensure that we can
283 find a point that is close to a solution in the heterogeneous setting unless we take $w_i = 1/B_i$ for all
284 $i \in [n]$ (what we want to avoid).285 **Takeaway 2:** Even for simple quadratic problems without stochasticity, there is no hope of
286 using any averaging other than Malenia SGD. Thus, in general, we must rely on Malenia SGD
287 with the pessimistic dependence on the arithmetic mean of $\{\tau_i\}$.
288289 4 FIRST-ORDER AND SECOND-ORDER SIMILARITY DON'T HELP
290291 The main problem with the example from Theorem 3.1 is that it represents a worst-case scenario.
292 Clearly, we have to introduce *assumptions* to ensure that Weighted SGD converges with weights
293 distinct from those of Malenia SGD, due to Theorem 3.1 and the fact that Malenia SGD is optimal.
294 One of the most popular assumptions in the literature is *first-order and second-order similarity of the*
295 *functions* (Arjevani & Shamir, 2015; Szlendak et al., 2021; Mishchenko et al., 2022):
296297 **Assumption 4.1** (First-Order Similarity). The functions f_i satisfy
298 $\max_{i,j \in [n]} \|\nabla f_i(x) - \nabla f_j(x)\|^2 \leq \delta_1$ for all $x \in \mathbb{R}^d$ for some $\delta_1 \geq 0$. It implies
299 $\frac{1}{n} \sum_{i=1}^n \|\nabla f_i(x) - \nabla f(x)\|^2 \leq \delta_1$ for all $x \in \mathbb{R}^d$.300 **Assumption 4.2** (Second-Order Similarity). The functions f_i satisfy
301 $\max_{i,j \in [n]} \|\nabla^2 f_i(x) - \nabla^2 f_j(x)\|^2 \leq \delta_2$ for all $x \in \mathbb{R}^d$ for some $\delta_2 \geq 0$. It implies
302 $\frac{1}{n} \sum_{i=1}^n \|\nabla^2 f_i(x) - \nabla^2 f(x)\|^2 \leq \delta_2$ for all $x \in \mathbb{R}^d$.
303304 One might expect that when both δ_1 or δ_2 are small, it would be possible to exploit the similarity and
305 design a method with smaller variance and better dependence on $\{\tau_i\}$. Surprisingly, it is not the case:
306 for any $\delta_1 > 0$ or $\delta_2 \geq 0$, one can construct a problem for which only Malenia SGD converges:307 **Theorem 4.3.** Consider the Weighted SGD method with $f_i(x) : \mathbb{R} \rightarrow \mathbb{R}$ such that $f_i(x) =$
308 $\beta \langle a_i, x \rangle + \frac{\beta}{2} \|x\|^2$, $a_i \in \mathbb{R}$ for all $i \in [n]$, $\frac{1}{n} \sum_{i=1}^n a_i = 0$, and $\|a_i\| = 1$, where $\beta > 0$ is free
309 parameter. Assume that there is no noise in the stochastic gradients, which means $\nabla f_i(x; \xi_i) =$
310 $\nabla f_i(x)$ deterministically for all $\xi_i \in \mathbb{S}_{\xi_i}$, $i \in [n]$, and $x \in \mathbb{R}$. Then Weighted SGD converges to the
311 point $\frac{1}{n} \sum_{j=1}^n w_j B_j a_j$ instead of $x_* = 0$, Assumption 4.1 (the first-order similarity) is satisfied with
312 $\delta_1 = 2\beta^2$, and Assumption 4.2 (the second-order similarity) is satisfied with $\delta_2 = 0$.313 **Remark 4.4.** Note that $\frac{1}{n} \sum_{j=1}^n w_j B_j a_j = x_* = 0$ for all $a_i \in \mathbb{R}$ if and only if $w_i B_i = 1$ for all
314 $i \in [n]$ (Malenia SGD-like weighting).
315316 Hence, for any small $\delta_1 > 0$ and $\delta_2 \geq 0$, convergence is only possible with Malenia SGD. Due to the
317 construction in Theorems 4.3, we can choose any $\beta > 0$, and hence any $\delta_1 > 0$. No matter how close
318 the functions are to each other, Weighted SGD can converge close to the solution only if $w_i B_i = 1$ for
319 all $i \in [n]$. In view of this, we argue that additional assumptions about the first- and second-order
320 similarity will not help to improve the time complexity of Malenia SGD.321 **Remark 4.5.** For the construction in Theorem 4.3, we can also show that $\|\nabla f_i(x)\|^2 \leq 2 \|\nabla f(x)\|^2 +$
322 $2\beta^2$ for all $i \in [n]$, which corresponds to the ρ -strong growth condition when $\beta = 0$ and $\rho = 2$
323 (Schmidt & Roux, 2013). Since Theorem 4.3 holds for all $\beta > 0$, we have proved the result for a
“slightly” broader class of problems and have “almost” established that, even under the *strong growth*

324
 325 Table 1: The summary of our results and the time complexities (up to logarithmic factors) to get a
 326 point \bar{x}_* such that $\mathbb{E}[\|\bar{x}_* - \bar{x}_*\|^2] \leq \varepsilon$ under the *fixed computation model* (worker i requires at most
 327 τ_i seconds to calculate one stochastic gradient; $\tau_1 \leq \dots \leq \tau_n$) and Assumptions 5.1, 5.2, 1.2, and
 328 1.1, where \bar{x}_* is the closest solution to \bar{x} . **The table compares methods in the fully heterogeneous setting**
 329 and lists the extra assumptions the methods require to work.

Method	Time Complexity Guarantees (previous results)	Additional Assumptions
Minibatch SGD	$\tau_n \left(\frac{L}{\mu} + \frac{\sigma^2}{n\varepsilon\mu^2} \right)$	—
Asynchronous SGD (Mishchenko et al., 2022)	$\left(\frac{1}{n} \sum_{i=1}^n \frac{1}{\tau_i} \right)^{-1} \left(\frac{L}{\mu} + \frac{\sigma^2}{n\varepsilon\mu^2} \right)$	$\{f_i\}$ are equal μ -strong convexity
Malenia SGD (Tyurin & Richtárik, 2023) (Theorem E.2)	$\tau_n \frac{L}{\mu} + \left(\frac{1}{n} \sum_{i=1}^n \tau_i \right) \frac{\sigma^2}{n\varepsilon\mu^2}$	—
Rennala SGD (Tyurin & Richtárik, 2023) (Theorem E.1)	$\min_{m \in [n]} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{1}{\tau_i} \right)^{-1} \left(\frac{L}{\mu} + \frac{\sigma^2}{m\varepsilon\mu^2} \right) \right]$	$\{f_i\}$ are equal
Lower Bounds (new results)		
Under the first-order and second-order similarity, the following results state that the family of methods Weighted SGD can converge if and only if it reduces to Malenia SGD:		
Family of methods Weighted SGD (Theorem 4.3)	Only Malenia SGD converges	Assumptions 4.1 and 4.2 (first-order and second-order similarity don't help)
The following results state that the family of methods Weighted SGD (includes Rennala SGD and Malenia SGD) can not improve Malenia SGD for small ε if we discard Assumption 5.6 or 5.7:		
Family of methods Weighted SGD (Theorem 5.8)	$\geq \left(\frac{1}{n} \sum_{i=1}^n \tau_i \right) \frac{\sigma^2}{n\varepsilon\mu^2}$	Assumptions 5.4 and 5.7 (weak interpolation is not enough)
Family of methods Weighted SGD (Theorem 5.9)	$\geq \left(\frac{1}{n} \sum_{i=1}^n \tau_i \right) \frac{\sigma^2}{n\varepsilon\mu^2}$	Assumption 5.6
Upper Bound (new result)		
The following results state that under Assumption 5.6 or 5.7 it is possible to improve Malenia SGD:		
Rennala SGD (Theorem 5.10)	$\min_{m \in [n]} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{1}{\tau_i} \right)^{-1} \left(\frac{L_{\max}}{\mu} + \frac{\sigma^2}{m\varepsilon\mu^2} \right) \right]$	Assumptions 5.6 and 5.7 (weaker than the equality of functions $\{f_i\}$)

351
 352 condition, only Malenia SGD converges to the minimum. Whether a similar result holds for the class
 353 of problems satisfying $\max_{i \in [n]} \|\nabla f_i(x)\|^2 \leq 2 \|\nabla f(x)\|^2$ for all $x \in \mathbb{R}^d$ remains an important
 354 open research question.
 355

356 **Takeaway 3:** Even with first-order and second-order similarity, when using the family of methods
 357 Weighted SGD, there is still no hope of using any averaging other than Malenia SGD.

359 5 UNDERSTANDING THE GAP VIA INTERPOLATION ASSUMPTIONS

360 To understand the problem, we now focus on the standard setting of convex smooth functions under
 361 the PL-condition, where the latter is a much weaker assumption than μ -strong convexity (Karimi
 362 et al., 2016).

363 **Assumption 5.1** (Convexity). The functions f_i are convex for all $i \in [n]$. The function f attains a
 364 minimum at a (non-unique) point $x_* \in \mathbb{R}^d$.

365 **Assumption 5.2** (Global Polyak-Łojasiewicz condition). There exists $\mu > 0$ such that $\|\nabla f(x)\|^2 \geq$
 366 $2\mu (f(x) - f^*)$ for all $x \in \mathbb{R}^d$, where f^* is the finite optimal function value of f .

367 **Assumption 5.3** (Local smoothness). The functions f_i are differentiable and L_i -smooth. We also
 368 define $L_{\max} := \max_{i \in [n]} L_i$. Note that $L \leq L_{\max}$.

369 Looking at Takeaways 2 and 3, we see that a different similarity assumption is required to close
 370 the gap between the heterogeneous and homogeneous results. Recall Theorem 3.1, which states
 371 that Weighted SGD converges to $1/n \sum_{j=1}^n w_j B_j a_j$ instead of $1/n \sum_{i=1}^n a_i$. These two expressions
 372 are equal only if the minima a_i of the functions f_i are the same. Therefore, to ensure convergence
 373 when $w_i B_i \neq 1$ and to understand the gap between the homogeneous and heterogeneous settings,
 374 Theorem 3.1 motivates us to explore an alternative assumption known as the *interpolation* assumption
 375 (Vaswani et al., 2019). This assumption provides another way to capture the similarity among the
 376 functions f_i by requiring that they share the same set of minimizers as the function f .
 377

378 **Assumption 5.4** (Weak Interpolation). If x^* is a minimizer of f , that is, $\nabla f(x^*) = 0$, then x^* is also a
 379 minimizer of each f_i for all $i \in [n]$.
 380

381 Interpolation is a property of the solutions of f_i , whereas the heterogeneity assumptions, Assump-
 382 tions 4.1 and 4.2, concern the gradients and Hessians. These are different characteristics of f_i , and
 383 understanding their connection could be an important future work.

384 Under Assumption 5.4, Theorem 3.1 is not a barrier anymore. Assumption 5.4 is considered practical
 385 in modern optimization literature, as there is evidence that it holds for large deep learning models
 386 (Zou & Gu, 2019; Zhang et al., 2021). However, as we show next, this assumption alone is not
 387 sufficient to achieve improved time complexity, leading to yet another pessimistic result:

388 **Theorem 5.5.** Consider the **Weighted SGD** method. Let us fix any $\varepsilon, L_{\max}, R, \mu, \sigma^2 > 0$ such that
 389 $\mu < L_{\max}/(2n)$, $\varepsilon < 0.01$, and $R > 10$. For all $B_1, \dots, B_n \geq 0$ and any possible choice of weights
 390 $\{w_i(B_1, \dots, B_n)\}$ as functions of B_1, \dots, B_n , there exist functions $\{f_i\}$ and stochastic gradients
 391 $\{\nabla f_i(\cdot; \cdot)\}$ such that $\{f_i\}$ satisfy Assumptions 5.1, 5.3, and 5.4, f satisfies Assumptions 5.2 and 1.1
 392 with $L = L_{\max}$, $\{\nabla f_i(\cdot; \cdot)\}$ satisfy Assumption 1.2 such that the method requires at least

$$\Omega\left(\left(\frac{1}{n} \sum_{i=1}^n \tau_i\right) \frac{\sigma^2}{\varepsilon n \mu^2} \log\left(\frac{R^2}{\varepsilon}\right)\right)$$

396 seconds to find ε -solution in terms of distances to the solution set, when the method starts at a point
 397 in a distance less or equal to R to the closest solution.
 398

399 Thus, even under Assumption 5.4, we can not improve the arithmetic mean dependence on $\{\tau_i\}$.
 400

401 **Takeaway 4:** Using the weak interpolation assumption, which captures the similarity of
 402 the functions in a different way compared to first-order and second-order similarity, it is still
 403 infeasible to improve the pessimistic dependence on $\{\tau_i\}$ achieved by Malenia SGD using the
 404 family of methods **Weighted SGD**.
 405

406 5.1 STRONG INTERPOLATION AND LOCAL PL CONDITION ARE BOTH REQUIRED

407 Once again, we need to go deeper and introduce additional assumptions to break the lower bound
 408 from Theorem 5.5. To further investigate the problem, we now turn to two related assumptions.
 409

410 **Assumption 5.6** (Strong Interpolation). For all $i \in [n]$, a point x^* is a minimizer of f_i , that is,
 411 $\nabla f_i(x^*) = 0$, if and only if it is also a minimizer of f_i .
 412

413 This assumption is clearly stronger than the weak interpolation assumption since it requires all the
 414 functions to share the set of minimizers.
 415

416 **Assumption 5.7** (Local Polyak-Łojasiewicz condition). There exists μ such that $\|\nabla f_i(x)\|^2 \geq$
 417 $2\mu (f_i(x) - f_i^*)$ for all $x \in \mathbb{R}^d$ and for all $i \in [n]$, where f_i^* is the finite optimal function value of f_i .
 418

419 This assumption, unlike Assumption 5.2, requires each function to satisfy PL condition. It turns out
 420 again that if we do not assume both Assumption 5.6 and Assumption 5.7, then it is infeasible to
 421 get a time complexity faster than in Malenia SGD with any weights $\{w_i\}$ for ε small enough. This
 422 statement is formalized in the following two theorems.
 423

424 **Theorem 5.8.** Consider the **Weighted SGD** method. Let us fix any $\varepsilon, L_{\max}, R, \mu, \sigma^2 > 0$ such that
 425 $\mu < L_{\max}/(2n)$, $\varepsilon < 0.01$, and $R > 10$. For all $B_1, \dots, B_n \geq 0$ and any possible choice of weights
 426 $\{w_i(B_1, \dots, B_n)\}$ as functions of B_1, \dots, B_n , there exist functions $\{f_i\}$ and stochastic gradients
 427 $\{\nabla f_i(\cdot; \cdot)\}$ such that $\{f_i\}$ satisfy Assumptions 5.1, 5.3, 5.4, and 5.7 (do not satisfy Assumption 5.6
 428 in general), f satisfies Assumptions 5.2 and 1.1 with $L = L_{\max}$, $\{\nabla f_i(\cdot; \cdot)\}$ satisfy Assumption 1.2
 429 such that the method requires at least

$$\Omega\left(\left(\frac{1}{n} \sum_{i=1}^n \tau_i\right) \frac{\sigma^2}{\varepsilon n \mu^2} \log\left(\frac{R^2}{\varepsilon}\right)\right)$$

430 seconds to find ε -solution in terms of distances to the solution set, when the method starts at a point
 431 in a distance less or equal to R to the closest solution.
 432

432 **Theorem 5.9.** Consider the **Weighted SGD** method. Let us fix any $\varepsilon, L_{\max}, R, \sigma^2 > 0$ such that
 433 $\mu < L_{\max}/(2n)$, $\varepsilon < 0.01$, and $R > 10$. For all $B_1, \dots, B_n \geq 1$ and any possible choice of weights
 434 $\{w_i(B_1, \dots, B_n)\}$ as functions of B_1, \dots, B_n , there exist functions $\{f_i\}$ and stochastic gradients
 435 $\{\nabla f_i(\cdot; \cdot)\}$ such that $\{f_i\}$ satisfy Assumptions 5.1, 5.3, 5.4, and 5.6 (do not satisfy Assumption 5.7
 436 **in general**), f satisfy Assumptions 5.2 and 1.1 with $L = L_{\max}$, $\{\nabla f_i(\cdot; \cdot)\}$ satisfy Assumption 1.2,
 437 such that the method requires at least

$$\Omega\left(\left(\frac{1}{n} \sum_{i=1}^n \tau_i\right) \frac{\sigma^2}{\varepsilon n \mu^2} \log\left(\frac{R^2}{\varepsilon}\right)\right)$$

438 seconds to find ε -solution in terms of distances to the solution set, when the method starts at a point
 439 in a distance less or equal to R to the closest solution.

440 **Takeaway 5:** Even when the weak interpolation assumption is combined with only one of
 441 Assumptions 5.6 and 5.7, we still obtain only the arithmetic mean dependence on $\{\tau_i\}$.

442 Once we drop either Assumption 5.6 or Assumption 5.7, it becomes possible to construct a “bad”
 443 function (see the proof of Theorems 5.8 and 5.9) that provides no room for Weighted SGD to improve,
 444 regardless of the weight choices.

445 5.2 FINALLY BRIDGING THE GAP

446 However, if assume that both Assumption 5.6 and Assumption 5.7 hold, then, finally, we can proof
 447 the convergence with harmonic-like dependence on $\{\tau_i\}$:

448 **Theorem 5.10.** Let Assumptions 5.1, 5.3, 1.2, 5.6, 5.7 hold². We choose $w_i^k = n/\sum_{i=1}^n B_i^k$ for all
 449 $k \geq 0, i \in [n]$ in Algorithm 1 (Weighted SGD reduces to Rennala SGD). We take $\gamma = 1/L_{\max}$, $S =$
 450 $4\sigma^2/\mu L_{\max} \varepsilon$, and run Rennala SGD for $k \geq \Omega\left(\frac{L_{\max}}{\mu} \log \frac{R^2}{\varepsilon}\right)$ iterations, then $\mathbb{E}\left[\|x^{k+1} - x_*^{k+1}\|^2\right] \leq$
 451 ε , where x_*^{k+1} is the closest solution to x^{k+1} . Moreover, under the fixed computation model, the
 452 method requires

$$\mathcal{O}\left(\min_{m \in [n]} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{1}{\tau_i}\right)^{-1} \left(\frac{L_{\max}}{\mu} + \frac{\sigma^2}{m \varepsilon \mu^2}\right)\right] \log \frac{R^2}{\varepsilon}\right) \quad (8)$$

453 seconds.

454 Under weaker assumptions, without requiring the equality of the functions $\{f_i\}$, this theorem yields
 455 time complexity guarantees with a “harmonic”-like dependence on the times $\{\tau_i\}$ for the Rennala
 456 SGD method, improving upon the previous theoretical results in Theorem E.1 and (Tyurin & Richtárik,
 457 2023).

458 Notice that the method in Theorem 5.10 is still biased because
 459 $\mathbb{E}\left[\sum_{i=1}^n \sum_{j=1}^{B_i^k} \nabla f_i(x; \xi_{ij}^k) / \sum_{i=1}^n B_i^k\right] \neq \nabla f(x)$ in general. That said, we can successfully prove the theorem under this constraint. One of the primary reasons for this is the right choice
 460 of *convergence metric*. Initially, we aimed to analyze the biased gradient estimator in terms of
 461 function values and gradient norms, trying to prove that the method returns a point \bar{x} such that
 462 $\mathbb{E}[f(\bar{x})] - f^* \leq \varepsilon$ or $\mathbb{E}[\|\nabla f(\bar{x})\|^2] \leq \varepsilon$. However, the more appropriate approach is to show
 463 $\mathbb{E}[\|\bar{x} - x_*\|^2] \leq \varepsilon$. Using this convergence metric allows us to analyze the biased gradient estimator.
 464 This observation can be important on its own.

465 **Takeaway 6:** Improving the pessimistic dependence in Malenia SGD is possible with Ren-
 466 nala SGD and the additional assumptions, Assumption 5.6 and Assumption 5.7, in convex
 467 optimization.

468 One interesting observation is that there is no single best method between Malenia SGD and Rennala
 469 SGD: either Malenia SGD is the fastest, or Rennala SGD is when both Assumption 5.6 and Assump-
 470 tion 5.7 hold. We could not find a regime in between where any other method or strategy would
 471 improve upon both Malenia SGD and Rennala SGD.

472 ²It is well-known that Assumption 5.3 implies Assumption 1.1. In Section F, we prove that Assumptions 5.1,
 473 5.6 and Assumption 5.7 with constant μ imply Assumption 5.2 with constant $\mu/4$.

486

6 CONCLUSION

488 In this work, we investigated various assumptions and setups in an effort to break the pessimistic
 489 dependence on $\{\tau_i\}$ achieved by Malenia SGD. We considered the first- and second-order similarity,
 490 strong growth, and interpolation assumptions. We proved that under the first- and second-order
 491 similarity assumptions, it is infeasible to improve the dependence on the arithmetic mean of $\{\tau_i\}$
 492 within the family of Weighted SGD methods. We also showed that under weak interpolation (Assump-
 493 tion 5.4), it is likewise not possible to improve the result by Malenia SGD. Subsequently, we presented
 494 new theoretical results that provide improved time complexity guarantees in the heterogeneous setting,
 495 without assuming that the functions f_i are identical (Theorem 5.10). These results are obtained under
 496 the standard assumptions of convex optimization, together with Assumptions 5.6 and 5.7.

497 Importantly, we have not merely introduced these assumptions to close the gap, but have shown
 498 that both Assumptions 5.6 and 5.7 are provably essential and non-relaxable for the general family
 499 of methods, underscoring the fundamental limits of what can be achieved in heterogeneous convex
 500 stochastic optimization.

501 There are many unexplored directions that can build on our initial results and observations. While we
 502 focused on the most common assumptions in federated and distributed learning, our findings may
 503 inspire the development of new assumptions and settings where it is possible to improve upon Malenia
 504 SGD. Moreover, our upper bounds and lower bounds were investigated in terms of $\mathbb{E}[\|x^k - x_*^k\|^2]$
 505 convergence. It would be interesting to see whether similar results can be obtained in terms of
 506 $\mathbb{E}[\|\nabla f(x^k)\|^2]$ in the non-convex setting. [While Weighted SGD is a natural abstraction of the two optimal
methods, Rennala SGD and Malenia SGD, and is general enough for investigation, it would be interesting
to analyze other classes of methods as well.](#)

509

REFERENCES

510 Yossi Arjevani and Ohad Shamir. Communication complexity of distributed convex learning and
 511 optimization. *Advances in Neural Information Processing Systems*, 28, 2015.

512 Yossi Arjevani, Ohad Shamir, and Nathan Srebro. A tight convergence analysis for stochastic gradient
 513 descent with delayed updates. In *Algorithmic Learning Theory*, pp. 111–132. PMLR, 2020.

514 Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
 515 Lower bounds for non-convex stochastic optimization. *Mathematical Programming*, pp. 1–50,
 516 2022.

517 Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
 518 points i. *Mathematical Programming*, 184(1):71–120, 2020.

519 Alon Cohen, Amit Daniely, Yoel Drori, Tomer Koren, and Mariano Schain. Asynchronous stochastic
 520 optimization robust to arbitrary delays. *Advances in Neural Information Processing Systems*, 34:
 521 9024–9035, 2021.

522 Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algorithms via
 523 accelerated gradient methods. *Advances in Neural Information Processing Systems*, 24, 2011.

524 Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, and Priya Nagpurkar. Slow and
 525 stale gradients can win the race: Error-runtime trade-offs in distributed SGD. In *International
Conference on Artificial Intelligence and Statistics*, pp. 803–812. PMLR, 2018.

526 Hamid Reza Feyzmahdavian and Mikael Johansson. Asynchronous iterations in optimization: New
 527 sequence results and sharper algorithmic guarantees. *Journal of Machine Learning Research*, 24
 528 (158):1–75, 2023.

529 Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. An asynchronous mini-batch
 530 algorithm for regularized stochastic optimization. *IEEE Transactions on Automatic Control*, 61
 531 (12):3740–3754, 2016.

532 Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1.
 533 MIT Press, 2016.

540 Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
 541 Richtárik. SGD: General analysis and improved rates. In *International Conference on Machine*
 542 *Learning*, pp. 5200–5209. PMLR, 2019.

543 Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
 544 Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training
 545 imangenet in 1 hour. *arXiv preprint arXiv:1706.02677*, 2017.

546 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 547 recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*
 548 (*CVPR*), pp. 770–778, 2016.

549 Xinmeng Huang, Yiming Chen, Wotao Yin, and Kun Yuan. Lower bounds and nearly optimal algo-
 550 rithms in distributed learning with communication compression. *Advances in Neural Information*
 551 *Processing Systems (NeurIPS)*, 2022.

552 Rustem Islamov, Mher Safaryan, and Dan Alistarh. AsGrad: A sharp unified analysis of asynchronous-
 553 SGD algorithms. In *International Conference on Artificial Intelligence and Statistics*, pp. 649–657.
 554 PMLR, 2024.

555 Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
 556 gradient methods under the polyak-łojasiewicz condition. In *Machine Learning and Knowledge*
 557 *Discovery in Databases: European Conference, ECML PKDD 2016, Riva del Garda, Italy,*
 558 *September 19-23, 2016, Proceedings, Part I 16*, pp. 795–811. Springer, 2016.

559 Anastasia Koloskova, Sebastian U Stich, and Martin Jaggi. Sharper convergence guarantees for
 560 asynchronous SGD for distributed and federated learning. *Advances in Neural Information*
 561 *Processing Systems (NeurIPS)*, 2022.

562 Jakub Konečný, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
 563 Dave Bacon. Federated learning: Strategies for improving communication efficiency. *arXiv*
 564 *preprint arXiv:1610.05492*, 2016.

565 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 566 Technical report, University of Toronto, Toronto, 2009.

567 Guanghui Lan. *First-order and stochastic optimization methods for machine learning*. Springer,
 568 2020.

569 Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient for
 570 nonconvex optimization. *Advances in Neural Information Processing Systems*, 28, 2015.

571 Yucheng Lu and Christopher De Sa. Optimal complexity in decentralized training. In *International*
 572 *Conference on Machine Learning*, pp. 7111–7123. PMLR, 2021.

573 Artavazd Maranjyan, Alexander Tyurin, and Peter Richtárik. Ringmaster ASGD: The first asyn-
 574 chronous SGD with optimal time complexity. In *International Conference on Machine Learning*,
 575 2025.

576 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 577 Communication-efficient learning of deep networks from decentralized data. In *Artificial Intelli-
 578 gence and Statistics*, pp. 1273–1282. PMLR, 2017.

579 Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake Woodworth. Asynchronous SGD
 580 beats minibatch SGD under arbitrary delays. *Advances in Neural Information Processing Systems*
 581 (*NeurIPS*), 2022.

582 Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
 583 efficiency in optimization. 1983.

584 Yurii Nesterov. *Lectures on convex optimization*, volume 137. Springer, 2018.

585 Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Optimal
 586 algorithms for smooth and strongly convex distributed optimization in networks. In *International*
 587 *Conference on Machine Learning*, pp. 3027–3036. PMLR, 2017.

594 Mark Schmidt and Nicolas Le Roux. Fast convergence of stochastic gradient descent under a strong
 595 growth condition. *arXiv preprint arXiv:1308.6370*, 2013.

596

597 Suvrit Sra, Adams Wei Yu, Mu Li, and Alex Smola. Adadelay: Delay adaptive distributed stochastic
 598 optimization. In *Artificial Intelligence and Statistics*, pp. 957–965. PMLR, 2016.

599

600 Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: SGD with delayed
 601 gradients. *Journal of Machine Learning Research*, 21(237):1–36, 2020.

602

603 Rafał Szlendak, Alexander Tyurin, and Peter Richtárik. Permutation compressors for provably faster
 604 distributed nonconvex optimization. In *International Conference on Learning Representations*,
 2021.

605

606 Alexander Tyurin. Tight time complexities in parallel stochastic optimization with arbitrary computa-
 607 tion dynamics. In *International Conference on Learning Representations (ICLR)*, 2025.

608

609 Alexander Tyurin and Peter Richtárik. Optimal time complexities of parallel stochastic optimization
 610 methods under a fixed computation model. *Advances in Neural Information Processing Systems
 (NeurIPS)*, 2023.

611

612 Alexander Tyurin, Kaja Gruntkowska, and Peter Richtárik. Freya PAGE: First optimal time complexity
 613 for large-scale nonconvex finite-sum optimization with heterogeneous asynchronous computations.
Advances in Neural Information Processing Systems (NeurIPS), 2024.

614

615 Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon Lacoste-
 616 Julien. Painless stochastic gradient: Interpolation, line-search, and convergence rates. *Advances in
 617 neural information processing systems*, 32, 2019.

618

619 Blake E Woodworth and Nati Srebro. Tight complexity bounds for optimizing composite objectives.
Advances in Neural Information Processing Systems, 29, 2016.

620

621 Blake E Woodworth, Jialei Wang, Adam Smith, Brendan McMahan, and Nati Srebro. Graph
 622 oracle models, lower bounds, and gaps for parallel stochastic optimization. *Advances in Neural
 623 Information Processing Systems*, 31, 2018.

624

625 Xuyang Wu, Sindri Magnusson, Hamid Reza Feyzmahdavian, and Mikael Johansson. Delay-adaptive
 626 step-sizes for asynchronous learning. *arXiv preprint arXiv:2202.08550*, 2022.

627

628 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
 629 learning (still) requires rethinking generalization. *Communications of the ACM*, 64(3):107–115,
 2021.

630

631 Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. Staleness-aware async-sgd for distributed deep
 632 learning. *arXiv preprint arXiv:1511.05950*, 2015.

633

634 Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural
 635 networks. *Advances in Neural Information Processing Systems*, 32, 2019.

636

637

638

639

640

641

642

643

644

645

646

647

648	CONTENTS	
649		
650		
651	1 Introduction	1
652	1.1 Notations	1
653	1.2 Previous work	2
654	1.3 Contributions	4
655		
656		
657	2 A Unifying Perspective on Rennala SGD and Malenia SGD	4
658		
659	3 Non-Convergence of Weighted SGD with $w^k \neq 1/B^k$	6
660		
661	4 First-Order and Second-Order Similarity Don't Help	6
662		
663		
664	5 Understanding the Gap via Interpolation Assumptions	7
665	5.1 Strong interpolation and local PL condition are both required	8
666	5.2 Finally bridging the gap	9
667		
668		
669	6 Conclusion	10
670		
671	A	14
672		
673	A Arbitrarily computation dynamics	14
674		
675	B Proof of the Main Results	14
676		
677	C Auxiliary Results	21
678		
680	D Lower Bound in the Heterogeneous Convex Setting	21
681		
682	E Proof of Theorems E.1 and E.2	24
683		
684	F Assumptions 5.1, 5.6 and 5.7 imply Assumption 5.2	26
685		
686	G First-Order Similarity and Second-Order Similarity	27
687		
688		
689	H Experiments	28
690		
691	H.1 Without interpolation	28
692	H.2 With interpolation	28
693	H.3 ResNet-18 and CIFAR-10	29
694		
695		
696	I Experiments Details	30
697	I.1 Quadratic optimization task generation procedure	30
698	I.2 Experiments with ResNet and CIFAR-10	30
699		
700		
701		

702 A

703
704 A ARBITRARILY COMPUTATION DYNAMICS
705706 Our new result can be readily extended to *the universal computation model*. To encompass virtually
707 all computation scenarios, assume that each worker i performs computations based on a *computation*
708 *power* function $v_i : \mathbb{R}_+ \rightarrow \mathbb{R}_+$. Then the number of stochastic gradients that worker i can calculate
709 from a time t_0 to a time t_1 is an integral of the computation power v_i followed by the floor operation:
710

711 “# of stoch. grad. in $[t_0, t_1]$ ” = $\left\lfloor \int_{t_0}^{t_1} v_i(\tau) d\tau \right\rfloor$. (9)
712

713 For instance, if worker i is inactive for the first t seconds and then active again, it would mean
714 $v_i(\tau) = 0$ for all $\tau \leq t$ and $v_i(\tau) > 0$ for all $\tau > t$. Using the universal computation model, we can
715 prove the theorem:716 **Theorem A.1.** *Consider the assumptions, algorithm, and parameters from Theorem 5.10. Then,*
717 *Rennala SGD converges after at most $\bar{t} \lceil c \times \frac{L_{\max}}{\mu} \log \frac{R^2}{\varepsilon} \rceil$ seconds, where the sequence $\{\bar{t}_k\}$ is defined*
718 *recursively as $\bar{t}_k :=$*
719

720
$$\min \left\{ t \geq 0 : \sum_{i=1}^n \left\lfloor \int_{\bar{t}_{k-1}}^t v_i(\tau) d\tau \right\rfloor \geq \max \left\{ \lceil \frac{\sigma^2}{\varepsilon} \rceil, 1 \right\} \right\} \quad (10)$$

721
722

723 for all $k \geq 1$ ($\bar{t}_0 \equiv 0$), and c is a universal constant.
724725 The similar result was obtained in (Tyurin, 2025). However, Tyurin (2025) requires the equality of
726 the functions $\{f_i\}$ to get the sequence (10).727 B PROOF OF THE MAIN RESULTS
728729
730 **Theorem 3.1.** *Consider the Weighted SGD method with quadratic optimization problems, where*
731 *$f_i(x) : \mathbb{R} \rightarrow \mathbb{R}$ such that $f_i(x) = 0.5(x - a_i)^2$ and $a_i \in \mathbb{R}$ for all $i \in [n]$. Assume that there is*
732 *no noise in the stochastic gradients, which means $\nabla f_i(x; \xi_i) = \nabla f_i(x)$ deterministically for all*
733 *$\xi_i \in \mathbb{S}_{\xi_i}$, $i \in [n]$, and $x \in \mathbb{R}^d$. Then Weighted SGD converges to the minimum only if $w_i B_i = 1$ for all*
734 *$i \in [n]$ (Malenia SGD-like weighing); either it does not converge or it converges to $\frac{1}{n} \sum_{j=1}^n w_j B_j a_j$*
735 *instead of $\frac{1}{n} \sum_{i=1}^n a_i$.*736
737 *Proof.* If $w_i B_i = 1$ for all $i \in [n]$, then Weighted SGD converges with $\gamma < 2$ because Malenia SGD
738 converges. If $w_i B_i \neq 1$ for all $i \in [n]$, then
739

740
$$\begin{aligned} x^{k+1} &= x^k - \gamma \frac{1}{n} \sum_{i=1}^n w_i B_i (x^k - a_i) \\ 741 &= \left(1 - \gamma \frac{1}{n} \sum_{i=1}^n w_i B_i \right)^{k+1} x^0 + \sum_{j=0}^k \gamma \left(1 - \gamma \frac{1}{n} \sum_{i=1}^n w_i B_i \right)^j \frac{1}{n} \sum_{i=1}^n w_i B_i a_i \\ 742 &= (1 - \gamma)^{k+1} x^0 + \sum_{j=0}^k \gamma (1 - \gamma)^j \frac{1}{n} \sum_{i=1}^n w_i B_i a_i, \end{aligned}$$

743
744
745
746
747
748

749 where the third equality due to the agreement $\frac{1}{n} \sum_{i=1}^n w_i B_i = 1$.
750751 If $\gamma \geq 2$, then x^{k+1} does not converge if $x^0 \neq \frac{1}{n} \sum_{i=1}^n w_i B_i a_i$ and $k \rightarrow \infty$. If $\gamma < 2$, then
752

753
$$\lim_{k \rightarrow \infty} x^{k+1} = \frac{1}{n} \sum_{j=1}^n w_j B_j a_j.$$

754
755

□

756 Remark B.1. It is possible to find $\{a_i\}_{i=1}^n$, when $\frac{1}{n} \sum_{j=1}^n w_j B_j a_j$ does not equal $\frac{1}{n} \sum_{i=1}^n a_i$
 757

758 *Proof.* If $w_i \neq 1/B_i$ for all $i \in [n]$, then there exists $k_1 \in [n]$ such that $\frac{1}{n} w_{k_1} B_{k_1} < \frac{1}{n}$. If we take
 759 $a_{k_1} = 2$ and $a_i = 1$ for all $i \notin k_1$, then
 760

$$761 \frac{1}{n} \sum_{j=1}^n w_j B_j a_j = \left(\frac{2}{n} w_{k_1} B_{k_1} + \left(1 - \frac{1}{n} w_{k_1} B_{k_1} \right) \right) > \frac{1+n}{n} = \frac{1}{n} \sum_{i=1}^n a_i,$$

764 and the method converges to the point that it is not equal to $\frac{1}{n} \sum_{i=1}^n a_i$. \square
 765

766 **Theorem 5.10.** *Let Assumptions 5.1, 5.3, 1.2, 5.6, 5.7 hold³. We choose $w_i^k = n/\sum_{i=1}^n B_i^k$ for all
 767 $k \geq 0, i \in [n]$ in Algorithm 1 (Weighted SGD reduces to Rennala SGD). We take $\gamma = 1/L_{\max}$, $S =$
 768 $4\sigma^2/\mu L_{\max} \varepsilon$, and run Rennala SGD for $k \geq \Omega\left(\frac{L_{\max}}{\mu} \log \frac{R^2}{\varepsilon}\right)$ iterations, then $\mathbb{E}\left[\|x^{k+1} - x_*^{k+1}\|^2\right] \leq$
 769 ε , where x_*^{k+1} is the closest solution to x^{k+1} . Moreover, under the fixed computation model, the
 770 method requires*

$$771 \mathcal{O}\left(\min_{m \in [n]} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{1}{\tau_i} \right)^{-1} \left(\frac{L_{\max}}{\mu} + \frac{\sigma^2}{m \varepsilon \mu^2} \right) \right] \log \frac{R^2}{\varepsilon}\right) \quad (8)$$

774 seconds.
 775

776 *Proof.* Let us define x_*^k as an euclidean projection of the point x^{k+1} on to the solution set of the
 777 main problem (1), and take the condition expectation $\mathbb{E}_k[\cdot]$ w.r.t. the randomness from the iteration k
 778 only. Then we have

$$779 \mathbb{E}_k\left[\|x^{k+1} - x_*^{k+1}\|^2\right] \leq \mathbb{E}_k\left[\|x^{k+1} - x_*^k\|^2\right]$$

780 due to the projection's properties. Then
 781

$$782 \mathbb{E}_k\left[\|x^{k+1} - x_*^{k+1}\|^2\right] \\ 783 \leq \mathbb{E}_k\left[\left\|x^k - \gamma \frac{1}{n} \sum_{i=1}^n w_i^k \sum_{j=1}^{B_i^k} \nabla f_i(x^k; \xi_{ij}^k) - x_*^k\right\|^2\right] \\ 784 \\ 785 = \|x^k - x_*^k\|^2 - 2\gamma \mathbb{E}_k\left[\left\langle x^k - x_*^k, \frac{1}{n} \sum_{i=1}^n w_i^k \sum_{j=1}^{B_i^k} \nabla f_i(x^k; \xi_{ij}^k) \right\rangle\right] + \gamma^2 \mathbb{E}_k\left[\left\| \frac{1}{n} \sum_{i=1}^n w_i^k \sum_{j=1}^{B_i^k} \nabla f_i(x^k; \xi_{ij}^k) \right\|^2\right].$$

786 Using unbiasedness (Assumption 1.2) and the variance decomposition equality, we get
 787

$$788 \mathbb{E}_k\left[\|x^{k+1} - x_*^{k+1}\|^2\right] \\ 789 \leq \|x^k - x_*^k\|^2 - 2\gamma \left\langle x^k - x_*^k, \frac{1}{n} \sum_{i=1}^n w_i^k B_i^k \nabla f_i(x^k) \right\rangle \\ 790 \\ 791 + \gamma^2 \left\| \frac{1}{n} \sum_{i=1}^n w_i^k B_i^k \nabla f_i(x^k) \right\|^2 + \gamma^2 \mathbb{E}_k\left[\left\| \frac{1}{n} \sum_{i=1}^n w_i^k \sum_{j=1}^{B_i^k} (\nabla f_i(x^k; \xi_{ij}^k) - \nabla f_i(x^k)) \right\|^2\right].$$

802 Consider the last term, due to the independence of stochastic gradients and Assumption 1.2, we
 803 ensure that
 804

$$805 \mathbb{E}_k\left[\left\| \frac{1}{n} \sum_{i=1}^n w_i^k \sum_{j=1}^{B_i^k} (\nabla f_i(x^k; \xi_{ij}^k) - \nabla f_i(x^k)) \right\|^2\right]$$

806 ³It is well-known that Assumption 5.3 implies Assumption 1.1. In Section F, we prove that Assumptions 5.1,
 807 5.6 and Assumption 5.7 with constant μ imply Assumption 5.2 with constant $\mu/4$.

$$810 \quad 811 \quad = \frac{1}{n^2} \sum_{i=1}^n (w_i^k)^2 \sum_{j=1}^{B_i^k} \mathbb{E}_k \left[\left\| \nabla f_i(x^k; \xi_{ij}^k) - \nabla f_i(x^k) \right\|^2 \right] \leq \frac{1}{n^2} \sum_{i=1}^n (w_i^k)^2 B_i^k \sigma^2.$$

813 Thus

$$814 \quad 815 \quad \mathbb{E}_k \left[\|x^{k+1} - x_*^{k+1}\|^2 \right] \quad (11)$$

$$816 \quad \leq \|x^k - x_*^k\|^2 - \frac{2\gamma}{n} \sum_{i=1}^n w_i^k B_i^k \langle x^k - x_*^k, \nabla f_i(x^k) \rangle + \gamma^2 \left\| \frac{1}{n} \sum_{i=1}^n w_i^k B_i^k \nabla f_i(x^k) \right\|^2 + \frac{\gamma^2}{n^2} \sum_{i=1}^n (w_i^k)^2 B_i^k \sigma^2.$$

817 We now consider the second and the third term. Since $\frac{1}{n} \sum_{i=1}^n w_i^k B_i^k = 1$, using Jensen's inequality,
818 we get

$$819 \quad 820 \quad - 2\gamma \left\langle x^k - x_*^k, \frac{1}{n} \sum_{i=1}^n w_i^k B_i^k \nabla f_i(x^k) \right\rangle + \gamma^2 \left\| \frac{1}{n} \sum_{i=1}^n w_i^k B_i^k \nabla f_i(x^k) \right\|^2$$

$$821 \quad \leq -2\gamma \left\langle x^k - x_*^k, \frac{1}{n} \sum_{i=1}^n w_i^k B_i^k \nabla f_i(x^k) \right\rangle + \gamma^2 \frac{1}{n} \sum_{i=1}^n w_i^k B_i^k \|\nabla f_i(x^k)\|^2.$$

822 Due to Assumption 5.6, we get

$$823 \quad 824 \quad \frac{1}{n} \sum_{i=1}^n w_i^k B_i^k \|\nabla f_i(x^k)\|^2 = \frac{1}{n} \sum_{i=1}^n w_i^k B_i^k \|\nabla f_i(x^k) - \nabla f_i(x_*^k)\|^2$$

$$825 \quad \leq \frac{1}{n} \sum_{i=1}^n w_i^k B_i^k L_i \langle x^k - x_*^k, \nabla f_i(x^k) - \nabla f_i(x_*^k) \rangle$$

$$826 \quad \leq L_{\max} \frac{1}{n} \sum_{i=1}^n w_i^k B_i^k \langle x^k - x_*^k, \nabla f_i(x^k) - \nabla f_i(x_*^k) \rangle$$

$$827 \quad = L_{\max} \frac{1}{n} \sum_{i=1}^n w_i^k B_i^k \langle x^k - x_*^k, \nabla f_i(x^k) \rangle.$$

828 In the first inequality, we use Lemma C.1 under Assumption 5.3 and convexity (Assumption 5.1).
829 In the second inequality, we use the bound $L_i \leq L_{\max}$ for all $i \in [n]$. Taking $\gamma \leq 1/L_{\max}$ and
830 substituting the last inequality to (11), we obtain

$$831 \quad 832 \quad \mathbb{E}_k \left[\|x^{k+1} - x_*^{k+1}\|^2 \right]$$

$$833 \quad \leq \|x^k - x_*^k\|^2 - (2\gamma - L_{\max}\gamma^2) \frac{1}{n} \sum_{i=1}^n w_i^k B_i^k \langle x^k - x_*^k, \nabla f_i(x^k) \rangle + \frac{\gamma^2}{n^2} \sum_{i=1}^n (w_i^k)^2 B_i^k \sigma^2$$

$$834 \quad \leq \|x^k - x_*^k\|^2 - \gamma \frac{1}{n} \sum_{i=1}^n w_i^k B_i^k \langle x^k - x_*^k, \nabla f_i(x^k) \rangle + \frac{\gamma^2}{n^2} \sum_{i=1}^n (w_i^k)^2 B_i^k \sigma^2.$$

835 Using the convexity, Assumption 5.7, and Lemma C.2, we get

$$836 \quad 837 \quad \mathbb{E}_k \left[\|x^{k+1} - x_*^{k+1}\|^2 \right]$$

$$838 \quad \leq \|x^k - x_*^k\|^2 - \frac{\gamma\mu}{2} \frac{1}{n} \sum_{i=1}^n w_i^k B_i^k \|x^k - x_*^k\|^2 + \frac{\gamma^2}{n^2} \sum_{i=1}^n (w_i^k)^2 B_i^k \sigma^2.$$

839 We take $w_i^k = n/\sum_{i=1}^n B_i^k$ in the theorem for all $i \in [n]$. Thus

$$840 \quad 841 \quad \mathbb{E}_k \left[\|x^{k+1} - x_*^{k+1}\|^2 \right] \leq \left(1 - \frac{\gamma\mu}{2} \right) \|x^k - x_*^k\|^2 + \frac{\gamma^2 \sigma^2}{\sum_{i=1}^n B_i^k}.$$

842 In Algorithm 1, with the chosen weights $\{w_i^k\}$, we wait for the moment when $\sum_{i=1}^n B_i^k > S$. Thus

$$843 \quad 844 \quad \mathbb{E}_k \left[\|x^{k+1} - x_*^{k+1}\|^2 \right] \leq \left(1 - \frac{\gamma\mu}{2} \right) \|x^k - x_*^k\|^2 + \frac{\gamma^2 \sigma^2}{S}.$$

864 Unrolling the recursion and taking the full expectation, we obtain
 865

$$\begin{aligned} 866 \mathbb{E} \left[\|x^{k+1} - x_*^{k+1}\|^2 \right] &\leq \left(1 - \frac{\gamma\mu}{2}\right)^{k+1} \|x^0 - x_*^0\|^2 + \sum_{j=0}^k \left(1 - \frac{\gamma\mu}{2}\right)^j \frac{\gamma^2\sigma^2}{S} \\ 867 \\ 868 \\ 869 \\ 870 \end{aligned}$$

$$\leq \left(1 - \frac{\gamma\mu}{2}\right)^{k+1} \|x^0 - x_*^0\|^2 + \frac{2\gamma\sigma^2}{\mu S}.$$

871 Due the choice of γ , S , and the condition on k , we have $\mathbb{E} \left[\|x^{k+1} - x_*^{k+1}\|^2 \right] \leq \varepsilon$.
 872

873 It is sufficient to run the method for

$$874 \mathcal{O} \left(\frac{L_{\max}}{\mu} \log \frac{R^2}{\varepsilon} \right)$$

875 iterations. In each iteration, the method has to ensure that $\sum_{i=1}^n B_i^k > S$. A sufficient time for that is
 876

$$877 2 \min_{m \in [n]} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{1}{\tau_i} \right)^{-1} \left(1 + \frac{4\sigma^2}{m L_{\max} \varepsilon \mu} \right) \right].$$

878 under the fixed computation model (see Theorem 11 in (Tyurin et al., 2024)). \square
 879

880 **Theorem A.1.** *Consider the assumptions, algorithm, and parameters from Theorem 5.10. Then,
 881 Rennala SGD converges after at most $\bar{t}_{\lceil c \times \frac{L_{\max}}{\mu} \log \frac{R^2}{\varepsilon} \rceil}$ seconds, where the sequence $\{\bar{t}_k\}$ is defined
 882 recursively as $\bar{t}_k :=$*

$$883 \min \left\{ t \geq 0 : \sum_{i=1}^n \left[\int_{\bar{t}_{k-1}}^t v_i(\tau) d\tau \right] \geq \max \left\{ \left\lceil \frac{\sigma^2}{\varepsilon} \right\rceil, 1 \right\} \right\} \quad (10)$$

884 for all $k \geq 1$ ($\bar{t}_0 \equiv 0$), and c is a universal constant.
 885

886 *Proof.* From the proof of Theorem 5.10, we know that it is sufficient to run the method for
 887

$$888 c \times \frac{L_{\max}}{\mu} \log \frac{R^2}{\varepsilon}$$

889 iterations, where c is a universal constant. The method waits the moment when $\sum_{i=1}^n B_i^k > S$ in
 890 each iteration. The workers work in parallel, and for all $i \in [n]$, will calculate
 891

$$892 \left[\int_0^t v_i(\tau) d\tau \right]$$

893 stochastic gradients after t seconds. In total, all workers will calculate $\sum_{i=1}^n \left[\int_0^t v_i(\tau) d\tau \right]$ stochastic
 894 gradients. Hence, the first iteration will end after
 895

$$896 \bar{t}_1 := \min \left\{ t \geq 0 : \sum_{i=1}^n \left[\int_0^t v_i(\tau) d\tau \right] \geq 2S \right\},$$

897 seconds. After that, the second iteration starts before time \bar{t}_1 and ends at least at time
 898

$$899 \bar{t}_2 := \min \left\{ t \geq 0 : \sum_{i=1}^n \left[\int_{\bar{t}_1}^t v_i(\tau) d\tau \right] \geq 2S \right\},$$

900 because worker i can calculate at least
 901

$$902 \left[\int_{\bar{t}_1}^t v_i(\tau) d\tau \right]$$

903 stochastic gradients between the end of the first iteration and a time t . Using the same reasoning, we
 904 can recursively define
 905

$$\bar{t}_3, \dots, \bar{t}_{\lceil c \times \frac{L_{\max}}{\mu} \log \frac{R^2}{\varepsilon} \rceil}.$$

906 The algorithm will converge after $\bar{t}_{\lceil c \times \frac{L_{\max}}{\mu} \log \frac{R^2}{\varepsilon} \rceil}$ seconds due to the discussion at the beginning of
 907 the theorem. \square

918 **Theorem 5.8.** Consider the **Weighted SGD** method. Let us fix any $\varepsilon, L_{\max}, R, \mu, \sigma^2 > 0$ such that
 919 $\mu < L_{\max}/(2n)$, $\varepsilon < 0.01$, and $R > 10$. For all $B_1, \dots, B_n \geq 0$ and any possible choice of weights
 920 $\{w_i(B_1, \dots, B_n)\}$ as functions of B_1, \dots, B_n , there exist functions $\{f_i\}$ and stochastic gradients
 921 $\{\nabla f_i(\cdot; \cdot)\}$ such that $\{f_i\}$ satisfy Assumptions 5.1, 5.3, 5.4, and 5.7 (do not satisfy Assumption 5.6
 922 in general), f satisfies Assumptions 5.2 and 1.1 with $L = L_{\max}$, $\{\nabla f_i(\cdot; \cdot)\}$ satisfy Assumption 1.2
 923 such that the method requires at least

$$924 \Omega\left(\left(\frac{1}{n} \sum_{i=1}^n \tau_i\right) \frac{\sigma^2}{\varepsilon n \mu^2} \log\left(\frac{R^2}{\varepsilon}\right)\right)$$

925 seconds to find ε -solution in terms of distances to the solution set, when the method starts at a point
 926 in a distance less or equal to R to the closest solution.

927 *Proof.* If $w_i(B_1, \dots, B_n) \times B_i = 1$ for all $i \in [n]$, then it is true since the method reduces to Malenia
 928 SGD. Assume that there exists a combination B_1, \dots, B_n such that $w_i(B_1, \dots, B_n) \times B_i \neq 1$ for
 929 some $i \in [n]$. Let us define the shortcut $w_i(B_1, \dots, B_n) \equiv w_i$ and fix this combination. Let us
 930 find the index of the weight with the smallest value, i.e., $j = \arg \min_{i \in [n]} w_i B_i$. Without loss of
 931 generality, assume that $j = 1$.

932 For all $i \in [n]$, we take the quadratic function $f_i : \mathbb{R}^2 \rightarrow \mathbb{R}$ such that $f_i(x, y) = 0.5L_{\max}y^2$ for all
 933 $i \neq 1$ and $f_1(x, y) = 0.5\mu nx^2 + 0.5L_{\max}y^2$, and the stochastic gradients $\nabla f_i(x, y) + [\xi_i, 0]^\top$ for
 934 all $i \in [n]$, where ξ_1, \dots, ξ_n are i.i.d. gaussian noises from $\mathcal{N}(0, \sigma^2)$.

935 One can easily check that these functions satisfy the assumptions from the theorem. Let us consider
 936 the second argument of the functions and consider Weighted SGD:

$$937 y^{k+1} = y^k - \frac{\gamma}{n} \sum_{i=1}^n w_i B_i L_{\max} y^k = (1 - \gamma L_{\max}) y^k,$$

938 where we simplify due to the agreement $\frac{1}{n} \sum_{i=1}^n w_i B_i = 1$. The sequence y^k converges if $\gamma \leq$
 939 $1/L_{\max}$. It is necessary to assume that $\gamma \leq 1/L_{\max}$. Let us now consider the sequence w.r.t. the first
 940 coordinate:

$$941 x^{k+1} = x^k - \frac{\gamma}{n} \left(w_1 \left(B_1 \mu n x^k + \sum_{j=1}^{B_1} \xi_{1,j}^k \right) + \sum_{i=2}^n w_i \left(\sum_{j=1}^{B_i} \xi_{i,j}^k \right) \right) \\ 942 = (1 - \gamma w_1 B_1 \mu) x^k - \frac{\gamma}{n} \sum_{i=1}^n w_i \left(\sum_{j=1}^{B_i} \xi_{i,j}^k \right).$$

943 Notice that $\frac{1}{n} \sum_{i=1}^n w_i \left(\sum_{j=1}^{B_i} \xi_{i,j}^k \right) \sim \mathcal{N}(0, \frac{1}{n^2} \sum_{i=1}^n w_i^2 B_i \sigma^2)$. Therefore

$$944 \mathbb{E}_k [|x^{k+1}|^2] = (1 - \gamma w_1 B_1 \mu)^2 |x^k|^2 + \frac{\gamma^2}{n^2} \sum_{i=1}^n w_i^2 B_i \sigma^2.$$

945 Necessarily, $w_1 B_1 > 0$. Otherwise, $\mathbb{E}[|x^{k+1}|^2] \geq \mathbb{E}[|x^k|^2] \geq |x^0|^2$ for all $k \geq 1$. Unrolling the
 946 recursion and taking the full expectation, we obtain

$$947 \mathbb{E}[|x^{k+1}|^2] = (1 - \gamma w_1 B_1 \mu)^{2k} |x^0|^2 + \sum_{j=0}^k (1 - \gamma w_1 B_1 \mu)^j \frac{\gamma^2}{n^2} \sum_{i=1}^n w_i^2 B_i \sigma^2$$

948 Since $\frac{1}{n} \sum_{i=1}^n w_i B_i = 1$ and $\gamma \leq 1/L_{\max} < 1/(2n\mu)$, we have $0 < \gamma w_1 B_1 \mu \leq 1/2$ and

$$949 \mathbb{E}[|x^{k+1}|^2] = (1 - \gamma w_1 B_1 \mu)^{2k} |x^0|^2 + \frac{1 - (1 - \gamma w_1 B_1 \mu)^{k+1}}{w_1 B_1} \frac{\gamma}{n^2 \mu} \sum_{i=1}^n w_i^2 B_i \sigma^2. \quad (12)$$

950 In order to ensure that $\mathbb{E}[|x^{k+1}|^2] \leq \varepsilon$, Weighted SGD should do at least

$$951 k \geq \frac{1}{2 \log(1 - \gamma w_1 B_1 \mu)} \log\left(\frac{\varepsilon}{|x^0|^2}\right) \geq \frac{1}{4\gamma w_1 B_1 \mu} \log\left(\frac{|x^0|^2}{\varepsilon}\right) \quad (13)$$

972 steps to get $(1 - \gamma w_1 B_1 \mu)^{2k} |x^0|^2 \leq \varepsilon$. Note that $k \geq 1$ because $|x^0|^2 \geq 1$ and $\varepsilon \leq 0.01$. Thus we
973 can bound the second term in (12) in the following way:
974

$$975 \frac{1 - (1 - \gamma w_1 B_1 \mu)^{k+1}}{w_1 B_1} \frac{\gamma}{n^2 \mu} \sum_{i=1}^n w_i^2 B_i \sigma^2 \geq \frac{1}{2w_1 B_1} \frac{\gamma}{n^2 \mu} \sum_{i=1}^n w_i^2 B_i \sigma^2$$

977 because $(1 - \gamma w_1 B_1 \mu)^k \leq \sqrt{\frac{\varepsilon}{|x^0|^2}} \leq \frac{1}{2}$. Therefore, it is necessary in the algorithm choose the
978 parameters in a such way that $\frac{1}{2w_1 B_1} \frac{\gamma}{n^2 \mu} \sum_{i=1}^n w_i^2 B_i \sigma^2 \leq \varepsilon$. Using this bound and (13), we obtain
979

$$981 k \geq \frac{\sigma^2}{8B_1^2 \varepsilon n^2 \mu^2} \sum_{i=1}^n \frac{w_i^2}{w_1^2} B_i \log \left(\frac{|x^0|^2}{\varepsilon} \right) = \frac{\sigma^2}{8\varepsilon n \mu^2} \frac{1}{n} \sum_{i=1}^n \frac{w_i^2 B_i^2}{w_1^2 B_1^2} \frac{1}{B_i} \log \left(\frac{|x^0|^2}{\varepsilon} \right).$$

984 Recall that $w_1^2 B_1^2 \leq w_i^2 B_i^2$ for all $i \in [n]$. Thus, the algorithm has to do

$$985 k \geq \frac{\sigma^2}{8\varepsilon n \mu^2} \frac{1}{n} \sum_{i=1}^n \frac{1}{B_i} \log \left(\frac{|x^0|^2}{\varepsilon} \right).$$

988 steps. Taking $x^0 = R/\sqrt{2}$ and $y^0 = R/\sqrt{2}$, we get $\mathbb{E} [|x^k|^2 + |y^k|^2] \geq \varepsilon$ and
989

$$990 \mathbb{E} [f(x^k, y^k)] = \mathbb{E} [0.5\mu \times (x^k)^2 + 0.5L_{\max} \times (y^k)^2] \geq 0.5\mu\varepsilon$$

991 for all

$$993 k < \frac{\sigma^2}{8\varepsilon n \mu^2} \frac{1}{n} \sum_{i=1}^n \frac{1}{B_i} \log \left(\frac{|x^0|^2}{\varepsilon} \right).$$

995 Under the fixed computation model, $B_i = \left\lfloor \frac{t^*}{\tau_i} \right\rfloor$, where t^* is the time of one iteration. We can
996 conclude that the required total time is at least
997

$$998 t^* \times \frac{\sigma^2}{8\varepsilon n \mu^2} \frac{1}{n} \sum_{i=1}^n \frac{1}{B_i} \log \left(\frac{|x^0|^2}{\varepsilon} \right) \geq \frac{\sigma^2}{8\varepsilon n \mu^2} \frac{1}{n} \sum_{i=1}^n \tau_i \log \left(\frac{|x^0|^2}{\varepsilon} \right).$$

1001 \square

1003 **Theorem 5.5.** Consider the **Weighted SGD** method. Let us fix any $\varepsilon, L_{\max}, R, \mu, \sigma^2 > 0$ such that
1004 $\mu < L_{\max}/(2n)$, $\varepsilon < 0.01$, and $R > 10$. For all $B_1, \dots, B_n \geq 0$ and any possible choice of weights
1005 $\{w_i(B_1, \dots, B_n)\}$ as functions of B_1, \dots, B_n , there exist functions $\{f_i\}$ and stochastic gradients
1006 $\{\nabla f_i(\cdot; \cdot)\}$ such that $\{f_i\}$ satisfy Assumptions 5.1, 5.3, and 5.4, f satisfies Assumptions 5.2 and 1.1
1007 with $L = L_{\max}$, $\{\nabla f_i(\cdot; \cdot)\}$ satisfy Assumption 1.2 such that the method requires at least

$$1008 \Omega \left(\left(\frac{1}{n} \sum_{i=1}^n \tau_i \right) \frac{\sigma^2}{\varepsilon n \mu^2} \log \left(\frac{R^2}{\varepsilon} \right) \right)$$

1010 seconds to find ε -solution in terms of distances to the solution set, when the method starts at a point
1011 in a distance less or equal to R to the closest solution.
1012

1013 *Proof.* The theorem is a simple corollary of Theorem 5.8 because Theorem 5.8 is stated under more
1014 strict assumptions on the class of the functions and stochastic gradients. The result of Theorem 5.8
1015 holds even under additional Assumption 5.7. \square

1017 **Theorem 5.9.** Consider the **Weighted SGD** method. Let us fix any $\varepsilon, L_{\max}, R, \sigma^2 > 0$ such that
1018 $\mu < L_{\max}/(2n)$, $\varepsilon < 0.01$, and $R > 10$. For all $B_1, \dots, B_n \geq 1$ and any possible choice of weights
1019 $\{w_i(B_1, \dots, B_n)\}$ as functions of B_1, \dots, B_n , there exist functions $\{f_i\}$ and stochastic gradients
1020 $\{\nabla f_i(\cdot; \cdot)\}$ such that $\{f_i\}$ satisfy Assumptions 5.1, 5.3, 5.4, and 5.6 (**do not satisfy Assumption 5.7**
1021 **in general**), f satisfy Assumptions 5.2 and 1.1 with $L = L_{\max}$, $\{\nabla f_i(\cdot; \cdot)\}$ satisfy Assumption 1.2,
1022 such that the method requires at least

$$1023 \Omega \left(\left(\frac{1}{n} \sum_{i=1}^n \tau_i \right) \frac{\sigma^2}{\varepsilon n \mu^2} \log \left(\frac{R^2}{\varepsilon} \right) \right)$$

1025 seconds to find ε -solution in terms of distances to the solution set, when the method starts at a point
in a distance less or equal to R to the closest solution.

1026 *Proof.* Let us define the shortcut $w_i(B_1, \dots, B_n) \equiv w_i$. In this construction, we consider the function
1027 $f_i : \mathbb{R}^2 \rightarrow \mathbb{R}$ such that
1028

$$1029 \quad 1030 \quad 1031 \quad f_i(x, y) = \frac{\frac{\mu}{B_i}}{\frac{2}{n} \sum_{i=1}^n \frac{1}{B_i}} x^2 + \frac{L_{\max}}{2} y^2.$$

1032 and the stochastic gradients $\nabla f_i(x, y) + [\xi_i, 0]^\top$ for all $i \in [n]$, where ξ_1, \dots, ξ_n are i.i.d. gaussian
1033 noises from $\mathcal{N}(0, \sigma^2)$. One can easily check that the assumptions from the theorem hold. Using the
1034 same reasoning as in the proof of Theorem 5.8, we have to take $\gamma \leq 1/L_{\max}$. Next, we consider the
1035 sequence of Weighted SGD w.r.t. the first argument:

$$1036 \quad 1037 \quad 1038 \quad x^{k+1} = x^k - \gamma \left(\frac{\sum_{i=1}^n w_i \mu}{\sum_{i=1}^n \frac{1}{B_i}} x^k + \frac{1}{n} \sum_{i=1}^n w_i \left(\sum_{j=1}^{B_i} \xi_{i,j}^k \right) \right) \\ 1039 \quad 1040 \quad 1041 \quad = \left(1 - \gamma \mu \frac{\sum_{i=1}^n w_i}{\sum_{i=1}^n \frac{1}{B_i}} \right) x^k - \frac{\gamma}{n} \sum_{i=1}^n w_i \left(\sum_{j=1}^{B_i} \xi_{i,j}^k \right).$$

1043 Note that $\frac{\sum_{i=1}^n w_i}{\sum_{i=1}^n \frac{1}{B_i}} \leq \sum_{i=1}^n w_i B_i = n$ due to $\frac{1}{n} \sum_{i=1}^n w_i B_i = 1$, and $\gamma \leq 1/L_{\max} \leq 1/(2n\mu)$.
1044 Using the same reasoning as in the proof of Theorem 5.8, we get
1045

$$1046 \quad 1047 \quad 1048 \quad 1049 \quad 1050 \quad \mathbb{E} [|x^{k+1}|^2] = \left(1 - \gamma \mu \frac{\sum_{i=1}^n w_i}{\sum_{i=1}^n \frac{1}{B_i}} \right)^{2k} |x^0|^2 + \frac{1 - \left(1 - \gamma \mu \frac{\sum_{i=1}^n w_i}{\sum_{i=1}^n \frac{1}{B_i}} \right)^{k+1}}{\frac{\sum_{i=1}^n w_i}{\sum_{i=1}^n \frac{1}{B_i}}} \frac{\gamma}{n^2 \mu} \sum_{i=1}^n w_i^2 B_i \sigma^2. \quad (14)$$

1051 Weighted SGD should do at least

$$1053 \quad 1054 \quad 1055 \quad 1056 \quad k \geq \frac{1}{4\gamma\mu \frac{\sum_{i=1}^n w_i}{\sum_{i=1}^n \frac{1}{B_i}}} \log \left(\frac{|x^0|^2}{\varepsilon} \right) \quad (15)$$

1057 steps to get $\left(1 - \gamma \mu \frac{\sum_{i=1}^n w_i}{\sum_{i=1}^n \frac{1}{B_i}} \right)^{2k} |x^0|^2 \leq \varepsilon$. The parameters should satisfy the inequality
1058

$$1060 \quad 1061 \quad 1062 \quad \frac{1}{\frac{\sum_{i=1}^n w_i}{\sum_{i=1}^n \frac{1}{B_i}}} \frac{\gamma}{2n^2 \mu} \sum_{i=1}^n w_i^2 B_i \sigma^2 \leq \varepsilon$$

1063 to ensure that $\mathbb{E} [|x^{k+1}|^2] \leq \varepsilon$ for some $k \geq 0$. Combining this inequality with (15), we get
1064

$$1066 \quad 1067 \quad 1068 \quad k \geq \left(\sum_{i=1}^n \frac{1}{B_i} \right)^2 \frac{\sigma^2}{8n^2 \mu^2 \varepsilon} \frac{\sum_{i=1}^n w_i^2 B_i}{(\sum_{i=1}^n w_i)^2} \log \left(\frac{|x^0|^2}{\varepsilon} \right).$$

1069 It is left to use the Cauchy–Schwarz inequality $\frac{\sum_{i=1}^n w_i^2 B_i}{(\sum_{i=1}^n w_i)^2} \geq \left(\sum_{i=1}^n \frac{1}{B_i} \right)^{-1}$ to ensure that the
1070 method will not find an ε –solution in terms of the distance to the solution $x_* = 0$ before
1071

$$1073 \quad 1074 \quad 1075 \quad \frac{1}{8} \frac{\sigma^2}{\varepsilon n \mu^2} \left(\frac{n}{\sum_{i=1}^n \frac{1}{B_i}} \right)^{-1} \log \left(\frac{|x^0|^2}{\varepsilon} \right)$$

1076 steps. Since $f(x) = \frac{\mu}{2} x^2 + \frac{L_{\max}}{2} y^2$, the method will need at least
1077

$$1078 \quad 1079 \quad \frac{1}{16} \frac{\sigma^2}{\varepsilon n \mu} \left(\frac{n}{\sum_{i=1}^n \frac{1}{B_i}} \right)^{-1} \log \left(\frac{\mu |x^0|^2}{\varepsilon} \right)$$

1080 **Protocol 2** Time Multiple Oracles Protocol

1081 1: **Input:** function(s) $f \in \mathcal{F}$, oracles and distributions $((O_1, \dots, O_n), (\mathcal{D}_1, \dots, \mathcal{D}_n)) \in \mathcal{O}(f)$,
 1082 algorithm $A \in \mathcal{A}$

1083 2: $s_i^0 = 0$ for all $i \in [n]$

1084 3: **for** $k = 0, \dots, \infty$ **do**

1085 4: $(t^{k+1}, i^{k+1}, x^k) = A^k(g^1, \dots, g^k)$, $\triangleright t^{k+1} \geq t^k$

1086 5: $(s_{i^{k+1}}^{k+1}, g^{k+1}) = O_{i^{k+1}}(t^{k+1}, x^k, s_{i^{k+1}}^k, \xi^{k+1})$, $\xi^{k+1} \sim \mathcal{D}_{i^{k+1}}$ $\triangleright s_j^{k+1} = s_j^k \quad \forall j \neq i^{k+1}$

1087 6: **end for**

1088

1089 iterations to find an ε -solution in terms of function values. As in the proof of Theorem 5.8, it is
 1090 sufficient to take $x^0 = R/\sqrt{2}$ and $y^0 = R/\sqrt{2}$. Under the fixed computation model, $B_i = \left\lfloor \frac{t^*}{\tau_i} \right\rfloor$,
 1091 where t^* is the time of one iteration. We can conclude that the required total time is at least
 1092

1093
$$t^* \times \frac{1}{16} \frac{\sigma^2}{\varepsilon n \mu} \left(\frac{n}{\sum_{i=1}^n \frac{1}{B_i}} \right)^{-1} \log \left(\frac{\mu |x^0|^2}{\varepsilon} \right) \geq \frac{1}{16} \frac{\sigma^2}{\varepsilon n \mu} \frac{1}{n} \sum_{i=1}^n \tau_i \log \left(\frac{\mu |x^0|^2}{\varepsilon} \right).$$

□

1094 **C AUXILIARY RESULTS**

1095

1096 In this section, we present well-known results from optimization.

1097 **Lemma C.1** (Nesterov (2018)). *Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be a function, which L -smooth and convex. Then
 1098 for all $x, y \in \mathbb{R}^d$ we have:*

1099
$$\|\nabla f(x) - \nabla f(y)\|^2 \leq L \langle \nabla f(x) - \nabla f(y), x - y \rangle. \quad (16)$$

1100 **Lemma C.2** (Karimi et al. (2016)). *Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be a convex function, which satisfies PL condition
 1101 with a parameter μ (Assumption 5.2). Then, for all $x \in \mathbb{R}^d$, we have*

1102
$$\langle \nabla f(x), x - \bar{x}_* \rangle \geq \frac{\mu}{2} \|\bar{x}_* - x\|^2 \quad (17)$$

1103 where \bar{x}_* is the projection of x onto the solution set of $\min_{x \in \mathbb{R}^d} f(x)$.

1104 **D LOWER BOUND IN THE HETEROGENEOUS CONVEX SETTING**

1105

1106 This section complements the results from (Tyurin & Richtárik, 2023), where the authors only
 1107 prove the optimal time complexities in the *homogeneous nonconvex*, *heterogeneous nonconvex*, and
 1108 *homogeneous convex* settings. Here, we resolve the last piece, the *heterogeneous convex* setting.
 1109 Following Tyurin & Richtárik (2023), we have to formalize and introduce the following protocol and
 1110 classes.

1111 We investigate the optimization problem (1) when the function f is convex. For the convex case,
 1112 using Protocol 2, we use the complexity measure

1113
$$\mathbf{m}_{\text{time}}(\mathcal{A}, \mathcal{F}) := \inf_{A \in \mathcal{A}} \sup_{f \in \mathcal{F}} \sup_{(O, \mathcal{D}) \in \mathcal{O}(f)} \inf \left\{ t \geq 0 \mid \mathbb{E} \left[\inf_{k \in S_t} f(x^k) \right] - \inf_{x \in Q} f(x) \leq \varepsilon \right\}, \quad (18)$$

1114 $S_t := \{k \in \mathbb{N}_0 \mid t^k \leq t\},$

1115 where the sequences t^k and x^k are generated by Protocol 2, and Q is a convex set. Let us take any set
 1116 Q , and consider the following class of convex functions.

1117 **Definition D.1** (Function Class $\mathcal{F}_{Q,L,M}^{\text{conv}}$).

1118 We assume that a function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is convex, differentiable, L -smooth on the set Q , i.e.,

1119
$$\|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\| \quad \forall x, y \in Q,$$

1120 and M -Lipschitz on the set Q , i.e.,

1121
$$|f(x) - f(y)| \leq M \|x - y\| \quad \forall x, y \in Q.$$

1122 A set of all functions with such properties we define as $\mathcal{F}_{Q,L,M}^{\text{conv}}$.

1134 **Definition D.2** (Algorithm Class \mathcal{A}_{zx}).

1135 An algorithm $A = \{A^k\}_{k=0}^\infty$ is a sequence such that

1136
$$A^k : \underbrace{\mathbb{R}^d \times \cdots \times \mathbb{R}^d}_{k \text{ times}} \rightarrow \mathbb{R}_{\geq 0} \times \mathbb{R}^d \quad \forall k \geq 1, A^0 \in \mathbb{R}_{\geq 0} \times \mathbb{R}^d,$$

1139 and, for all $k \geq 1$ and $g^1, \dots, g^k \in \mathbb{R}^d$, $t^{k+1} \geq t^k$, where t^{k+1} and t^k are defined as $(t^{k+1}, \cdot) =$
1140 $A^k(g^1, \dots, g^k)$ and $(t^k, \cdot) = A^{k-1}(g^1, \dots, g^{k-1})$.

1141 The following oracle helps to formalize the fixed computation model.

1142

1143
$$O_\tau^{\nabla f} : \underbrace{\mathbb{R}_{\geq 0}}_{\text{time}} \times \underbrace{\mathbb{R}^d}_{\text{point}} \times \underbrace{(\mathbb{R}_{\geq 0} \times \mathbb{R}^d \times \{0, 1\})}_{\text{input state}} \times \mathbb{S}_\xi \rightarrow \underbrace{(\mathbb{R}_{\geq 0} \times \mathbb{R}^d \times \{0, 1\})}_{\text{output state}} \times \mathbb{R}^d$$

1144

1145 such that $O_\tau^{\nabla f}(t, x, (s_t, s_x, s_q), \xi) = \begin{cases} ((t, x, 1), 0), & s_q = 0, \\ ((s_t, s_x, 1), 0), & s_q = 1 \text{ and } t < s_t + \tau, \\ ((0, 0, 0), \nabla f(s_x; \xi)), & s_q = 1 \text{ and } t \geq s_t + \tau, \end{cases}$

1146

1147

1148 and $\nabla f(\cdot, \cdot)$ is a stochastic mapping.

1149

1150 **Definition D.3** (Oracle Class $\mathcal{O}_{\tau_1, \dots, \tau_n}^{\text{conv}, \sigma^2}$).

1151 Let us consider an oracle class such that, for any $f \in \mathcal{F}_{Q, L, M}^{\text{conv}}$, it returns oracles $O_i = O_{\tau_i}^{\nabla f_i}$ and
1152 distributions \mathcal{D}_i for all $i \in [n]$, where $\nabla f_i(\cdot, \cdot)$ is an unbiased σ^2 -variance-bounded mapping on the
1153 set Q of the gradient of the local function in worker i . The oracles $O_{\tau_i}^{\nabla f_i}$ are defined in (19). We
1154 define such oracle class as $\mathcal{O}_{\tau_1, \dots, \tau_n}^{\text{conv}, \sigma^2}$. Without loss of generality, we assume that $0 < \tau_1 \leq \dots \leq \tau_n$.

1155

1156 Notice that this oracle class differs from the oracle class for convex functions in (Tyurin & Richtárik,
1157 2023) because we consider the heterogeneous setting where the oracles return unbiased stochastic
1158 gradients of the local functions f_i , which can be different. We refer the reader to (Tyurin & Richtárik,
1159 2023) for additional details about the time complexities formalization. We are now ready to state the
1160 theorem.

1161

1162 **Theorem D.4** (Informal theorem (see the formal Theorem D.5)). *Let Assumptions 5.1, 1.1, and 1.2
1163 hold. It is impossible to converge faster than*

1164

1165

1166
$$\Theta \left(\tau_n \sqrt{L}R / \sqrt{\varepsilon} + \left(1/n \sum_{i=1}^n \tau_i \right) \sigma^2 R^2 / n\varepsilon^2 \right)$$

1167

1168 *seconds under the fixed computation model.*

1169

1170 **Theorem D.5.** *Let us consider the oracle class $\mathcal{O}_{\tau_1, \dots, \tau_n}^{\text{conv}, \sigma^2}$ for some $\sigma^2 > 0$ and $0 < \tau_1 \leq \dots \leq \tau_n$.*

1171 *We fix any $R, L, M, \varepsilon > 0$ such that $\sqrt{L}R > c_1 \sqrt{\varepsilon} > 0$ and $\sigma^2 \geq M^2$. In the view Protocol 2, for
1172 any algorithm $A \in \mathcal{A}_{\text{zx}}$, there exists a set Q , a function $f \in \mathcal{F}_{Q, L, M}^{\text{conv}}$ and oracles and distributions*

1173 *$((O_1, \dots, O_n), (\mathcal{D}_1, \dots, \mathcal{D}_n)) \in \mathcal{O}_{\tau_1, \dots, \tau_n}^{\text{conv}, \sigma^2}(f)$ such that*

1174

1175

1176
$$\mathbb{E} \left[\inf_{k \in S_t} f(x^k) \right] - \inf_{x \in Q} f(x) > \varepsilon,$$

1177

1178

1179 where $S_t := \{k \in \mathbb{N}_0 \mid t^k \leq t\}$,

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1188 to put a “hard” convex function (Nesterov, 2018; Woodworth et al., 2018) to the slowest worker
 1189 corresponding with the time $\tau_n = \max_{i \in [n]} \tau_i$. In particular, we can consider the “hard” quadratic
 1190 function \bar{f} from (Nesterov, 2018)[Section 2.1.2] and take the functions
 1191

$$1192 \quad f_i(x) = \begin{cases} n \times \bar{f}(x), & i = n \\ 1193 \quad 0, & i < n. \end{cases}$$

1194 for all $x \in \mathbb{R}^d$. The function $f = \frac{1}{n} \sum_{i=1}^n f_i = \bar{f}$ belongs to the class $\mathcal{F}_{Q,L,\infty}^{\text{conv}}$. We take the stochastic
 1195 gradients without noise, i.e., $\nabla f_i(x; \xi_i) = \nabla \bar{f}(x)$ deterministically for all $x \in \mathbb{R}^d$, $\xi_i \in \mathbb{S}_{\xi_i}$, and
 1196 $i \in [n]$. It is clear that the only worker that can solve the problem is worker n , and it takes τ_n seconds
 1197 to find one gradient by the oracle construction. Thus, the required time complexity is $\Theta\left(\tau_n \frac{\sqrt{L}R}{\sqrt{\varepsilon}}\right)$
 1198 since the required oracle complexity is $\Theta\left(\frac{\sqrt{L}R}{\sqrt{\varepsilon}}\right)$ (Nesterov, 2018). One can get $\Theta\left(\tau_n \frac{M^2R^2}{\varepsilon^2}\right)$ using
 1199 the same reasoning.
 1200

1201 *Second term.* The proof of the second term is slightly trickier and uses the construction from
 1202 (Woodworth et al., 2018). Let us fix any algorithm. We use the proof of Lemma 10 from (Woodworth
 1203 et al., 2018) that has the following result. For any $\sigma^2, B > 0$ and any algorithm, it is possible to
 1204 construct a *one dimensional linear* function $g : \mathbb{R} \rightarrow \mathbb{R}$ on the domain $\{x \in \mathbb{R} : |x| \leq B\}$, a
 1205 stochastic gradient mapping $\nabla g : \mathbb{R} \times \mathbb{S}_\xi \rightarrow \mathbb{R}$, and a distribution \mathcal{D} such that
 1206

$$1207 \quad \mathbb{E}[g(x^N)] - \min_{|x| \leq B} g(x) \geq \frac{\sigma B}{8\sqrt{N}} \quad (20)$$

1208 after N queries of the oracle, where ∇g is unbiased and σ^2 -variance-bounded.
 1209

1210 The idea is to put g to each worker but with different domain sizes. In particular, for all $i \in [n]$, we
 1211 take the function $f_i : \mathbb{R}^n \rightarrow \mathbb{R}$ such that
 1212

$$1213 \quad f_i(x) = g(x_i), \quad (21)$$

1214 where g is the function from Lemma 10 of (Woodworth et al., 2018), and x_i is the i^{th} coordinate of
 1215 a vector x . For all $i \in [n]$, we consider the function f_i on the domain $\{x_i \in \mathbb{R} \mid |x_i| \leq R_i\}$, where
 1216 $R_i := R \times \frac{\sqrt{\tau_i}}{\sqrt{\sum_{i=1}^n \tau_i}}$. One can see that f is convex, 0-smooth (because g is linear), and M -Lipschitz
 1217 (because $\sigma \leq M$). The distance between 0 and the optimal point is less or equal to R because
 1218

$$1219 \quad \sum_{i=1}^n R_i^2 = \sum_{i=1}^n R^2 \frac{\tau_i}{\sum_{i=1}^n \tau_i} = R^2$$

1220 and the optimal point for the problem $g(x_i) \rightarrow \min_{|x_i| \leq R_i}$ is either R_i or $-R_i$. We take
 1221

$$1222 \quad Q = \{x \in \mathbb{R}^n : |x_i| \leq R_i \quad \forall i \in [n]\}.$$

1223 Let us define the time
 1224

$$1225 \quad \bar{t} := \frac{\sigma^2 R^2}{256n\varepsilon^2} \left(\frac{1}{n} \sum_{i=1}^n \tau_i \right). \quad (22)$$

1226 By the time \bar{t} , worker i can calculate at most
 1227

$$1228 \quad N_i := \left\lfloor \frac{\bar{t}}{\tau_i} \right\rfloor \quad (23)$$

1229 stochastic gradients. Therefore,
 1230

$$1231 \quad \mathbb{E}[f(\bar{x})] - \min_{x \in Q} f(x) = \frac{1}{n} \sum_{i=1}^n \left(\mathbb{E}[g(\bar{x}_i)] - \min_{|x_i| \leq B_i} g(\bar{x}_i) \right) \stackrel{(20)}{\geq} \frac{1}{n} \sum_{i=1}^n \frac{\sigma R_i}{8\sqrt{N_i}} \\ 1232 \\ 1233 \quad = \frac{1}{n} \sum_{i=1}^n \frac{\sigma R \sqrt{\tau_i}}{8\sqrt{N_i} \sqrt{\sum_{i=1}^n \tau_i}} \stackrel{(22),(23)}{\geq} \sum_{i=1}^n \frac{2\varepsilon \tau_i}{\sum_{i=1}^n \tau_i} = 2\varepsilon.$$

1234 where $\bar{x} \in \mathbb{R}^n$ is any possible output of the algorithm before the time \bar{t} .
 1235

□

1242 **E PROOF OF THEOREMS E.1 AND E.2**
1243

1244 **Theorem E.1.** *Let Assumptions 5.1, 5.2, 1.2, 1.1 hold, and the functions $\{f_i\}$ are equal. Let us take*
1245 *$\gamma = 1/L$ and $S = 4\sigma^2/\mu L\varepsilon$, then Rennala SGD (Algorithm 1 with $w_i^k = n/\sum_{i=1}^n B_i^k$) finds x^{k+1} such*
1246 *that $\mathbb{E} [\|x^{k+1} - x_*^{k+1}\|^2] \leq \varepsilon$ after*
1247

$$1248 \quad 1249 \quad 1250 \quad \mathcal{O} \left(\min_{m \in [n]} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{1}{\tau_i} \right)^{-1} \left(\frac{L}{\mu} + \frac{\sigma^2}{m\varepsilon\mu^2} \right) \right] \log \frac{R^2}{\varepsilon} \right) \quad (24)$$

1251 *seconds, where x_*^{k+1} is the closest solution to x^{k+1} .*

1253 *Proof.* Since the functions are equal, Rennala SGD is equivalent to

$$1255 \quad x^{k+1} = x^k - \gamma g_R^k, \\ 1256 \quad g_R^k := \frac{1}{\sum_{i=1}^n B_i^k} \sum_{i=1}^n \sum_{j=1}^{B_i^k} \nabla f(x^k; \xi_{ij}^k).$$

1259 Clearly, g_R^k is unbiased and

$$1261 \quad 1262 \quad 1263 \quad \mathbb{E}_k [\|g_R^k - \nabla f(x^k)\|^2] = \left(\sum_{i=1}^n B_i^k \right)^{-2} \sum_{i=1}^n \sum_{j=1}^{B_i^k} \mathbb{E}_k [\|\nabla f(x^k; \xi_{ij}^k) - \nabla f(x^k)\|^2] \leq \sigma^2 \left(\sum_{i=1}^n B_i^k \right)^{-1}.$$

1265 Rennala SGD waits for the moment when $\sum_{i=1}^n B_i^k > S$ (see Alg. 1 with $w_i^k = n/\sum_{i=1}^n B_i^k$). Thus

$$1266 \quad 1267 \quad 1268 \quad \mathbb{E}_k [\|g_R^k - \nabla f(x^k)\|^2] \leq \frac{\sigma^2}{S} \leq \frac{\mu L \varepsilon}{4}$$

1269 We can use Theorem E.3 to get

$$1270 \quad 1271 \quad 1272 \quad \mathbb{E} [\|x^{k+1} - x_*^{k+1}\|^2] \leq \left(1 - \frac{\gamma\mu}{2} \right)^{k+1} \|x^0 - x_*^k\|^2 + \frac{\gamma L \varepsilon}{2}.$$

1273 Since $\gamma = \frac{1}{L}$, we obtain

$$1274 \quad 1275 \quad 1276 \quad \mathbb{E} [\|x^{k+1} - x_*^{k+1}\|^2] \leq \left(1 - \frac{\mu}{2L} \right)^{k+1} \|x^0 - x_*^k\|^2 + \frac{\varepsilon}{2}.$$

1277 The last inequality ensure that the method finds an ε -solution after

$$1278 \quad 1279 \quad 1280 \quad \mathcal{O} \left(\frac{L}{\mu} \right)$$

1281 iterations. In each iteration, the method has to ensure that $\sum_{i=1}^n B_i^k > S$. A sufficient time for that is

$$1283 \quad 1284 \quad 1285 \quad 2 \min_{m \in [n]} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{1}{\tau_i} \right)^{-1} (1 + S) \right].$$

1286 under the fixed computation model (see Theorem 11 in (Tyurin et al., 2024)). It is left to multiply this
1287 time by $\mathcal{O} \left(\frac{L}{\mu} \right)$. \square

1289 **Theorem E.2.** *Let Assumptions 5.1, 5.2, 1.2, 1.1 hold. Let us take $\gamma = 1/L$ and $S = 4\sigma^2/\mu L\varepsilon$, then*
1290 *Malenia SGD (Algorithm 1 with $w_i^k = 1/B_i^k$) finds x^{k+1} such that $\mathbb{E} [\|x^{k+1} - x_*^{k+1}\|^2] \leq \varepsilon$ after*

$$1293 \quad 1294 \quad 1295 \quad \mathcal{O} \left(\left[\tau_n \frac{L}{\mu} + \left(\frac{1}{n} \sum_{i=1}^n \tau_i \right) \frac{\sigma^2}{n\varepsilon\mu^2} \right] \log \frac{R^2}{\varepsilon} \right) \quad (25)$$

seconds, where x_*^{k+1} is the closest solution to x^{k+1} .

1296 *Proof.* The proof of this theorem almost repeats the proof of Theorem E.1. The variance of Malenia
 1297 SGD is

$$1299 \mathbb{E}_k \left[\|g_M^k - \nabla f(x^k)\|^2 \right] = \mathbb{E}_k \left[\left\| \frac{1}{n} \sum_{i=1}^n \frac{1}{B_i^k} \sum_{j=1}^{B_i^k} \nabla f_i(x^k; \xi_{ij}^k) - \nabla f(x^k) \right\|^2 \right] \leq \frac{\sigma^2}{n} \left(\frac{1}{n} \sum_{j=1}^n \frac{1}{B_i^k} \right).$$

1303 The method waits for the moment when $\left(\frac{1}{n} \sum_{i=1}^n \frac{1}{B_i^k} \right)^{-1} > \frac{S}{n}$. Therefore

$$1305 \mathbb{E}_k \left[\|g_M^k - \nabla f(x^k)\|^2 \right] \leq \frac{\sigma^2}{S}.$$

1307 Using the same reasoning, the method finds an ε -solution after

$$1309 \mathcal{O} \left(\frac{L}{\mu} \right)$$

1311 iterations. In each iteration, the method has to ensure that $\left(\frac{1}{n} \sum_{i=1}^n \frac{1}{B_i^k} \right)^{-1} > \frac{S}{n}$. A sufficient time
 1312 for that is

$$1314 \bar{t} = 2 \left(\tau_n + \left(\frac{1}{n} \sum_{i=1}^n \tau_i \right) \frac{S}{n} \right)$$

1317 under the fixed computation model because the number of computed stochastic gradients $B_i^k \geq \left\lfloor \frac{\bar{t}}{\tau_i} \right\rfloor$,
 1318 and

$$1320 \frac{1}{n} \sum_{i=1}^n \frac{1}{B_i^k} \leq \frac{1}{n} \sum_{i=1}^n \frac{1}{\left\lfloor \frac{\bar{t}}{\tau_i} \right\rfloor} \leq \frac{1}{n} \sum_{i=1}^n \frac{2\tau_i}{\bar{t}} < \frac{n}{S},$$

1323 where we use $\lfloor x \rfloor \geq \frac{x}{2}$ for all $x \geq 1$. Multiplying \bar{t} by $\mathcal{O} \left(\frac{L}{\mu} \right)$, we get the result. \square

1325 **Theorem E.3.** Consider the method

$$1327 x^{k+1} = x^k - \gamma \nabla f(x^k; \xi^k), \quad (26)$$

1328 where $\mathbb{E}_k [\nabla f(x^k; \xi^k)] = \nabla f(x^k)$, $\mathbb{E}_k [\|\nabla f(x^k; \xi^k) - \nabla f(x^k)\|^2] \leq \sigma^2$, and $\sigma^2 > 0$. Let Assumptions 1329 5.1, 5.2, and 1.1 hold. Let us take $\gamma = 1/L$ and $S = 2\sigma^2/\mu L \varepsilon$, then the method finds x^{k+1}
 1330 such that

$$1333 \mathbb{E} \left[\|x^{k+1} - x_*^{k+1}\|^2 \right] \leq \left(1 - \frac{\gamma\mu}{2} \right)^{k+1} \|x^0 - x_*^k\|^2 + \frac{2\gamma\sigma^2}{\mu},$$

1335 where x_*^{k+1} is the closest solution of $\min_{x \in \mathbb{R}^d} f(x)$ to x^{k+1} .

1337 *Proof.* Using the properties of the projection and (26), we have

$$1339 \mathbb{E}_k \left[\|x^{k+1} - x_*^{k+1}\|^2 \right] \leq \mathbb{E}_k \left[\|x^{k+1} - x_*^k\|^2 \right] \\ 1340 = \mathbb{E}_k \left[\|x^k - \gamma \nabla f(x^k; \xi^k) - x_*^k\|^2 \right] \\ 1341 = \mathbb{E}_k \left[\|x^k - x_*^k\|^2 \right] - 2\gamma \mathbb{E}_k [\langle \nabla f(x^k; \xi^k), x^k - x_*^k \rangle] + \gamma^2 \mathbb{E}_k [\|\nabla f(x^k; \xi^k)\|^2] \\ 1343 = \mathbb{E}_k \left[\|x^k - x_*^k\|^2 \right] - 2\gamma \langle \nabla f(x^k), x^k - x_*^k \rangle + \gamma^2 \mathbb{E}_k [\|\nabla f(x^k; \xi^k)\|^2].$$

1346 In the last equality, we use the unbiasedness. Due the variance decomposition equality, we get

$$1348 \mathbb{E}_k \left[\|x^{k+1} - x_*^{k+1}\|^2 \right] \leq \mathbb{E}_k \left[\|x^k - x_*^k\|^2 \right] - 2\gamma \langle \nabla f(x^k), x^k - x_*^k \rangle + \gamma^2 \|\nabla f(x^k)\|^2 + \gamma^2 \mathbb{E}_k [\|\nabla f(x^k; \xi^k) - \nabla f(x^k)\|^2] \quad (27)$$

1350 Since the function f is L -smooth and $\nabla f(x_*^k) = 0$, we obtain
 1351

$$\begin{aligned} 1352 & -2\gamma \langle \nabla f(x^k), x^k - x_*^k \rangle + \gamma^2 \|\nabla f(x^k)\|^2 \\ 1353 & = -2\gamma \langle \nabla f(x^k) - \nabla f(x_*), x^k - x_*^k \rangle + \gamma^2 \|\nabla f(x^k) - \nabla f(x_*)\|^2 \\ 1354 & \leq -2\gamma \langle \nabla f(x^k) - \nabla f(x_*), x^k - x_*^k \rangle + L\gamma^2 \langle \nabla f(x^k) - \nabla f(x_*)^k, x^k - x_*^k \rangle \\ 1355 & = \gamma(L\gamma - 2) \langle \nabla f(x^k) - \nabla f(x_*)^k, x^k - x_*^k \rangle. \\ 1356 \end{aligned}$$

1357 Taking $\gamma \leq \frac{1}{L}$ and substituting the inequality to (27), we get
 1358

$$1360 \mathbb{E}_k \left[\|x^{k+1} - x_*^{k+1}\|^2 \right] \leq \mathbb{E}_k \left[\|x^k - x_*^k\|^2 \right] - \gamma \langle \nabla f(x^k), x^k - x_*^k \rangle + \gamma^2 \mathbb{E}_k \left[\|\nabla f(x^k; \xi^k) - \nabla f(x^k)\|^2 \right]. \\ 1361$$

1362 The σ^2 -variance bounded ensures that
 1363

$$\mathbb{E}_k \left[\|x^{k+1} - x_*^{k+1}\|^2 \right] \leq \mathbb{E}_k \left[\|x^k - x_*^k\|^2 \right] - \gamma \langle \nabla f(x^k), x^k - x_*^k \rangle + \gamma^2 \sigma^2.$$

1364 Due to convexity and Assumption 5.2, we can use Lemma C.2, which yields
 1365

$$\begin{aligned} 1366 \mathbb{E}_k \left[\|x^{k+1} - x_*^{k+1}\|^2 \right] & \leq \mathbb{E}_k \left[\|x^k - x_*^k\|^2 \right] - \frac{\gamma\mu}{2} \|x^k - x_*^k\| + \gamma^2 \sigma^2 \\ 1367 & = \left(1 - \frac{\gamma\mu}{2} \right) \mathbb{E}_k \left[\|x^k - x_*^k\|^2 \right] + \gamma^2 \sigma^2. \\ 1368 \end{aligned}$$

1369 Unrolling the recursion and taking the full expectation, we obtain
 1370

$$\mathbb{E} \left[\|x^{k+1} - x_*^{k+1}\|^2 \right] \leq \left(1 - \frac{\gamma\mu}{2} \right)^{k+1} \|x^0 - x_*^0\|^2 + \frac{2\gamma\sigma^2}{\mu}$$

1371 \square
 1372

1373 F ASSUMPTIONS 5.1, 5.6 AND 5.7 IMPLY ASSUMPTION 5.2

1374 **Theorem F.1.** Let $\{f_i\}$ satisfy Assumption 5.1, 5.6, and Assumption 5.7 with constant μ , then f
 1375 satisfies Assumption 5.2 with constant $\frac{\mu}{4}$.
 1376

1377 *Proof.* We fix $x \in \mathbb{R}^d$. Since Assumption 5.6 hold, then the functions share the closest solution x_* to
 1378 x . Assumption 5.7 ensures that
 1379

$$f_i(x) - f_i(x_*) \geq \frac{\mu}{2} \|x - x_*\|^2.$$

1380 for all $i \in [n]$ (Karimi et al., 2016). Thus
 1381

$$f(x) - f(x_*) \geq \frac{\mu}{2} \|x - x_*\|^2.$$

1382 Due to convexity, we get
 1383

$$f(x_*) \geq f(x) + \langle \nabla f(x), x_* - x \rangle.$$

1384 Therefore
 1385

$$f(x) - f(x_*) \leq \langle \nabla f(x), x - x_* \rangle \leq \|\nabla f(x)\| \|x - x_*\| \leq \|\nabla f(x)\| \sqrt{\frac{2}{\mu} \sqrt{f(x) - f(x_*)}}$$

1386 and
 1387

$$\frac{\mu}{4} (f(x) - f(x_*)) \leq \frac{1}{2} \|\nabla f(x)\|^2,$$

1388 which is Assumption 5.2 with constant $\frac{\mu}{4}$.
 1389 \square
 1390

1404 **G FIRST-ORDER SIMILARITY AND SECOND-ORDER SIMILARITY**
1405

1406 **Theorem 4.3.** Consider the **Weighted SGD** method with $f_i(x) : \mathbb{R} \rightarrow \mathbb{R}$ such that $f_i(x) =$
1407 $\beta \langle a_i, x \rangle + \frac{\beta}{2} \|x\|^2$, $a_i \in \mathbb{R}$ for all $i \in [n]$, $\frac{1}{n} \sum_{i=1}^n a_i = 0$, and $\|a_i\| = 1$, where $\beta > 0$ is free
1408 parameter. Assume that there is no noise in the stochastic gradients, which means $\nabla f_i(x; \xi_i) =$
1409 $\nabla f_i(x)$ deterministically for all $\xi_i \in \mathbb{S}_{\xi_i}$, $i \in [n]$, and $x \in \mathbb{R}$. Then Weighted SGD converges to the
1410 point $\frac{1}{n} \sum_{j=1}^n w_j B_j a_j$ instead of $x_* = 0$. Assumption 4.1 (the first-order similarity) is satisfied with
1411 $\delta_1 = 2\beta^2$, and Assumption 4.2 (the second-order similarity) is satisfied with $\delta_2 = 0$.
1412

1413 *Proof.* The first-order similarity of these functions is
1414

1415
$$\max_{x \in \mathbb{R}^d} \max_{i,j \in [n]} \|\nabla f_i(x) - \nabla f_j(x)\|^2 = \beta^2 \max_{i,j \in [n]} \|a_i - a_j\|^2 \leq 2\beta^2.$$

1416

1417 Thus, the parameter β from the construction controls this similarity. Taking β small, we increase
1418 similarity between the functions. At the same time, the distance $\left\| \frac{1}{n} \sum_{j=1}^n w_j B_j a_j \right\|$ between the
1419 minimum $x_* = 0$ and the point $\frac{1}{n} \sum_{j=1}^n w_j B_j a_j$ where Weighted SGD converges does not depend
1420 on β .
1421

1422 Notice that the second-order similarity between the functions is zero since $\nabla^2 f_i(x) = f_i''(x) = \beta$
1423 for all $i \in [n]$.
1424

1425 The rest of the proof is almost the same as in Theorem 3.1. If $w_i B_i = 1$ for all $i \in [n]$, then Weighted
1426 SGD converges with $\gamma < \frac{2}{\beta}$ because Mala SGD converges. If $w_i B_i \neq 1$ for all $i \in [n]$, then
1427

1428
$$\begin{aligned} x^{k+1} &= x^k - \gamma \frac{1}{n} \sum_{i=1}^n w_i B_i \beta (a_i + x^k) \\ &= \left(1 - \gamma \frac{1}{n} \sum_{i=1}^n w_i B_i \beta \right) x^k - \gamma \beta \frac{1}{n} \sum_{i=1}^n w_i B_i a_i \\ &= (1 - \gamma \beta) x^k - \gamma \beta \frac{1}{n} \sum_{i=1}^n w_i B_i a_i \\ &= (1 - \gamma \beta)^{k+1} x^0 + \sum_{j=0}^k \gamma \beta (1 - \gamma \beta)^j \frac{1}{n} \sum_{i=1}^n w_i B_i a_i, \end{aligned}$$

1429
1430
1431
1432
1433
1434
1435
1436
1437
1438

1439 where the second equality due to the agreement $\frac{1}{n} \sum_{i=1}^n w_i B_i = 1$. If $\gamma \geq \frac{2}{\beta}$, then x^{k+1} does not
1440 converge when $k \rightarrow \infty$. If $\gamma < \frac{2}{\beta}$, then
1441

1442
$$\lim_{k \rightarrow \infty} x^{k+1} = \frac{1}{n} \sum_{j=1}^n w_j B_j a_j.$$

1443
1444

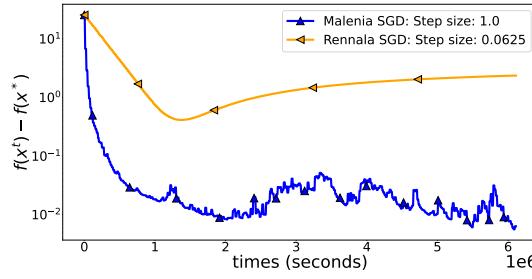
□

1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458 **H EXPERIMENTS**
 1459
 1460

1461 We conduct a comparison between Rennala SGD and Malenia SGD on both stochastic quadratic opti-
 1462 mization tasks and real-world machine learning problems. These are standard quadratic optimization
 1463 and computer vision problems, the design of which we explain in Section I. We developed a library
 1464 that simulates the behavior of $n = 100$ workers. Both methods have two hyperparameters: step
 1465 size γ and parameter S . We do a grid search for both methods and find the best pairs in all setups.
 1466 We start with synthetic quadratic optimization problems, which are generated *without and with the*
 1467 *interpolation regime*. The procedure is described in Section I.1.
 1468

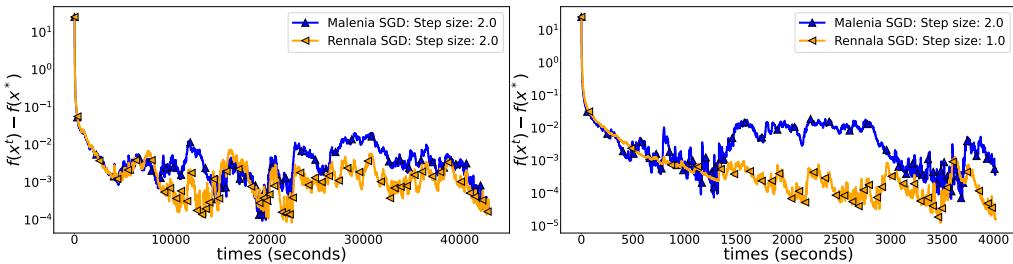
1469 **H.1 WITHOUT INTERPOLATION**
 1470
 1471



1481 Figure 1: Comparison of the methods on a quadratic optimization problem *without interpolation*. We
 1482 take the computation time $\tau_i = i^2$ for all $i \in [n]$.
 1483
 1484

1485 In Figure 1, we present results without interpolation. The plots concur with the theory from Section 5,
 1486 where we explain that it is essential to have interpolation to break the time complexity of Malenia SGD.
 1487 Rennala SGD has biased gradient estimators and does not converge to a minimum of the quadratic
 1488 optimization problem in Figure 1.
 1489

1490 **H.2 WITH INTERPOLATION**
 1491
 1492



1503 Figure 2: Comparison of the methods on quadratic optimization problems *with interpolation*. Times
 1504 $\{\tau_i\}$ less diverse: *Left plot*: $\tau_i = \sqrt{i}$ for all $i \in [n]$. *Right plot*: $\tau_1 = 0.01, \tau_2 = 1, \dots, \tau_n = 1$.
 1505
 1506

1507 In Figures 2 and 3, we consider the methods in the interpolation regime. As expected, according to
 1508 Section 5.2, Rennala SGD outperforms Malenia SGD in all experiments. We compare the methods with
 1509 different $\{\tau_i\}$. In Figures 2, the times $\{\tau_i\}$ are less diverse, so the difference between the methods is
 1510 less profound. In Figures 3, $\{\tau_i\}$ are more different; thus, we can see that Rennala SGD converges
 1511 much faster to low function values because it has much less variance in the corresponding gradient
 estimator.

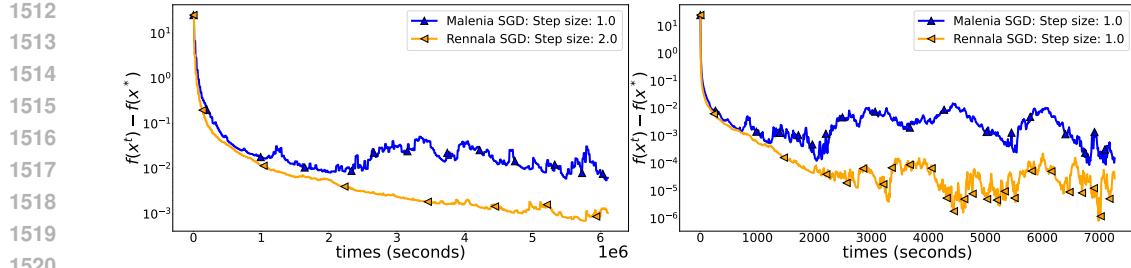


Figure 3: Comparison of the methods on quadratic optimization problems *with interpolation*. Times $\{\tau_i\}$ more diverse: *Left plot*: $\tau_i = i^2$ for all $i \in [n]$. *Right plot*: $\tau_1 = 0.001, \tau_2 = 1, \dots, \tau_n = 1$.

H.3 RESNET-18 AND CIFAR-10

We also verify how Rennala SGD and Malenia SGD work with ResNet-18 and the CIFAR-10 classification problem (Krizhevsky et al., 2009) (License: MIT). Both algorithms take step size $\gamma = 0.25$, sample a batch of size 128, and the smallest S such that all workers calculate at least one batch. The dataset CIFAR-10 is split between the workers, so we consider the heterogeneous setting; all workers access different samples. The results of the experiments are presented in Figure 4. One can see that Rennala SGD converges faster in terms of accuracy, which might be explained by the fact that neural networks work in the interpolation regime.

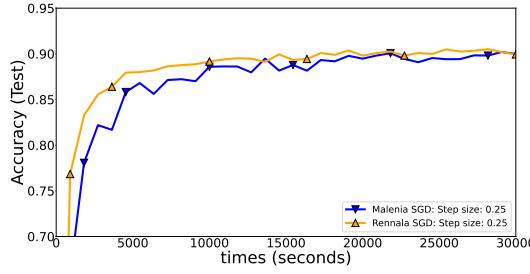


Figure 4: Comparison of the methods on the CIFAR-10 classification problem with ResNet-18. We take the computation time $\tau_i = i^2$.

1566 **I EXPERIMENTS DETAILS**
1567

1568 The experiments were run in Python 3 using an Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz.
1569

1570 **I.1 QUADRATIC OPTIMIZATION TASK GENERATION PROCEDURE**
1571

1572 In Section H, we perform experiments using synthetic quadratic optimization problems
1573

1574
$$\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left(\frac{1}{2} x^\top \mathbf{A}_i x - x^\top b_i \right).$$
1575

1576 Below, we present the algorithm, based on (Szlenkak et al., 2021), that generates these problems. In
1577 all experiments, we take $s = 3$ to ensure that the generated matrices are diverse. We take $n = 100$,
1578 $d = 100$, and $\lambda = 0.001$. The stochastic gradients are equal to the true gradients plus standard
1579 Gaussian noise added to the coordinates to emulate stochasticity.

1580 With these parameters and procedures, we run the experiments from Section H.1. To conduct the
1581 experiments from Section H.2 in the interpolation regime, we take the matrices $\mathbf{A}_1, \dots, \mathbf{A}_n$, vectors
1582 b_1, \dots, b_n returned by Algorithm 3. Let \bar{x}_* be the solution of the quadratic optimization problem
1583 $\frac{1}{n} \sum_{i=1}^n \mathbf{A}_i \bar{x}_* = \frac{1}{n} \sum_{i=1}^n b_i$. Then, we redefine the vectors $\{b_i\}$ as $b_i = \mathbf{A}_i \bar{x}_*$ to ensure that we
1584 are working in the interpolation regime. With this strategy, the matrices are still different, and the
1585 functions $\{f_i\}$ are not equal.

1586 **Algorithm 3** Generate quadratic optimization tasks
1587

1588 1: **Parameters:** number nodes n , dimension d , regularizer λ , and noise scale s .
1589 2: **for** $i = 1, \dots, n$ **do**
1590 3: Generate random noises $\eta_i^s = 1 + s\zeta_i^s$ and $\eta_i^b = s\zeta_i^b$, i.i.d. $\zeta_i^s, \zeta_i^b \sim \mathcal{N}(0, 1)$
1591 4: Take vector $b_i = \frac{\eta_i^s}{4}(-1 + \eta_i^b, 0, \dots, 0) \in \mathbb{R}^d$
1592 5: Take the initial tridiagonal matrix
1593
1594
$$\mathbf{A}_i = \frac{\eta_i^s}{4} \begin{pmatrix} 2 & -1 & & 0 \\ -1 & \ddots & \ddots & \\ & \ddots & \ddots & -1 \\ 0 & & -1 & 2 \end{pmatrix} \in \mathbb{R}^{d \times d}$$
1595
1596
1597
1598 6: **end for**
1599 7: Take the mean of matrices $\mathbf{A} = \frac{1}{n} \sum_{i=1}^n \mathbf{A}_i$
1600 8: Find the minimum eigenvalue $\lambda_{\min}(\mathbf{A})$
1601 9: **for** $i = 1, \dots, n$ **do**
1602 10: Update matrix $\mathbf{A}_i = \mathbf{A}_i + (\lambda - \lambda_{\min}(\mathbf{A}))\mathbf{I}$
1603 11: **end for**
1604 12: Take starting point $x^0 = (\sqrt{d}, 0, \dots, 0)$
1605 13: **Output:** matrices $\mathbf{A}_1, \dots, \mathbf{A}_n$, vectors b_1, \dots, b_n , starting point x^0

1606
1607
1608

1609 **I.2 EXPERIMENTS WITH RESNET AND CIFAR-10**
1610

1611 In Section H.3, we consider the standard computer vision classification problem with ResNet-18 (He
1612 et al., 2016) and CIFAR-10 (Krizhevsky et al., 2009). We conduct the experiments using PyTorch
1613 and implement both Rennala SGD and Malenia SGD optimizers. For reproducibility, we use the
1614 default ResNet-18 architecture provided in PyTorch and split randomly and evenly the CIFAR-10
1615 dataset across multiple workers to create a heterogeneous data distribution scenario. We use standard
1616 preprocessing techniques for CIFAR-10, including normalization and random cropping, and train the
1617 network for a fixed number of epochs. The performance metrics include top-1 accuracy. In total, we
1618 solve the optimization problem

1619
$$\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left(\frac{1}{m} \sum_{j=1}^m \text{loss}(\text{ResNet}(a_{ij}; x), y_{ij}) \right),$$

1620 where ‘‘loss’’ is the standard cross-entropy loss, $\{a_{ij}, y_{ij}\}$ are samples from CIFAR-10 splitted
1621 between the workers.