
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BRIDGING THE GAP BETWEEN HOMOGENEOUS AND
HETEROGENEOUS ASYNCHRONOUS OPTIMIZATION IS
SURPRISINGLY DIFFICULT

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern large-scale machine learning tasks often require multiple workers, devices,
CPUs, or GPUs to compute stochastic gradients in parallel and asynchronously to
train model weights. Theoretical results typically distinguish between two settings:
(i) the homogeneous setting, where all workers have access to the same data distri-
bution, and (ii) the heterogeneous setting, where each worker operates on different
data distributions. Known optimal time complexities in these settings reveal a
significant gap, with far more pessimistic guarantees in the heterogeneous case. In
this work, we investigate whether these pessimistic optimal time complexities can
be overcome under different assumptions. Surprisingly, we show that improvement
is provably impossible under widely used first- and second-order similarity assump-
tions for a broad family of algorithms. We then turn to the interpolation regime
and demonstrate that the weak interpolation assumption alone is also insufficient.
Finally, we introduce a minimal combination of irreducible assumptions, strong
interpolation and the local Polyak-Łojasiewicz condition, to derive a new time
complexity bound that matches the best-known result in the homogeneous setting,
without requiring identical data distributions.

1 INTRODUCTION

We consider optimization problems described by

min
x∈Rd

{
f(x) := 1

n

n∑
i=1

Eξi∼Di
[fi(x; ξi)]

}
, (1)

where fi : Rd × Sξi → R and ξi is a random variable with distribution Di on Sξi for all i ∈ [n].
Let us denote fi(x) := Eξi∼Di

[fi(x; ξi)] . In our setup, we have n workers/clients/CPUs/GPUs
working in parallel and asynchronously, and each worker i has access only to the stochastic gradient
∇fi(x; ξi) of the function fi for all x ∈ Rd. We want to find a (possibly random) point x̄ such that
E[∥x̄− x∗∥2] ≤ ε, where x∗ is a solution of (1). Such a problem arises in many machine learning
(ML), deep learning, federated learning (FL), and data science problems (Konečný et al., 2016;
McMahan et al., 2017; Goodfellow et al., 2016).

We focus on the modern setup where many workers work together in a distributed environment,
where the workers can have arbitrarily computation behaviors due to hardware delays or network
connectivity problems. Most previous works typically assume that the workers have the same
performance that does not change over time. In contrast, our focus is on the setting where the
computation times are heterogeneous and non-constant.

In the literature, the optimization problem (1) in the asynchronous environment is considered in two
regimes: i) heterogeneous setting, where the functions fi can be arbitrarily different; in the context of
ML and FL, it means the workers have access to different datasets. ii) homogeneous setting, where
the functions fi are equal; in the context of ML and FL, it means the workers have access to the same
dataset (Koloskova et al., 2022; Mishchenko et al., 2022; Feyzmahdavian & Johansson, 2023).

1.1 Notations

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

[n] := {1, . . . , n}; N0 := {0, 1, 2, . . . }; ∥·∥ is the standard Euclidean norm; ⟨·, ·⟩ is the standard dot
product; g = O(f) : exist C > 0 such that g(z) ≤ C × f(z) for all z ∈ Z; g = Ω(f) : exist C > 0

such that g(z) ≥ C × f(z) for all z ∈ Z; g = Θ(f) : g = O(f) and g = Ω(f); g = Θ̃(f) : the same
as g = Θ(f) but up to logarithmic factors.

1.2 PREVIOUS WORK

Oracle complexity. In the classical optimization theory (Nemirovskij & Yudin, 1983), algorithms
are compared in terms of oracle calls. Assume that the number of workers is one and we work with
nonconvex functions and the following standard assumptions:

Assumption 1.1 (Global smoothness). The function f is differentiable and L–smooth, i.e.,
∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ for all x, y ∈ Rd.

Assumption 1.2 (Unbiased and σ2-variance-bounded noise). For all x ∈ Rd, stochastic gra-
dients ∇fi(x; ξ) are unbiased and σ2-variance-bounded, i.e., Eξi [∇fi(x; ξi)] = ∇fi(x) and
Eξi [∥∇fi(x; ξi)−∇fi(x)∥2] ≤ σ2 for all i ∈ [n], where σ2 ≥ 0.

It is well known (Arjevani et al., 2022; Carmon et al., 2020) that the optimal oracle complexity is
O
(
L∆/ε + σ2L∆/ε2

)
to find x̄ ∈ Rd such that E[∥∇f(x̄)∥2] ≤ ε. It is attained by the vanilla SGD

method: xk+1 = xk−γ∇f(xk; ξk), where ξk are i.i.d. random samples, ∆ := f(x0)−f∗, x0 ∈ Rd

is a starting point, and γ = Θ(min{1/L, ε/Lσ2}) is a step size. In the convex setting (Assumption 5.1),
the optimal oracle complexity is Θ

(√
LR/

√
ε + σ2R2

/ε2
)

(Lan, 2020; Nemirovskij & Yudin, 1983)
to find x̄ ∈ Rd such that E[f(x̄)]− f(x∗) ≤ ε, where R :=

∥∥x0 − x∗
∥∥ . In the µ–strongly convex

setting, the optimal complexity Θ̃
(√

L/√µ + σ2
/µ2ε2

)
is to find x̄ ∈ Rd such that ∥x̄− x∗∥2 ≤ ε (up

to logarithmic factors).

Oracle complexity with many workers. Many works discovered oracle complexities with multiple
workers. Arjevani & Shamir (2015); Scaman et al. (2017) analyze the heterogeneous convex setting
and provide lower bounds when the workers are synchronized. Lu & De Sa (2021) consider the
similar setup but in the nonconvex setting. Arjevani et al. (2020) analyze settings where methods
receive delayed stochastic gradients. Woodworth et al. (2018) provide lower bounds for parallel
setups with intermittent communications and delayed updates. The primary limitation of these results
is the assumption that all workers have consistent computational performance, without accounting for
individual delays, random lags, or variations in performance over time.

Time complexity. To address the problem of analyzing methods with workers having different
computation capabilities and performances, Mishchenko et al. (2022) proposed to consider the fixed
computation model. In this model, it is assumed that

worker i requires at most τi seconds to calculate one stochastic gradient.

Without loss of generality, we assume that the times are sorted: τ1 ≤ · · · ≤ τn. One of the most
popular methods is Asynchronous SGD (Lian et al., 2015; Zhang et al., 2015; Feyzmahdavian et al., 2016;
Sra et al., 2016; Dutta et al., 2018; Stich & Karimireddy, 2020; Wu et al., 2022; Islamov et al., 2024). In the
homogeneous setting, Mishchenko et al. (2022); Koloskova et al. (2022); Cohen et al. (2021) showed
that Asynchronous SGD and Picky SGD can provably improve the performance of the synchronized
Minibatch SGD method that does the steps xk+1 = xk − γ/n

∑n
i=1 ∇f(xk; ξki), where γ is a stepsize,

ξki are i.i.d. samples, and ∇f(xk; ξki) are calculated in parallel in n workers. Minibatch SGD requires
O
(
L∆/ε + σ2L∆/nε2

)
iterations (Cotter et al., 2011; Goyal et al., 2017; Gower et al., 2019) in the non-

convex setting. Moreover, Minibatch SGD converges after O
(
maxi∈[n] τi ×

(
L∆/ε + σ2L∆/nε2

))
sec-

onds because it waits for the slowest worker with maxi∈[n] τi in every iteration. Asynchronous SGD,
methods with the step xk+1 = xk − γk

/n
∑n

i=1 ∇f(xk−δk ; ξk−δk
i) and δk–delayed stochastic gradi-

ents, improve this time complexity to O((1/n
∑n

i=1
1/τi)

−1 (
L∆/ε + σ2L∆/nε2

)
).

Optimal time complexities in the heterogeneous and homogeneous settings. Surprisingly, the
time complexity can be further improved. In the nonconvex setup (under Assumptions 1.1, and 1.2),
Tyurin & Richtárik (2023) formalized the notion of time complexities and showed that the optimal

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

time complexity is

Thomog := Θ

(
min
m∈[n]

[(
1
m

m∑
i=1

1
τi

)−1 (
L∆
ε + σ2L∆

mε2

)])
(2)

seconds in the homogeneous setup to find an ε–stationary point, achieved by the Rennala SGD
method1, where, without loss of generality, the times are sorted: τ1 ≤ · · · ≤ τn. In the heterogeneous
setup, the optimal time complexity is

Theter := Θ

(
τn

L∆
ε +

(
1
n

n∑
i=1

τi

)
σ2L∆
nε2

)
, (3)

achieved by the Malenia SGD method (we discuss the methods in detail in Section 2).

Difference between the two settings. Using the inequality of arithmetic and harmonic means, one
can easily show that Thomog ≤ Theter (ignoring constant factors). At the same time, the gap between
the complexities can be arbitrarily huge. Indeed, when the performance τ1 of the fastest worker tends
to 0, one can easily show that Thomog → 0 and Theter → Θ

(
τnL∆/ε +

(
1
n

∑n
i=2 τi

)
σ2L∆/nε2

)
, and

Theter improves by at most
∑n

i=1 τi/
∑n

i=2 τi ≤ 2. While the improvement in the homogeneous setup
is ∞. Consider another example when the performance τn of the slowest worker (straggler) tends to
∞. Then Theter → ∞ and Thomog → Θ(minm∈[n−1][(1/n

∑n
i=1

1/τi)
−1 (

L∆/ε + σ2L∆/mε2
)
]), so the

complexity Thomog is robust to stragglers unlike Theter.

Arbitrarily computation dynamics. The previous discussion explain that a significant gap appears
between homogeneous and heterogeneous problems under the fixed computation model. This
“arithmetic mean vs harmonic mean gap” was also observed in (Tyurin, 2025), where the author
generalizes the fixed computation model to the universal computation model, accounting for potential
disruptions caused by hardware or network delays, and any variations in computation speeds. For
simplicity, in this work, we will continue working with the fixed computation model, but we also
show how our final results translate to the universal computation model in Section A.

Convex world. When we want to find a point x̄ such that E [f(x̄)]− f∗ ≤ ε in the convex setup, the
gap is similar. The optimal time complexity in the homogeneous setup is

Θ

(
min
m∈[n]

[(
1
m

m∑
i=1

1
τi

)−1 (√
LR√
ε

+ σ2R2

mε2

)])
(4)

seconds (Tyurin & Richtárik, 2023). While the optimal time complexity in the heterogeneous setup is

Θ

(
τn

√
LR√
ε

+

(
1
n

n∑
i=1

τi

)
σ2R2

nε2

)
(5)

seconds under Assumptions 5.1, 1.1, and 1.2 (our new contribution, Theorem D.4; the final puzzle
piece needed to reveal the systematic gap between the two settings). Both complexities are achieved
by the accelerated versions of Rennala SGD and Malenia SGD accordingly.

Strongly convex world. Assume additionally that the function f is µ–strongly convex. Using
reduction (Woodworth & Srebro, 2016), up to logarithmic factors, we can obtain the optimal time
complexity

Θ̃

(
min
m∈[n]

[(
1
m

m∑
i=1

1
τi

)−1 (√
L
µ + σ2

mεµ

)])
(6)

in the homogeneous setting and the optimal time complexity

Θ̃

(
τn

√
L
µ +

(
1
n

n∑
i=1

τi

)
σ2

nεµ

)
(7)

in the heterogeneous setting when we want to find a point x̄ such that E [f(x̄)]− f∗ ≤ ε. Here we
also observe a large gap between the settings. Note that the complexities (3), (5), and (7) can only be
improved under additional assumptions because they are optimal.

1It can also be achieved by another recent optimal method, Ringmaster ASGD (Maranjyan et al., 2025)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Main question: Having the systematic gap between the homogeneous and
heterogeneous setups, the goal of this work is to identify theoretical assump-
tions that are as weak as possible to improve the results of asynchronous
methods in heterogeneous scenarios. Under which assumptions can we im-
prove the dependence on the arithmetic mean of {τi} (see (3), (5), and (7)) to
the dependence on the harmonic mean of {τi} (see (2), (4), and (6))? Right
now, the only possible way is to assume that the functions {fi} are equal—an
assumption we clearly want to avoid in the heterogeneous setting. Is there any
chance to relax this assumption?

Addressing the potential for improving the pessimistic guarantees in heterogeneous settings is a
crucial endeavor for understanding parallel distributed methods.

1.3 CONTRIBUTIONS

We observe that both Rennala SGD and Malenia SGD can be unified under a more general framework,
Weighted SGD, which provides a natural foundation for analyzing heterogeneous methods. Since
breaking the lower bounds in the heterogeneous setting requires additional assumptions, we start by
introducing as few as possible to determine when Weighted SGD can outperform Malenia SGD.

Analysis of first- and second-order similarity. First, we consider the celebrated first- and second-
order similarity and, surprisingly, prove that even under these assumptions—no matter how close the
functions {fi} are—Weighted SGD converges if and only if it again reduces to Malenia SGD. Thus, it
is infeasible to break the dependence on the arithmetic mean of {τi} under these assumptions.

Investigate the interpolation assumption. Next, we decided to go in another direction and consider
the interpolation assumption. Using Theorem 3.1, we demonstrate that operating in the interpolation
regime is essential. Thus, we introduce two additional assumptions, strong interpolation and the local
Polyak-Łojasiewicz condition, and prove that it is impossible to drop either of these assumptions for
improvement.

Bridging the gap. By identifying this minimal set of assumptions, we derive a new time complexity
result that matches the best-known bound in the homogeneous setting (Section 5.2), but without
requiring the functions fi to be identical. Our theoretical results are validated numerically in
Section H.

To bridge the gap in Section 5.2, we need to introduce Assumptions 5.6 and 5.7. However, our
primary goal was to illustrate and prove that these assumptions are indeed necessary. Merely stating
the assumptions might not be convincing; this is why the central part of our paper investigates
different assumptions and shows that most of them do not allow bridging the gap. We believe that
the significance of our contribution lies in this exploration process. While previous work noted the
existence of the gap, our contribution goes further by systematically investigating which assumptions
are sufficient and which are insufficient to eliminate it.

2 A UNIFYING PERSPECTIVE ON Rennala SGD AND Malenia SGD

We start our work by looking closer to the Rennala SGD and Malenia SGD methods (see Algorithm 1)
that achieve the optimal time complexities (2) and (3) in the homogeneous and heterogeneous setting,
accordingly. We now recall how they work. In every iteration, Rennala SGD and Malenia SGD ask all
workers to calculate stochastic gradients asynchronously at the same iterate xk. Assume that worker
i has calculated Bk

i stochastic gradients for all i ∈ [n] at the iteration k. Then the methods do the
steps

xk+1 = xk − γgkR , gkR := 1∑n
i=1 Bk

i

n∑
i=1

Bk
i∑

j=1

∇fi(x
k; ξkij) (Rennala SGD)

and

xk+1 = xk − γgkM, gkM := 1
n

n∑
i=1

1
Bk

i

Bk
i∑

j=1

∇fi(x
k; ξkij), (Malenia SGD)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Weighted SGD (reduces to Malenia SGD or Rennala SGD when wk
i are chosen as

wk
i = 1/Bk

i or wk
i = n/

∑n
i=1 Bk

i , respectively)

1: Input: point x0, stepsize γ, parameter S,
weights {wk

i }
2: for k = 0, 1, . . . ,K − 1 do
3: Ask all workers to calculate stochastic gradients at xk

4: Init gki = 0 and Bk
i = 0

5: while
(
1
n

∑n
i=1(w

k
i)

2Bk
i

)−1 ≤ S
n do

6: Wait for the next worker j
7: Update Bk

j = Bk
j + 1

8: Receive a calculated stochastic gradient ∇fj(x
k; ξk

j,Bk
j
)

9: gkj = gkj +∇fj(x
k; ξk

j,Bk
j
)

10: Ask this worker to calculate a stochastic gradient at xk

11: end while

12: gkw := 1
n

n∑
i=1

wk
i g

k
i = 1

n

n∑
i=1

wk
i

Bk
i∑

j=1

∇fi(x
k; ξkij)

13: xk+1 = xk − γgkw
14: Stop all the workers’ calculations (or ignore the unfinished calculations in the subsequent

iterations)
15: end for

accordingly. Rennala SGD and Malenia SGD ask all workers calculating stochastic gradients until
1
n

∑n
i=1 B

k
i > S/n and

(
1
n

∑n
i=1

1/Bk
i

)−1
> S/n correspondingly, where S is a parameter. Hence,

both methods asynchronously collect and aggregate stochastic gradients to compute gkR and gkM, and
then perform a descent step. However, the way the methods aggregate is both different and important.
It turns out the variance of the Rennala SGD’s update is smaller. Indeed, one can easily show that

E
[∥∥gkR − E

[
gkR
]∥∥2] ≤ σ2

n

(
1
n

∑n
i=1 B

k
i

)−1
and E

[∥∥gkM − E
[
gkM
]∥∥2] ≤ σ2

n

(
n∑n

i=1
1

Bk
i

)−1

.

Thus, the variance of Rennala SGD improves with the arithmetic mean of Bk
i , while the variance of

Malenia SGD improves with the harmonic mean of Bk
i , which can be much smaller. Why wouldn’t

we use Rennala SGD in all scenarios if it is better? Because gkR is biased if {fi} are non-homogeneous.
In general, E

[
gkR
]
̸= 1

n

∑n
i=1 fi(x), while it is always true that E

[
gkM
]
= 1

n

∑n
i=1 fi(x).

Takeaway 1: The optimal methods calculate stochastic gradients at the last fixed point but
employ different asynchronous aggregation strategies.

Taking into account Takeaway 1, it is reasonable to investigate their generalization, called Weighted
SGD:

xk+1 = xk − γgkw, gkw := 1
n

n∑
i=1

wk
i

Bk
i∑

j=1

∇fi(x
k; ξkij), (Weighted SGD)

where the weights {wk
i } are free parameters. If we take wk

i = n/
∑n

i=1 Bk
i for all i ∈ [n], we get

Rennala SGD with small variance. If we take wk
i = 1/Bk

i , we get Malenia SGD with high variance but
with an unbiased estimator. The weights enable interpolation between the methods.

Further, we assume that the workers send the same number of stochastic gradients in each iteration,
i.e., Bk

i = Bi for all i ∈ [n], k ≥ 0, and the weights also do not change, i.e., wk
i = wi for all

i ∈ [n], k ≥ 0. We also assume that 1
n

∑n
i=1 wiBi = 1. Otherwise, we can simply reparametrize and

take γ := γ/(1n
∑n

i=1 wiBi).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3 NON-CONVERGENCE OF Weighted SGD WITH wk ̸= 1/Bk

Our goal now is to understand the possibility of decreasing the variance of Malenia SGD by choosing
appropriate weights {wi} in the heterogeneous setting such that Weighted SGD converges. We start
with the following pessimistic result.
Theorem 3.1. Consider the Weighted SGD method with quadratic optimization problems, where
fi(x) : R → R such that fi(x) = 0.5(x − ai)

2 and ai ∈ R for all i ∈ [n]. Assume that there is
no noise in the stochastic gradients, which means ∇fi(x; ξi) = ∇fi(x) deterministically for all
ξi ∈ Sξi , i ∈ [n], and x ∈ Rd, Then Weighted SGD converges to the minimum only if wiBi = 1 for all
i ∈ [n] (Malenia SGD-like weighing); either it does not converge or it converges to 1

n

∑n
j=1 wjBjaj

instead of 1
n

∑n
i=1 ai.

The theorem says that we can not naively apply Weighted SGD in solving (1) and ensure that we can
find a point that is close to a solution in the heterogeneous setting unless we take wi = 1/Bi for all
i ∈ [n] (what we want to avoid).

Takeaway 2: Even for simple quadratic problems without stochasticity, there is no hope of
using any averaging other than Malenia SGD. Thus, in general, we must rely on Malenia SGD
with the pessimistic dependence on the arithmetic mean of {τi}.

4 FIRST-ORDER AND SECOND-ORDER SIMILARITY DON’T HELP

The main problem with the example from Theorem 3.1 is that it represents a worst-case scenario.
Clearly, we have to introduce assumptions to ensure that Weighted SGD converges with weights
distinct from those of Malenia SGD, due to Theorem 3.1 and the fact that Malenia SGD is optimal.
One of the most popular assumptions in the literature is first-order and second-order similarity of the
functions (Arjevani & Shamir, 2015; Szlendak et al., 2021; Mishchenko et al., 2022):
Assumption 4.1 (First-Order Similarity). The functions fi satisfy
maxi,j∈[n] ∥∇fi(x)−∇fj(x)∥2 ≤ δ1 for all x ∈ Rd for some δ1 ≥ 0. It implies
1
n

∑n
i=1 ∥∇fi(x)−∇f(x)∥2 ≤ δ1 for all x ∈ Rd.

Assumption 4.2 (Second-Order Similarity). The functions fi satisfy
maxi,j∈[n]

∥∥∇2fi(x)−∇2fj(x)
∥∥2 ≤ δ2 for all x ∈ Rd for some δ2 ≥ 0. It implies

1
n

∑n
i=1

∥∥∇2fi(x)−∇2f(x)
∥∥2 ≤ δ2 for all x ∈ Rd.

One might expect that when both δ1 or δ2 are small, it would be possible to exploit the similarity and
design a method with smaller variance and better dependence on {τi}. Surprisingly, it is not the case:
for any δ1 > 0 or δ2 ≥ 0, one can construct a problem for which only Malenia SGD converges:
Theorem 4.3. Consider the Weighted SGD method with fi(x) : R → R such that fi(x) =

β ⟨ai, x⟩ + β
2 ∥x∥2 , ai ∈ R for all i ∈ [n], 1

n

∑n
i=1 ai = 0, and ∥ai∥ = 1, where β > 0 is free

parameter. Assume that there is no noise in the stochastic gradients, which means ∇fi(x; ξi) =
∇fi(x) deterministically for all ξi ∈ Sξi , i ∈ [n], and x ∈ R, Then Weighted SGD converges to the
point 1

n

∑n
j=1 wjBjaj instead of x∗ = 0, Assumption 4.1 (the first-order similarity) is satisfied with

δ1 = 2β2, and Assumption 4.2 (the second-order similarity) is satisfied with δ2 = 0.

Remark 4.4. Note that 1
n

∑n
j=1 wjBjaj = x∗ = 0 for all ai ∈ R if and only if wiBi = 1 for all

i ∈ [n] (Malenia SGD-like weighting).

Hence, for any small δ1 > 0 and δ2 ≥ 0, convergence is only possible with Malenia SGD. Due to the
construction in Theorems 4.3, we can choose any β > 0, and hence any δ1 > 0. No matter how close
the functions are to each other, Weighted SGD can converge close to the solution only if wiBi = 1 for
all i ∈ [n]. In view of this, we argue that additional assumptions about the first- and second-order
similarity will not help to improve the time complexity of Malenia SGD.
Remark 4.5. For the construction in Theorem 4.3, we can also show that ∥∇fi(x)∥2 ≤ 2 ∥∇f(x)∥2+
2β2 for all i ∈ [n], which corresponds to the ρ–strong growth condition when β = 0 and ρ = 2
(Schmidt & Roux, 2013). Since Theorem 4.3 holds for all β > 0, we have proved the result for a
“slightly” broader class of problems and have “almost” established that, even under the strong growth

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: The summary of our results and the time complexities (up to logarithmic factors) to get a
point x̄∗ such that E[∥x̄∗ − x̄∗∥2] ≤ ε under the fixed computation model (worker i requires at most
τi seconds to calculate one stochastic gradient; τ1 ≤ · · · ≤ τn) and Assumptions 5.1, 5.2, 1.2, and
1.1, where x̄∗ is the closest solution to x̄. The table compares methods in the fully heterogeneous setting
and lists the extra assumptions the methods require to work.

Method Time Complexity Guarantees (previous results) Additional Assumptions

Minibatch SGD τn

(
L
µ + σ2

nεµ2

)
—

Asynchronous SGD
(Mishchenko et al., 2022)

(
1
n

n∑
i=1

1
τi

)−1 (
L
µ + σ2

nεµ2

) {fi} are equal
µ–strong convexity

Malenia SGD
(Tyurin & Richtárik, 2023)

(Theorem E.2)
τn

L
µ +

(
1
n

n∑
i=1

τi

)
σ2

nεµ2 —

Rennala SGD
(Tyurin & Richtárik, 2023)

(Theorem E.1)
min
m∈[n]

[(
1
m

m∑
i=1

1
τi

)−1 (
L
µ + σ2

mεµ2

)]
{fi} are equal

Lower Bounds (new results)
Under the first-order and second-order similarity, the following results state that

the family of methods Weighted SGD can converge if and only if it reduces to Malenia SGD:

Family of methods Weighted SGD
(Theorem 4.3) Only Malenia SGD converges Assumptions 4.1 and 4.2

(first-order and second-order similarity don’t help)
The following results state that the family of methods Weighted SGD (includes Rennala SGD and Malenia SGD)

can not improve Malenia SGD for small ε if we discard Assumption 5.6 or 5.7:

Family of methods Weighted SGD
(Theorem 5.8) ≥

(
1
n

n∑
i=1

τi

)
σ2

nεµ2

Assumptions 5.4 and 5.7
(weak interpolation is not enough)

Family of methods Weighted SGD
(Theorem 5.9) ≥

(
1
n

n∑
i=1

τi

)
σ2

nεµ2 Assumption 5.6

Upper Bound (new result)
The following results state that under Assumption 5.6 or 5.7 it is possible to improve Malenia SGD:

Rennala SGD
(Theorem 5.10) min

m∈[n]

[(
1
m

m∑
i=1

1
τi

)−1 (
Lmax

µ + σ2

mεµ2

)] Assumptions 5.6 and 5.7
(weaker than the equality of functions {fi})

condition, only Malenia SGD converges to the minimum. Whether a similar result holds for the class
of problems satisfying maxi∈[n] ∥∇fi(x)∥2 ≤ 2 ∥∇f(x)∥2 for all x ∈ Rd remains an important
open research question.

Takeaway 3: Even with first-order and second-order similarity, when using the family of methods
Weighted SGD, there is still no hope of using any averaging other than Malenia SGD.

5 UNDERSTANDING THE GAP VIA INTERPOLATION ASSUMPTIONS

To understand the problem, we now focus on the standard setting of convex smooth functions under
the PŁ-condition, where the latter is a much weaker assumption than µ–strong convexity (Karimi
et al., 2016).
Assumption 5.1 (Convexity). The functions fi are convex for all i ∈ [n]. The function f attains a
minimum at a (non-unique) point x∗ ∈ Rd.

Assumption 5.2 (Global Polyak-Łojasiewicz condition). There exists µ > 0 such that ∥∇f(x)∥2 ≥
2µ (f(x)− f∗) for all x ∈ Rd, where f∗ is the finite optimal function value of f.
Assumption 5.3 (Local smoothness). The functions fi are differentiable and Li–smooth. We also
define Lmax := maxi∈[n] Li. Note that L ≤ Lmax.

Looking at Takeaways 2 and 3, we see that a different similarity assumption is required to close
the gap between the heterogeneous and homogeneous results. Recall Theorem 3.1, which states
that Weighted SGD converges to 1/n

∑n
j=1 wjBjaj instead of 1/n

∑n
i=1 ai. These two expressions

are equal only if the minima ai of the functions fi are the same. Therefore, to ensure convergence
when wiBi ̸= 1 and to understand the gap between the homogeneous and heterogeneous settings,
Theorem 3.1 motivates us to explore an alternative assumption known as the interpolation assumption
(Vaswani et al., 2019). This assumption provides another way to capture the similarity among the
functions fi by requiring that they share the same set of minimizers as the function f .

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Assumption 5.4 (Weak Interpolation). If x∗ is a minimizer of f , that is, ∇f(x∗) = 0, then x∗ is also a
minimizer of each fi for all i ∈ [n].

Interpolation is a property of the solutions of fi, whereas the heterogeneity assumptions, Assump-
tions 4.1 and 4.2, concern the gradients and Hessians. These are different characteristics of fi, and
understanding their connection could be an important future work.

Under Assumption 5.4, Theorem 3.1 is not a barrier anymore. Assumption 5.4 is considered practical
in modern optimization literature, as there is evidence that it holds for large deep learning models
(Zou & Gu, 2019; Zhang et al., 2021). However, as we show next, this assumption alone is not
sufficient to achieve improved time complexity, leading to yet another pessimistic result:

Theorem 5.5. Consider the Weighted SGD method. Let us fix any ε, Lmax, R, µ, σ2 > 0 such that
µ < Lmax/(2n), ε < 0.01, and R > 10. For all B1, . . . , Bn ≥ 0 and any possible choice of weights
{wi(B1, . . . , Bn)} as functions of B1, . . . , Bn, there exist functions {fi} and stochastic gradients
{∇fi(·; ·)} such that {fi} satisfy Assumptions 5.1, 5.3, and 5.4, f satisfies Assumptions 5.2 and 1.1
with L = Lmax, {∇fi(·; ·)} satisfy Assumption 1.2 such that the method requires at least

Ω

((
1
n

n∑
i=1

τi

)
σ2

εnµ2 log
(

R2

ε

))
seconds to find ε–solution in terms of distances to the solution set, when the method starts at a point
in a distance less or equal to R to the closest solution.

Thus, even under Assumption 5.4, we can not improve the arithmetic mean dependence on {τi}.

Takeaway 4: Using the weak interpolation assumption, which captures the similarity of
the functions in a different way compared to first-order and second-order similarity, it is still
infeasible to improve the pessimistic dependence on {τi} achieved by Malenia SGD using the
family of methods Weighted SGD.

5.1 STRONG INTERPOLATION AND LOCAL PŁ CONDITION ARE BOTH REQUIRED

Once again, we need to go deeper and introduce additional assumptions to break the lower bound
from Theorem 5.5. To further investigate the problem, we now turn to two related assumptions.

Assumption 5.6 (Strong Interpolation). For all i ∈ [n], a point x∗ is a minimizer of f , that is,
∇f(x∗) = 0, if and only if it is also a minimizer of fi.

This assumption is clearly stronger than the weak interpolation assumption since it requires all the
functions to share the set of minimizers.

Assumption 5.7 (Local Polyak-Łojasiewicz condition). There exists µ such that ∥∇fi(x)∥2 ≥
2µ (fi(x)− f∗

i) for all x ∈ Rd and for all i ∈ [n], where f∗
i is the finite optimal function value of fi.

This assumption, unlike Assumption 5.2, requires each function to satisfy PŁ condition. It turns out
again that if we do not assume both Assumption 5.6 and Assumption 5.7, then it is infeasible to
get a time complexity faster than in Malenia SGD with any weights {wi} for ε small enough. This
statement is formalized in the following two theorems.

Theorem 5.8. Consider the Weighted SGD method. Let us fix any ε, Lmax, R, µ, σ2 > 0 such that
µ < Lmax/(2n), ε < 0.01, and R > 10. For all B1, . . . , Bn ≥ 0 and any possible choice of weights
{wi(B1, . . . , Bn)} as functions of B1, . . . , Bn, there exist functions {fi} and stochastic gradients
{∇fi(·; ·)} such that {fi} satisfy Assumptions 5.1, 5.3, 5.4, and 5.7 (do not satisfy Assumption 5.6
in general), f satisfies Assumptions 5.2 and 1.1 with L = Lmax, {∇fi(·; ·)} satisfy Assumption 1.2
such that the method requires at least

Ω

((
1
n

n∑
i=1

τi

)
σ2

εnµ2 log
(

R2

ε

))
seconds to find ε–solution in terms of distances to the solution set, when the method starts at a point
in a distance less or equal to R to the closest solution.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Theorem 5.9. Consider the Weighted SGD method. Let us fix any ε, Lmax, R, σ2 > 0 such that
µ < Lmax/(2n), ε < 0.01, and R > 10. For all B1, . . . , Bn ≥ 1 and any possible choice of weights
{wi(B1, . . . , Bn)} as functions of B1, . . . , Bn, there exist functions {fi} and stochastic gradients
{∇fi(·; ·)} such that {fi} satisfy Assumptions 5.1, 5.3, 5.4, and 5.6 (do not satisfy Assumption 5.7
in general), f satisfy Assumptions 5.2 and 1.1 with L = Lmax, {∇fi(·; ·)} satisfy Assumption 1.2,
such that the method requires at least

Ω

((
1
n

n∑
i=1

τi

)
σ2

εnµ2 log
(

R2

ε

))
seconds to find ε–solution in terms of distances to the solution set, when the method starts at a point
in a distance less or equal to R to the closest solution.

Takeaway 5: Even when the weak interpolation assumption is combined with only one of
Assumptions 5.6 and 5.7, we still obtain only the arithmetic mean dependence on {τi}.

Once we drop either Assumption 5.6 or Assumption 5.7, it becomes possible to construct a “bad”
function (see the proof of Theorems 5.8 and 5.9) that provides no room for Weighted SGD to improve,
regardless of the weight choices.

5.2 FINALLY BRIDGING THE GAP

However, if assume that both Assumption 5.6 and Assumption 5.7 hold, then, finally, we can proof
the convergence with harmonic-like dependence on {τi} :

Theorem 5.10. Let Assumptions 5.1, 5.3, 1.2, 5.6, 5.7 hold2. We choose wk
i = n/

∑n
i=1 Bk

i for all
k ≥ 0, i ∈ [n] in Algorithm 1 (Weighted SGD reduces to Rennala SGD). We take γ = 1/Lmax, S =

4σ2
/µLmaxε, and run Rennala SGD for k ≥ Ω

(
Lmax

µ log R2

ε

)
iterations, then E

[∥∥xk+1 − xk+1
∗
∥∥2] ≤

ε, where xk+1
∗ is the closest solution to xk+1. Moreover, under the fixed computation model, the

method requires

O

(
min
m∈[n]

[(
1
m

m∑
i=1

1
τi

)−1 (
Lmax

µ + σ2

mεµ2

)]
log R2

ε

)
(8)

seconds.

Under weaker assumptions, without requiring the equality of the functions {fi}, this theorem yields
time complexity guarantees with a “harmonic”-like dependence on the times {τi} for the Rennala
SGD method, improving upon the previous theoretical results in Theorem E.1 and (Tyurin & Richtárik,
2023).

Notice that the method in Theorem 5.10 is still biased because
E
[∑n

i=1

∑Bk
i

j=1 ∇fi(x; ξ
k
ij)/

∑n
i=1 B

k
i

]
̸= ∇f(x) in general. That said, we can success-

fully prove the theorem under this constraint. One of the primary reasons for this is the right choice
of convergence metric. Initially, we aimed to analyze the biased gradient estimator in terms of
function values and gradient norms, trying to prove that the method returns a point x̄ such that
E[f(x̄)] − f∗ ≤ ε or E[∥∇f(x̄)∥2] ≤ ε. However, the more appropriate approach is to show
E[∥x̄− x∗∥2] ≤ ε. Using this convergence metric allows us to analyze the biased gradient estimator.
This observation can be important on its own.

Takeaway 6: Improving the pessimistic dependence in Malenia SGD is possible with Ren-
nala SGD and the additional assumptions, Assumption 5.6 and Assumption 5.7, in convex
optimization.

One interesting observation is that there is no single best method between Malenia SGD and Rennala
SGD: either Malenia SGD is the fastest, or Rennala SGD is when both Assumption 5.6 and Assump-
tion 5.7 hold. We could not find a regime in between where any other method or strategy would
improve upon both Malenia SGD and Rennala SGD.

2It is well-know that Assumption 5.3 implies Assumption 1.1. In Section F, we prove that Assumptions 5.1,
5.6 and Assumption 5.7 with constant µ imply Assumption 5.2 with constant µ/4.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 CONCLUSION

In this work, we investigated various assumptions and setups in an effort to break the pessimistic
dependence on {τi} achieved by Malenia SGD. We considered the first- and second-order similarity,
strong growth, and interpolation assumptions. We proved that under the first- and second-order
similarity assumptions, it is infeasible to improve the dependence on the arithmetic mean of {τi}
within the family of Weighted SGD methods. We also showed that under weak interpolation (Assump-
tion 5.4), it is likewise not possible to improve the result by Malenia SGD. Subsequently, we presented
new theoretical results that provide improved time complexity guarantees in the heterogeneous setting,
without assuming that the functions fi are identical (Theorem 5.10). These results are obtained under
the standard assumptions of convex optimization, together with Assumptions 5.6 and 5.7.

Importantly, we have not merely introduced these assumptions to close the gap, but have shown
that both Assumptions 5.6 and 5.7 are provably essential and non-relaxable for the general family
of methods, underscoring the fundamental limits of what can be achieved in heterogeneous convex
stochastic optimization.

There are many unexplored directions that can build on our initial results and observations. While we
focused on the most common assumptions in federated and distributed learning, our findings may
inspire the development of new assumptions and settings where it is possible to improve upon Malenia
SGD. Moreover, our upper bounds and lower bounds were investigated in terms of E[∥xk − xk

∗∥2]
convergence. It would be interesting to see whether similar results can be obtained in terms of
E[∥∇f(xk)∥2] in the non-convex setting. While Weighted SGD is a natural abstraction of the two optimal
methods, Rennala SGD and Malenia SGD, and is general enough for investigation, it would be interesting
to analyze other classes of methods as well.

REFERENCES

Yossi Arjevani and Ohad Shamir. Communication complexity of distributed convex learning and
optimization. Advances in Neural Information Processing Systems, 28, 2015.

Yossi Arjevani, Ohad Shamir, and Nathan Srebro. A tight convergence analysis for stochastic gradient
descent with delayed updates. In Algorithmic Learning Theory, pp. 111–132. PMLR, 2020.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, pp. 1–50,
2022.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points i. Mathematical Programming, 184(1):71–120, 2020.

Alon Cohen, Amit Daniely, Yoel Drori, Tomer Koren, and Mariano Schain. Asynchronous stochastic
optimization robust to arbitrary delays. Advances in Neural Information Processing Systems, 34:
9024–9035, 2021.

Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algorithms via
accelerated gradient methods. Advances in Neural Information Processing Systems, 24, 2011.

Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, and Priya Nagpurkar. Slow and
stale gradients can win the race: Error-runtime trade-offs in distributed SGD. In International
Conference on Artificial Intelligence and Statistics, pp. 803–812. PMLR, 2018.

Hamid Reza Feyzmahdavian and Mikael Johansson. Asynchronous iterations in optimization: New
sequence results and sharper algorithmic guarantees. Journal of Machine Learning Research, 24
(158):1–75, 2023.

Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. An asynchronous mini-batch
algorithm for regularized stochastic optimization. IEEE Transactions on Automatic Control, 61
(12):3740–3754, 2016.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
Richtárik. SGD: General analysis and improved rates. In International Conference on Machine
Learning, pp. 5200–5209. PMLR, 2019.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016.

Xinmeng Huang, Yiming Chen, Wotao Yin, and Kun Yuan. Lower bounds and nearly optimal algo-
rithms in distributed learning with communication compression. Advances in Neural Information
Processing Systems (NeurIPS), 2022.

Rustem Islamov, Mher Safaryan, and Dan Alistarh. AsGrad: A sharp unified analysis of asynchronous-
SGD algorithms. In International Conference on Artificial Intelligence and Statistics, pp. 649–657.
PMLR, 2024.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Machine Learning and Knowledge
Discovery in Databases: European Conference, ECML PKDD 2016, Riva del Garda, Italy,
September 19-23, 2016, Proceedings, Part I 16, pp. 795–811. Springer, 2016.

Anastasia Koloskova, Sebastian U Stich, and Martin Jaggi. Sharper convergence guarantees for
asynchronous SGD for distributed and federated learning. Advances in Neural Information
Processing Systems (NeurIPS), 2022.

Jakub Konečný, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, Toronto, 2009.

Guanghui Lan. First-order and stochastic optimization methods for machine learning. Springer,
2020.

Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient for
nonconvex optimization. Advances in Neural Information Processing Systems, 28, 2015.

Yucheng Lu and Christopher De Sa. Optimal complexity in decentralized training. In International
Conference on Machine Learning, pp. 7111–7123. PMLR, 2021.

Artavazd Maranjyan, Alexander Tyurin, and Peter Richtárik. Ringmaster ASGD: The first asyn-
chronous SGD with optimal time complexity. In International Conference on Machine Learning,
2025.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake Woodworth. Asynchronous SGD
beats minibatch SGD under arbitrary delays. Advances in Neural Information Processing Systems
(NeurIPS), 2022.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Optimal
algorithms for smooth and strongly convex distributed optimization in networks. In International
Conference on Machine Learning, pp. 3027–3036. PMLR, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mark Schmidt and Nicolas Le Roux. Fast convergence of stochastic gradient descent under a strong
growth condition. arXiv preprint arXiv:1308.6370, 2013.

Suvrit Sra, Adams Wei Yu, Mu Li, and Alex Smola. Adadelay: Delay adaptive distributed stochastic
optimization. In Artificial Intelligence and Statistics, pp. 957–965. PMLR, 2016.

Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: SGD with delayed
gradients. Journal of Machine Learning Research, 21(237):1–36, 2020.

Rafał Szlendak, Alexander Tyurin, and Peter Richtárik. Permutation compressors for provably faster
distributed nonconvex optimization. In International Conference on Learning Representations,
2021.

Alexander Tyurin. Tight time complexities in parallel stochastic optimization with arbitrary computa-
tion dynamics. In International Conference on Learning Representations (ICLR), 2025.

Alexander Tyurin and Peter Richtárik. Optimal time complexities of parallel stochastic optimization
methods under a fixed computation model. Advances in Neural Information Processing Systems
(NeurIPS), 2023.

Alexander Tyurin, Kaja Gruntkowska, and Peter Richtárik. Freya PAGE: First optimal time complexity
for large-scale nonconvex finite-sum optimization with heterogeneous asynchronous computations.
Advances in Neural Information Processing Systems (NeurIPS), 2024.

Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon Lacoste-
Julien. Painless stochastic gradient: Interpolation, line-search, and convergence rates. Advances in
neural information processing systems, 32, 2019.

Blake E Woodworth and Nati Srebro. Tight complexity bounds for optimizing composite objectives.
Advances in Neural Information Processing Systems, 29, 2016.

Blake E Woodworth, Jialei Wang, Adam Smith, Brendan McMahan, and Nati Srebro. Graph
oracle models, lower bounds, and gaps for parallel stochastic optimization. Advances in Neural
Information Processing Systems, 31, 2018.

Xuyang Wu, Sindri Magnusson, Hamid Reza Feyzmahdavian, and Mikael Johansson. Delay-adaptive
step-sizes for asynchronous learning. arXiv preprint arXiv:2202.08550, 2022.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115,
2021.

Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. Staleness-aware async-sgd for distributed deep
learning. arXiv preprint arXiv:1511.05950, 2015.

Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural
networks. Advances in Neural Information Processing Systems, 32, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

1.1 Notations . 1

1.2 Previous work . 2

1.3 Contributions . 4

2 A Unifying Perspective on Rennala SGD and Malenia SGD 4

3 Non-Convergence of Weighted SGD with wk ̸= 1/Bk 6

4 First-Order and Second-Order Similarity Don’t Help 6

5 Understanding the Gap via Interpolation Assumptions 7

5.1 Strong interpolation and local PŁ condition are both required 8

5.2 Finally bridging the gap . 9

6 Conclusion 10

A 14

A Arbitrarily computation dynamics 14

B Proof of the Main Results 14

C Auxiliary Results 21

D Lower Bound in the Heterogeneous Convex Setting 21

E Proof of Theorems E.1 and E.2 24

F Assumptions 5.1, 5.6 and 5.7 imply Assumption 5.2 26

G First-Order Similarity and Second-Order Similarity 27

H Experiments 28

H.1 Without interpolation . 28

H.2 With interpolation . 28

H.3 ResNet-18 and CIFAR-10 . 29

I Experiments Details 30

I.1 Quadratic optimization task generation procedure 30

I.2 Experiments with ResNet and CIFAR-10 . 30

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A

A ARBITRARILY COMPUTATION DYNAMICS

Our new result can be readily extended to the universal computation model. To encompass virtually
all computation scenarios, assume that each worker i performs computations based on a computation
power function vi : R+ → R+. Then the number of stochastic gradients that worker i can calculate
from a time t0 to a time t1 is an integral of the computation power vi followed by the floor operation:

“# of stoch. grad. in [t0, t1]” =

⌊∫ t1

t0

vi(τ)dτ

⌋
. (9)

For instance, if worker i is inactive for the first t seconds and then active again, it would mean
vi(τ) = 0 for all τ ≤ t and vi(τ) > 0 for all τ > t. Using the universal computation model, we can
prove the theorem:
Theorem A.1. Consider the assumptions, algorithm, and parameters from Theorem 5.10. Then,
Rennala SGD converges after at most t̄⌈

c×Lmax
µ log R2

ε

⌉ seconds, where the sequence {t̄k} is defined

recursively as t̄k :=

min

{
t ≥ 0 :

n∑
i=1

⌊∫ t

t̄k−1

vi(τ)dτ

⌋
≥ max

{⌈
σ2

ε

⌉
, 1
}}

(10)

for all k ≥ 1 (t̄0 ≡ 0), and c is a universal constant.

The similar result was obtained in (Tyurin, 2025). However, Tyurin (2025) requires the equality of
the functions {fi} to get the sequence (10).

B PROOF OF THE MAIN RESULTS

Theorem 3.1. Consider the Weighted SGD method with quadratic optimization problems, where
fi(x) : R → R such that fi(x) = 0.5(x − ai)

2 and ai ∈ R for all i ∈ [n]. Assume that there is
no noise in the stochastic gradients, which means ∇fi(x; ξi) = ∇fi(x) deterministically for all
ξi ∈ Sξi , i ∈ [n], and x ∈ Rd, Then Weighted SGD converges to the minimum only if wiBi = 1 for all
i ∈ [n] (Malenia SGD-like weighing); either it does not converge or it converges to 1

n

∑n
j=1 wjBjaj

instead of 1
n

∑n
i=1 ai.

Proof. If wiBi = 1 for all i ∈ [n], then Weighted SGD converges with γ < 2 because Malenia SGD
converges. If wiBi ̸= 1 for all i ∈ [n], then

xk+1 = xk − γ
1

n

n∑
i=1

wiBi(x
k − ai)

=

(
1− γ

1

n

n∑
i=1

wiBi

)k+1

x0 +

k∑
j=0

γ

(
1− γ

1

n

n∑
i=1

wiBi

)j
1

n

n∑
i=1

wiBiai

= (1− γ)
k+1

x0 +

k∑
j=0

γ (1− γ)
j 1

n

n∑
i=1

wiBiai,

where the third equality due to the agreement 1
n

∑n
i=1 wiBi = 1.

If γ ≥ 2, then xk+1 does not converge if x0 ̸= 1
n

∑n
i=1 wiBiai and k → ∞. If γ < 2, then

lim
k→∞

xk+1 =
1

n

n∑
j=1

wjBjaj .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Remark B.1. It is possible to find {ai}ni=1, when 1
n

∑n
j=1 wjBjaj does not equal 1

n

∑n
i=1 ai

Proof. If wi ̸= 1/Bi for all i ∈ [n], then there exists k1 ∈ [n] such that 1
nwk1Bk1 < 1

n . If we take
ak1

= 2 and ai = 1 for all i ̸∈ k1, then

1

n

n∑
j=1

wjBjaj =

(
2

n
wk1Bk1 +

(
1− 1

n
wk1Bk1

))
>

1 + n

n
=

1

n

n∑
i=1

ai,

and the method converges to the point that it is not equal to 1
n

∑n
i=1 ai.

Theorem 5.10. Let Assumptions 5.1, 5.3, 1.2, 5.6, 5.7 hold3. We choose wk
i = n/

∑n
i=1 Bk

i for all
k ≥ 0, i ∈ [n] in Algorithm 1 (Weighted SGD reduces to Rennala SGD). We take γ = 1/Lmax, S =

4σ2
/µLmaxε, and run Rennala SGD for k ≥ Ω

(
Lmax

µ log R2

ε

)
iterations, then E

[∥∥xk+1 − xk+1
∗
∥∥2] ≤

ε, where xk+1
∗ is the closest solution to xk+1. Moreover, under the fixed computation model, the

method requires

O

(
min
m∈[n]

[(
1
m

m∑
i=1

1
τi

)−1 (
Lmax

µ + σ2

mεµ2

)]
log R2

ε

)
(8)

seconds.

Proof. Let us define xk
∗ as an euclidean projection of the point xk+1 on to the solution set of the

main problem (1), and take the condition expectation Ek [·] w.r.t. the randomness from the iteration k
only. Then we have

Ek

[∥∥xk+1 − xk+1
∗
∥∥2] ≤ Ek

[∥∥xk+1 − xk
∗
∥∥2]

due to the projection’s properties. Then

Ek

[∥∥xk+1 − xk+1
∗
∥∥2]

≤ Ek


∥∥∥∥∥∥xk − γ

1

n

n∑
i=1

wk
i

Bk
i∑

j=1

∇fi(x
k; ξkij)− xk

∗

∥∥∥∥∥∥
2


=
∥∥xk − xk

∗
∥∥2 − 2γEk

〈xk − xk
∗,

1

n

n∑
i=1

wk
i

Bk
i∑

j=1

∇fi(x
k; ξkij)

〉+ γ2Ek


∥∥∥∥∥∥ 1n

n∑
i=1

wk
i

Bk
i∑

j=1

∇fi(x
k; ξkij)

∥∥∥∥∥∥
2
 .

Using unbiasedness (Assumption 1.2) and the variance decomposition equality, we get

Ek

[∥∥xk+1 − xk+1
∗
∥∥2]

≤
∥∥xk − xk

∗
∥∥2 − 2γ

〈
xk − xk

∗,
1

n

n∑
i=1

wk
i B

k
i ∇fi(x

k)

〉

+ γ2

∥∥∥∥∥ 1n
n∑

i=1

wk
i B

k
i ∇fi(x

k)

∥∥∥∥∥
2

+ γ2Ek


∥∥∥∥∥∥ 1n

n∑
i=1

wk
i

Bk
i∑

j=1

(
∇fi(x

k; ξkij)−∇fi(x
k)
)∥∥∥∥∥∥

2
 .

Consider the last term, due to the independence of stochastic gradients and Assumption 1.2, we
ensure that

Ek


∥∥∥∥∥∥ 1n

n∑
i=1

wk
i

Bk
i∑

j=1

(
∇fi(x

k; ξkij)−∇fi(x
k)
)∥∥∥∥∥∥

2


3It is well-know that Assumption 5.3 implies Assumption 1.1. In Section F, we prove that Assumptions 5.1,
5.6 and Assumption 5.7 with constant µ imply Assumption 5.2 with constant µ/4.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

=
1

n2

n∑
i=1

(wk
i)

2

Bk
i∑

j=1

Ek

[∥∥∇fi(x
k; ξkij)−∇fi(x

k)
∥∥2] ≤ 1

n2

n∑
i=1

(wk
i)

2Bk
i σ

2.

Thus

Ek

[∥∥xk+1 − xk+1
∗
∥∥2] (11)

≤
∥∥xk − xk

∗
∥∥2 − 2γ

n

n∑
i=1

wk
i B

k
i

〈
xk − xk

∗,∇fi(x
k)
〉
+ γ2

∥∥∥∥∥ 1n
n∑

i=1

wk
i B

k
i ∇fi(x

k)

∥∥∥∥∥
2

+
γ2

n2

n∑
i=1

(wk
i)

2Bk
i σ

2.

We now consider the second and the third term. Since 1
n

∑n
i=1 w

k
i B

k
i = 1, using Jensen’s inequality,

we get

− 2γ

〈
xk − xk

∗,
1

n

n∑
i=1

wk
i B

k
i ∇fi(x

k)

〉
+ γ2

∥∥∥∥∥ 1n
n∑

i=1

wk
i B

k
i ∇fi(x

k)

∥∥∥∥∥
2

≤ −2γ

〈
xk − xk

∗,
1

n

n∑
i=1

wk
i B

k
i ∇fi(x

k)

〉
+ γ2 1

n

n∑
i=1

wk
i B

k
i

∥∥∇fi(x
k)
∥∥2 .

Due to Assumption 5.6, we get

1

n

n∑
i=1

wk
i B

k
i

∥∥∇fi(x
k)
∥∥2 =

1

n

n∑
i=1

wk
i B

k
i

∥∥∇fi(x
k)−∇fi(x

k
∗)
∥∥2

≤ 1

n

n∑
i=1

wk
i B

k
i Li

〈
xk − xk

∗,∇fi(x
k)−∇fi(x

k
∗)
〉

≤ Lmax
1

n

n∑
i=1

wk
i B

k
i

〈
xk − xk

∗,∇fi(x
k)−∇fi(x

k
∗)
〉

= Lmax
1

n

n∑
i=1

wk
i B

k
i

〈
xk − xk

∗,∇fi(x
k)
〉
.

In the first inequality, we use Lemma C.1 under Assumption 5.3 and convexity (Assumption 5.1).
In the second inequality, we use the bound Li ≤ Lmax for all i ∈ [n]. Taking γ ≤ 1/Lmax and
substituting the last inequality to (11), we obtain

Ek

[∥∥xk+1 − xk+1
∗
∥∥2]

≤
∥∥xk − xk

∗
∥∥2 − (2γ − Lmaxγ

2)
1

n

n∑
i=1

wk
i B

k
i

〈
xk − xk

∗,∇fi(x
k)
〉
+

γ2

n2

n∑
i=1

(wk
i)

2Bk
i σ

2

≤
∥∥xk − xk

∗
∥∥2 − γ

1

n

n∑
i=1

wk
i B

k
i

〈
xk − xk

∗,∇fi(x
k)
〉
+

γ2

n2

n∑
i=1

(wk
i)

2Bk
i σ

2.

Using the convexity, Assumption 5.7, and Lemma C.2, we get

Ek

[∥∥xk+1 − xk+1
∗
∥∥2]

≤
∥∥xk − xk

∗
∥∥2 − γµ

2

1

n

n∑
i=1

wk
i B

k
i

∥∥xk − xk
∗
∥∥2 + γ2

n2

n∑
i=1

(wk
i)

2Bk
i σ

2.

We take wk
i = n/

∑n
i=1 Bk

i in the theorem for all i ∈ [n]. Thus

Ek

[∥∥xk+1 − xk+1
∗
∥∥2] ≤ (1− γµ

2

)∥∥xk − xk
∗
∥∥2 + γ2σ2∑n

i=1 B
k
i

.

In Algorithm 1, with the chosen weights {wk
i }, we wait for the moment when

∑n
i=1 B

k
i > S. Thus

Ek

[∥∥xk+1 − xk+1
∗
∥∥2] ≤ (1− γµ

2

)∥∥xk − xk
∗
∥∥2 + γ2σ2

S
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Unrolling the recursion and taking the full expectation, we obtain

E
[∥∥xk+1 − xk+1

∗
∥∥2] ≤ (1− γµ

2

)k+1 ∥∥x0 − x0
∗
∥∥2 + k∑

j=0

(
1− γµ

2

)j γ2σ2

S

≤
(
1− γµ

2

)k+1 ∥∥x0 − x0
∗
∥∥2 + 2γσ2

µS
.

Due the choice of γ, S, and the condition on k, we have E
[∥∥xk+1 − xk+1

∗
∥∥2] ≤ ε.

It is sufficient to run the method for

O
(
Lmax

µ
log

R2

ε

)
iterations. In each iteration, the method has to ensure that

∑n
i=1 B

k
i > S. A sufficient time for that is

2 min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1(
1 +

4σ2

mLmaxεµ

) .

under the fixed computation model (see Theorem 11 in (Tyurin et al., 2024)).

Theorem A.1. Consider the assumptions, algorithm, and parameters from Theorem 5.10. Then,
Rennala SGD converges after at most t̄⌈

c×Lmax
µ log R2

ε

⌉ seconds, where the sequence {t̄k} is defined

recursively as t̄k :=

min

{
t ≥ 0 :

n∑
i=1

⌊∫ t

t̄k−1

vi(τ)dτ

⌋
≥ max

{⌈
σ2

ε

⌉
, 1
}}

(10)

for all k ≥ 1 (t̄0 ≡ 0), and c is a universal constant.

Proof. From the proof of Theorem 5.10, we know that it is sufficient to run the method for

c× Lmax

µ
log

R2

ε

iterations, where c is a universal constant. The method waits the moment when
∑n

i=1 B
k
i > S in

each iteration. The workers work in parallel, and for all i ∈ [n], will calculate⌊∫ t

0

vi(τ)dτ

⌋
stochastic gradients after t seconds. In total, all workers will calculate

∑n
i=1

⌊∫ t

0
vi(τ)dτ

⌋
stochastic

gradients. Hence, the first iteration will end after

t̄1 := min

{
t ≥ 0 :

n∑
i=1

⌊∫ t

0

vi(τ)dτ

⌋
≥ 2S

}
,

seconds. After that, the second iteration starts before time t̄1 and ends at least at time

t̄2 := min

{
t ≥ 0 :

n∑
i=1

⌊∫ t

t̄1

vi(τ)dτ

⌋
≥ 2S

}
,

because worker i can calculate at least ⌊∫ t

t̄1

vi(τ)dτ

⌋
stochastic gradients between the end of the first iteration and a time t. Using the same reasoning, we
can recursively define

t̄3, . . . , t̄⌈c×Lmax
µ log R2

ε

⌉.
The algorithm will converge after t̄⌈

c×Lmax
µ log R2

ε

⌉ seconds due to the discussion at the beginning of

the theorem.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Theorem 5.8. Consider the Weighted SGD method. Let us fix any ε, Lmax, R, µ, σ2 > 0 such that
µ < Lmax/(2n), ε < 0.01, and R > 10. For all B1, . . . , Bn ≥ 0 and any possible choice of weights
{wi(B1, . . . , Bn)} as functions of B1, . . . , Bn, there exist functions {fi} and stochastic gradients
{∇fi(·; ·)} such that {fi} satisfy Assumptions 5.1, 5.3, 5.4, and 5.7 (do not satisfy Assumption 5.6
in general), f satisfies Assumptions 5.2 and 1.1 with L = Lmax, {∇fi(·; ·)} satisfy Assumption 1.2
such that the method requires at least

Ω

((
1
n

n∑
i=1

τi

)
σ2

εnµ2 log
(

R2

ε

))
seconds to find ε–solution in terms of distances to the solution set, when the method starts at a point
in a distance less or equal to R to the closest solution.

Proof. If wi(B1, . . . , Bn)×Bi = 1 for all i ∈ [n], then it is true since the method reduces to Malenia
SGD. Assume that there exists a combination B1, . . . , Bn such that wi(B1, . . . , Bn)× Bi ̸= 1 for
some i ∈ [n]. Let us define the shortcut wi(B1, . . . , Bn) ≡ wi and fix this combination. Let us
find the index of the weight with the smallest value, i.e., j = argmini∈[n] wiBi. Without loss of
generality, assume that j = 1.

For all i ∈ [n], we take the quadratic function fi : R2 → R such that fi(x, y) = 0.5Lmaxy
2 for all

i ̸= 1 and f1(x, y) = 0.5µnx2 + 0.5Lmaxy
2, and the stochastic gradients ∇fi(x, y) + [ξi, 0]

⊤ for
all i ∈ [n], where ξ1, . . . , ξn are i.i.d. gaussian noises from N (0, σ2).

One can easily check that these functions satisfy the assumptions from the theorem. Let us consider
the second argument of the functions and consider Weighted SGD:

yk+1 = yk − γ

n

n∑
i=1

wiBiLmaxy
k = (1− γLmax)y

k,

where we simplify due to the agreement 1
n

∑n
i=1 wiBi = 1. The sequence yk converges if γ ≤

1/Lmax. It is necessary to assume that γ ≤ 1/Lmax. Let us now consider the sequence w.r.t. the first
coordinate:

xk+1 = xk − γ

n

w1

B1µnx
k +

B1∑
j=1

ξk1,j

+

n∑
i=2

wi

 Bi∑
j=1

ξki,j


= (1− γw1B1µ)x

k − γ

n

n∑
i=1

wi

 Bi∑
j=1

ξki,j

 .

Notice that 1
n

∑n
i=1 wi

(∑Bi

j=1 ξ
k
i,j

)
∼ N

(
0, 1

n2

∑n
i=1 w

2
iBiσ

2
)
. Therefore

Ek

[∣∣xk+1
∣∣2] = (1− γw1B1µ)

2 ∣∣xk
∣∣2 + γ2

n2

n∑
i=1

w2
iBiσ

2.

Necessarily, w1B1 > 0. Otherwise, E
[∣∣xk+1

∣∣2] ≥ E
[∣∣xk

∣∣2] ≥ ∣∣x0
∣∣2 for all k ≥ 1. Unrolling the

recursion and taking the full expectation, we obtain

E
[∣∣xk+1

∣∣2] = (1− γw1B1µ)
2k ∣∣x0

∣∣2 + k∑
j=0

(1− γw1B1µ)
j γ2

n2

n∑
i=1

w2
iBiσ

2

Since 1
n

∑n
i=1 wiBi = 1 and γ ≤ 1/Lmax < 1/(2nµ), we have 0 < γw1B1µ ≤ 1/2 and

E
[∣∣xk+1

∣∣2] = (1− γw1B1µ)
2k ∣∣x0

∣∣2 + 1− (1− γw1B1µ)
k+1

w1B1

γ

n2µ

n∑
i=1

w2
iBiσ

2. (12)

In order to ensure that E
[∣∣xk+1

∣∣2] ≤ ε, Weighted SGD should do at least

k ≥ 1

2 log (1− γw1B1µ)
log

(
ε

|x0|2

)
≥ 1

4γw1B1µ
log

(∣∣x0
∣∣2

ε

)
(13)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

steps to get (1− γw1B1µ)
2k ∣∣x0

∣∣2 ≤ ε. Note that k ≥ 1 because
∣∣x0
∣∣2 ≥ 1 and ε ≤ 0.01. Thus we

can bound the second term in (12) in the following way:

1− (1− γw1B1µ)
k+1

w1B1

γ

n2µ

n∑
i=1

w2
iBiσ

2 ≥ 1

2w1B1

γ

n2µ

n∑
i=1

w2
iBiσ

2

because (1− γw1B1µ)
k ≤

√
ε

|x0|2 ≤ 1
2 . Therefore, it is necessary in the algorithm choose the

parameters in a such way that 1
2w1B1

γ
n2µ

∑n
i=1 w

2
iBiσ

2 ≤ ε. Using this bound and (13), we obtain

k ≥ σ2

8B2
1εn

2µ2

n∑
i=1

w2
i

w2
1

Bi log

(∣∣x0
∣∣2

ε

)
=

σ2

8εnµ2

1

n

n∑
i=1

w2
iB

2
i

w2
1B

2
1

1

Bi
log

(∣∣x0
∣∣2

ε

)
.

Recall that w2
1B

2
1 ≤ w2

iB
2
i for all i ∈ [n]. Thus, the algorithm has to do

k ≥ σ2

8εnµ2

1

n

n∑
i=1

1

Bi
log

(∣∣x0
∣∣2

ε

)
.

steps. Taking x0 = R/
√
2 and y0 = R/

√
2, we get E

[∣∣xk
∣∣2 + ∣∣yk∣∣2] ≥ ε and

E
[
f(xk, yk)

]
= E

[
0.5µ× (xk)2 + 0.5Lmax × (yk)2

]
≥ 0.5µε

for all

k <
σ2

8εnµ2

1

n

n∑
i=1

1

Bi
log

(∣∣x0
∣∣2

ε

)
.

Under the fixed computation model, Bi =
⌊
t∗

τi

⌋
, where t∗ is the time of one iteration. We can

conclude that the required total time is at least

t∗ × σ2

8εnµ2

1

n

n∑
i=1

1

Bi
log

(∣∣x0
∣∣2

ε

)
≥ σ2

8εnµ2

1

n

n∑
i=1

τi log

(∣∣x0
∣∣2

ε

)
.

Theorem 5.5. Consider the Weighted SGD method. Let us fix any ε, Lmax, R, µ, σ2 > 0 such that
µ < Lmax/(2n), ε < 0.01, and R > 10. For all B1, . . . , Bn ≥ 0 and any possible choice of weights
{wi(B1, . . . , Bn)} as functions of B1, . . . , Bn, there exist functions {fi} and stochastic gradients
{∇fi(·; ·)} such that {fi} satisfy Assumptions 5.1, 5.3, and 5.4, f satisfies Assumptions 5.2 and 1.1
with L = Lmax, {∇fi(·; ·)} satisfy Assumption 1.2 such that the method requires at least

Ω

((
1
n

n∑
i=1

τi

)
σ2

εnµ2 log
(

R2

ε

))
seconds to find ε–solution in terms of distances to the solution set, when the method starts at a point
in a distance less or equal to R to the closest solution.

Proof. The theorem is a simple corollary of Theorem 5.8 because Theorem 5.8 is stated under more
strict assumptions on the class of the functions and stochastic gradients. The result of Theorem 5.8
holds even under additional Assumption 5.7.

Theorem 5.9. Consider the Weighted SGD method. Let us fix any ε, Lmax, R, σ2 > 0 such that
µ < Lmax/(2n), ε < 0.01, and R > 10. For all B1, . . . , Bn ≥ 1 and any possible choice of weights
{wi(B1, . . . , Bn)} as functions of B1, . . . , Bn, there exist functions {fi} and stochastic gradients
{∇fi(·; ·)} such that {fi} satisfy Assumptions 5.1, 5.3, 5.4, and 5.6 (do not satisfy Assumption 5.7
in general), f satisfy Assumptions 5.2 and 1.1 with L = Lmax, {∇fi(·; ·)} satisfy Assumption 1.2,
such that the method requires at least

Ω

((
1
n

n∑
i=1

τi

)
σ2

εnµ2 log
(

R2

ε

))
seconds to find ε–solution in terms of distances to the solution set, when the method starts at a point
in a distance less or equal to R to the closest solution.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Proof. Let us define the shortcut wi(B1, . . . , Bn) ≡ wi. In this construction, we consider the function
fi : R2 → R such that

fi(x, y) =

µ
Bi

2
n

∑n
i=1

1
Bi

x2 +
Lmax

2
y2.

and the stochastic gradients ∇fi(x, y) + [ξi, 0]
⊤ for all i ∈ [n], where ξ1, . . . , ξn are i.i.d. gaussian

noises from N (0, σ2). One can easily check that the assumptions from the theorem hold. Using the
same reasoning as in the proof of Theorem 5.8, we have to take γ ≤ 1/Lmax. Next, we consider the
sequence of Weighted SGD w.r.t. the first argument:

xk+1 = xk − γ

∑n
i=1 wiµ∑n
i=1

1
Bi

xk +
1

n

n∑
i=1

wi

 Bi∑
j=1

ξki,j


=

(
1− γµ

∑n
i=1 wi∑n
i=1

1
Bi

)
xk − γ

n

n∑
i=1

wi

 Bi∑
j=1

ξki,j

 .

Note that
∑n

i=1 wi∑n
i=1

1
Bi

≤
∑n

i=1 wiBi = n due to 1
n

∑n
i=1 wiBi = 1, and γ ≤ 1/Lmax ≤ 1/(2nµ).

Using the same reasoning as in the proof of Theorem 5.8, we get

E
[∣∣xk+1

∣∣2] = (1− γµ

∑n
i=1 wi∑n
i=1

1
Bi

)2k ∣∣x0
∣∣2 + 1−

(
1− γµ

∑n
i=1 wi∑n
i=1

1
Bi

)k+1

∑n
i=1 wi∑n
i=1

1
Bi

γ

n2µ

n∑
i=1

w2
iBiσ

2.

(14)

Weighted SGD should do at least

k ≥ 1

4γµ
∑n

i=1 wi∑n
i=1

1
Bi

log

(∣∣x0
∣∣2

ε

)
(15)

steps to get
(
1− γµ

∑n
i=1 wi∑n
i=1

1
Bi

)2k ∣∣x0
∣∣2 ≤ ε. The parameters should satisfy the inequality

1∑n
i=1 wi∑n
i=1

1
Bi

γ

2n2µ

n∑
i=1

w2
iBiσ

2 ≤ ε

to ensure that E
[∣∣xk+1

∣∣2] ≤ ε for some k ≥ 0. Combining this inequality with (15), we get

k ≥

(
n∑

i=1

1

Bi

)2
σ2

8n2µ2ε

∑n
i=1 w

2
iBi

(
∑n

i=1 wi)
2 log

(∣∣x0
∣∣2

ε

)
.

It is left to use the Cauchy–Schwarz inequality
∑n

i=1 w2
iBi

(
∑n

i=1 wi)
2 ≥

(∑n
i=1

1
Bi

)−1

to ensure that the

method will not find an ε–solution in terms of the distance to the solution x∗ = 0 before

1

8

σ2

εnµ2

(
n∑n

i=1
1
Bi

)−1

log

(∣∣x0
∣∣2

ε

)

steps. Since f(x) = µ
2x

2 + Lmax

2 y2, the method will need at least

1

16

σ2

εnµ

(
n∑n

i=1
1
Bi

)−1

log

(
µ
∣∣x0
∣∣2

ε

)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Protocol 2 Time Multiple Oracles Protocol

1: Input: function(s) f ∈ F , oracles and distributions ((O1, ..., On), (D1, ...,Dn)) ∈ O(f),
algorithm A ∈ A

2: s0i = 0 for all i ∈ [n]
3: for k = 0, . . . ,∞ do
4: (tk+1, ik+1, xk) = Ak(g1, . . . , gk), ▷ tk+1 ≥ tk

5: (sk+1
ik+1 , g

k+1) = Oik+1(tk+1, xk, skik+1 , ξ
k+1), ξk+1 ∼ Dik+1 ▷ sk+1

j = skj ∀j ̸= ik+1

6: end for

iterations to find an ε–solution in terms of function values. As in the proof of Theorem 5.8, it is
sufficient to take x0 = R/

√
2 and y0 = R/

√
2. Under the fixed computation model, Bi =

⌊
t∗

τi

⌋
,

where t∗ is the time of one iteration. We can conclude that the required total time is at least

t∗ × 1

16

σ2

εnµ

(
n∑n

i=1
1
Bi

)−1

log

(
µ
∣∣x0
∣∣2

ε

)
≥ 1

16

σ2

εnµ

1

n

n∑
i=1

τi log

(
µ
∣∣x0
∣∣2

ε

)
.

C AUXILIARY RESULTS

In this section, we present well-known results from optimization.
Lemma C.1 (Nesterov (2018)). Let f : Rd → R be a function, which L–smooth and convex. Then
for all x, y ∈ Rd we have:

∥∇f(x)−∇f(y)∥2 ≤ L ⟨∇f(x)−∇f(y), x− y⟩ . (16)

Lemma C.2 (Karimi et al. (2016)). Let f : Rd → R be a convex function, which satisfies PŁ condition
with a parameter µ (Assumption 5.2). Then, for all x ∈ Rd, we have

⟨∇f(x), x− x̄∗⟩ ≥
µ

2
∥x̄∗ − x∥2 (17)

where x̄∗ is the projection of x onto the solution set of min
x∈Rd

f(x).

D LOWER BOUND IN THE HETEROGENEOUS CONVEX SETTING

This section complements the results from (Tyurin & Richtárik, 2023), where the authors only
prove the optimal time complexities in the homogeneous nonconvex, heterogeneous nonconvex, and
homogeneous convex settings. Here, we resolve the last piece, the heterogeneous convex setting.
Following Tyurin & Richtárik (2023), we have to formalize and introduce the following protocol and
classes.

We investigate the optimization problem (1) when the function f is convex. For the convex case,
using Protocol 2, we use the complexity measure

mtime (A,F) := inf
A∈A

sup
f∈F

sup
(O,D)∈O(f)

inf

{
t ≥ 0

∣∣∣∣E [infk∈St

f(xk)

]
− inf

x∈Q
f(x) ≤ ε

}
,

St :=
{
k ∈ N0

∣∣tk ≤ t
}
,

(18)

where the sequences tk and xk are generated by Protocol 2, and Q is a convex set. Let us take any set
Q, and consider the following class of convex functions.
Definition D.1 (Function Class F conv

Q,L,M).
We assume that a function f : Rd → R is convex, differentiable, L-smooth on the set Q, i.e.,

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ ∀x, y ∈ Q,

and M -Lipschitz on the set Q, i.e.,
|f(x)− f(y)| ≤ M ∥x− y∥ ∀x, y ∈ Q.

A set of all functions with such properties we define as F conv
Q,L,M .

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Definition D.2 (Algorithm Class Azr).
An algorithm A = {Ak}∞k=0 is a sequence such that

Ak : Rd × · · · × Rd︸ ︷︷ ︸
k times

→ R≥0 × Rd ∀k ≥ 1, A0 ∈ R≥0 × Rd,

and, for all k ≥ 1 and g1, . . . , gk ∈ Rd, tk+1 ≥ tk, where tk+1 and tk are defined as (tk+1, ·) =
Ak(g1, . . . , gk) and (tk, ·) = Ak−1(g1, . . . , gk−1).

The following oracle helps to formalize the fixed computation model.

O∇f
τ : R≥0︸︷︷︸

time

× Rd︸︷︷︸
point

× (R≥0 × Rd × {0, 1})︸ ︷︷ ︸
input state

×Sξ → (R≥0 × Rd × {0, 1})︸ ︷︷ ︸
output state

×Rd

such that O∇f
τ (t, x, (st, sx, sq), ξ) =


((t, x, 1), 0), sq = 0,

((st, sx, 1), 0), sq = 1 and t < st + τ,

((0, 0, 0), ∇f(sx; ξ)), sq = 1 and t ≥ st + τ,
(19)

and ∇f(·; ·) is a stochastic mapping.

Definition D.3 (Oracle Class Oconv,σ2

τ1,...,τn).
Let us consider an oracle class such that, for any f ∈ F conv

Q,L,M , it returns oracles Oi = O∇fi
τi and

distributions Di for all i ∈ [n], where ∇fi(·; ·) is an unbiased σ2-variance-bounded mapping on the
set Q of the gradient of the local function in worker i. The oracles O∇fi

τi are defined in (19). We
define such oracle class as Oconv,σ2

τ1,...,τn . Without loss of generality, we assume that 0 < τ1 ≤ · · · ≤ τn.

Notice that this oracle class differs from the oracle class for convex functions in (Tyurin & Richtárik,
2023) because we consider the heterogeneous setting where the oracles return unbiased stochastic
gradients of the local functions fi, which can be different. We refer the reader to (Tyurin & Richtárik,
2023) for additional details about the time complexities formalization. We are now ready to state the
theorem.
Theorem D.4 (Informal theorem (see the formal Theorem D.5)). Let Assumptions 5.1, 1.1, and 1.2
hold. It is impossible to converge faster than

Θ

(
τn

√
LR/

√
ε +

(
1/n

n∑
i=1

τi

)
σ2R2

/nε2

)
seconds under the fixed computation model.

Theorem D.5. Let us consider the oracle class Oconv,σ2

τ1,...,τn for some σ2 > 0 and 0 < τ1 ≤ · · · ≤ τn.

We fix any R,L,M, ε > 0 such that
√
LR > c1

√
ε > 0 and σ2 ≥ M2. In the view Protocol 2, for

any algorithm A ∈ Azr, there exists a set Q, a function f ∈ F conv
Q,L,M and oracles and distributions

((O1, . . . , On), (D1, . . . ,Dn)) ∈ Oconv,σ2

τ1,...,τn(f) such that

E
[
inf
k∈St

f(xk)

]
− inf

x∈Q
f(x) > ε,

where St :=
{
k ∈ N0

∣∣tk ≤ t
}
,

t = c×

[
τn min

{√
LR√
ε

,
M2R2

ε2

}
+

(
1

n

n∑
i=1

τi

)
σ2R2

nε2

]
,

and R is the euclidean distance between 0 (starting point) and the closest solution x∗ ∈ Q. The
quantities c1, and c are universal constants.

Proof. First term. It is easy to prove the dependence on the first term τn min{
√
LR√
ε
, M2R2

ε2 } using
the same idea as in (Lu & De Sa, 2021; Tyurin & Richtárik, 2023; Huang et al., 2022). It is sufficient

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

to put a “hard” convex function (Nesterov, 2018; Woodworth et al., 2018) to the slowest worker
corresponding with the time τn = maxi∈[n] τi. In particular, we can consider the “hard” quadratic
function f̄ from (Nesterov, 2018)[Section 2.1.2] and take the functions

fi(x) =

{
n× f̄(x), i = n

0, i < n.

for all x ∈ Rd. The function f = 1
n

∑n
i=1 fi = f̄ belongs to the class F conv

Q,L,∞. We take the stochastic
gradients without noise, i.e., ∇fi(x; ξi) = ∇fi(x) deterministically for all x ∈ Rd, ξi ∈ Sξi , and
i ∈ [n]. It is clear that the only worker that can solve the problem is worker n, and it takes τn seconds
to find one gradient by the oracle construction. Thus, the required time complexity is Θ

(
τn

√
LR√
ε

)
since the required oracle complexity is Θ

(√
LR√
ε

)
(Nesterov, 2018). One can get Θ

(
τn

M2R2

ε2

)
using

the same reasoning.

Second term. The proof of the second term is slightly trickier and uses the construction from
(Woodworth et al., 2018). Let us fix any algorithm. We use the proof of Lemma 10 from (Woodworth
et al., 2018) that has the following result. For any σ2, B > 0 and any algorithm, it is possible to
construct a one dimensional linear function g : R → R on the domain {x ∈ R : |x| ≤ B}, a
stochastic gradient mapping ∇g : R× Sξ → R, and a distribution D such that

E
[
g(xN)

]
− min

|x|≤B
g(x) ≥ σB

8
√
N

(20)

after N queries of the oracle, where ∇g is unbiased and σ2-variance-bounded.

The idea is to put g to each worker but with different domain sizes. In particular, for all i ∈ [n], we
take the function fi : Rn → R such that

fi(x) = g(xi), (21)

where g is the function from Lemma 10 of (Woodworth et al., 2018), and xi is the ith coordinate of
a vector x. For all i ∈ [n], we consider the function fi on the domain {xi ∈ R | |xi| ≤ Ri}, where
Ri := R×

√
τi√∑n
i=1 τi

. One can see that f is convex, 0–smooth (because g is linear), and M–Lipschitz

(because σ ≤ M). The distance between 0 and the optimal point is less or equal to R because
n∑

i=1

R2
i =

n∑
i=1

R2 τi∑n
i=1 τi

= R2

and the optimal point for the problem g(xi) → min|xi|≤Ri
is either Ri or −Ri. We take

Q = {x ∈ Rn : |xi| ≤ Ri ∀i ∈ [n]}.

Let us define the time

t̄ :=
σ2R2

256nε2

(
1

n

n∑
i=1

τi

)
. (22)

By the time t̄, worker i can calculate at most

Ni :=

⌊
t̄

τi

⌋
(23)

stochastic gradients. Therefore,

E [f(x̄)]−min
x∈Q

f(x) =
1

n

n∑
i=1

(
E [g(x̄i)]− min

|xi|≤Bi

g(x̄i)

)
(20)
≥ 1

n

n∑
i=1

σRi

8
√
Ni

=
1

n

n∑
i=1

σR
√
τi

8
√
Ni

√∑n
i=1 τi

(22),(23)
≥

n∑
i=1

2ετi∑n
i=1 τi

= 2ε.

where x̄ ∈ Rn is any possible output of the algorithm before the time t̄.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E PROOF OF THEOREMS E.1 AND E.2

Theorem E.1. Let Assumptions 5.1, 5.2, 1.2, 1.1 hold, and the functions {fi} are equal. Let us take
γ = 1/L and S = 4σ2

/µLε, then Rennala SGD (Algorithm 1 with wk
i = n/

∑n
i=1 Bk

i) finds xk+1 such

that E
[∥∥xk+1 − xk+1

∗
∥∥2] ≤ ε after

O

(
min
m∈[n]

[(
1
m

m∑
i=1

1
τi

)−1 (
L
µ + σ2

mεµ2

)]
log R2

ε

)
(24)

seconds, where xk+1
∗ is the closest solution to xk+1.

Proof. Since the functions are equal, Rennala SGD is equivalent to

xk+1 = xk − γgkR ,

gkR := 1∑n
i=1 Bk

i

n∑
i=1

Bk
i∑

j=1

∇f(xk; ξkij).

Clearly, gkR is unbiased and

Ek

[∥∥gkR −∇f(xk)
∥∥2] = (n∑

i=1

Bk
i

)−2 n∑
i=1

Bk
i∑

j=1

Ek

[∥∥∇f(xk; ξkij)−∇f(xk)
∥∥]2 ≤ σ2

(
n∑

i=1

Bk
i

)−1

.

Rennala SGD waits for the moment when
∑n

i=1 B
k
i > S (see Alg. 1 with wk

i = n/
∑n

i=1 Bk
i). Thus

Ek

[∥∥gkR −∇f(xk)
∥∥2] ≤ σ2

S
≤ µLε

4

We can use Theorem E.3 to get

E
[∥∥xk+1 − xk+1

∗
∥∥2] ≤ (1− γµ

2

)k+1 ∥∥x0 − xk
∗
∥∥2 + γLε

2
.

Since γ = 1
L , we obtain

E
[∥∥xk+1 − xk+1

∗
∥∥2] ≤ (1− µ

2L

)k+1 ∥∥x0 − xk
∗
∥∥2 + ε

2
.

The last inequality ensure that the method finds an ε–solution after

O
(
L

µ

)
iterations. In each iteration, the method has to ensure that

∑n
i=1 B

k
i > S. A sufficient time for that is

2 min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1

(1 + S)

 .

under the fixed computation model (see Theorem 11 in (Tyurin et al., 2024)). It is left to multiply this
time by O

(
L
µ

)
.

Theorem E.2. Let Assumptions 5.1, 5.2, 1.2, 1.1 hold. Let us take γ = 1/L and S = 4σ2
/µLε, then

Malenia SGD (Algorithm 1 with wk
i = 1/Bk

i) finds xk+1 such that E
[∥∥xk+1 − xk+1

∗
∥∥2] ≤ ε after

O
([

τn
L
µ +

(
1
n

n∑
i=1

τi

)
σ2

nεµ2

]
log R2

ε

)
(25)

seconds, where xk+1
∗ is the closest solution to xk+1.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Proof. The proof of this theorem almost repeats the proof of Theorem E.1. The variance of Malenia
SGD is

Ek

[∥∥gkM −∇f(xk)
∥∥2] = Ek


∥∥∥∥∥∥ 1n

n∑
i=1

1

Bk
i

Bk
i∑

j=1

∇fi(x
k; ξkij)−∇f(xk)

∥∥∥∥∥∥
2
 ≤ σ2

n

 1

n

n∑
j=1

1

Bk
i

 .

The method waits for the moment when
(
1
n

∑n
i=1

1/Bk
i

)−1
> S

n . Therefore

Ek

[∥∥gkM −∇f(xk)
∥∥2] ≤ σ2

S
.

Using the same reasoning, the method finds an ε–solution after

O
(
L

µ

)
iterations. In each iteration, the method has to ensure that

(
1
n

∑n
i=1

1/Bk
i

)−1
> S

n . A sufficient time
for that is

t̄ = 2

(
τn +

(
1

n

n∑
i=1

τi

)
S

n

)

under the fixed computation model because the number of computed stochastic gradients Bk
i ≥

⌊
t̄
τi

⌋
,

and

1

n

n∑
i=1

1

Bk
i

≤ 1

n

n∑
i=1

1⌊
t̄
τi

⌋ ≤ 1

n

n∑
i=1

2τi
t̄

<
n

S
,

where we use ⌊x⌋ ≥ x
2 for all x ≥ 1. Multiplying t̄ by O

(
L
µ

)
, we get the result.

Theorem E.3. Consider the method

xk+1 = xk − γ∇f(xk; ξk), (26)

where Ek

[
∇f(xk; ξk)

]
= ∇f(xk), Ek

[∥∥∇f(xk; ξk)−∇f(xk)
∥∥2] ≤ σ2, and σ2 > 0. Let As-

sumptions 5.1, 5.2, and 1.1 hold. Let us take γ = 1/L and S = 2σ2
/µLε, then the method finds xk+1

such that

E
[∥∥xk+1 − xk+1

∗
∥∥2] ≤ (1− γµ

2

)k+1 ∥∥x0 − xk
∗
∥∥2 + 2γσ2

µ
,

where xk+1
∗ is the closest solution of min

x∈Rd
f(x) to xk+1.

Proof. Using the properties of the projection and (26), we have

Ek

[∥∥xk+1 − xk+1
∗
∥∥2] ≤ Ek

[∥∥xk+1 − xk
∗
∥∥2]

= Ek

[∥∥xk − γ∇f(xk; ξk)− xk
∗
∥∥2]

= Ek

[∥∥xk − xk
∗
∥∥2]− 2γEk

[〈
∇f(xk; ξk), xk − xk

∗
〉]

+ γ2Ek

[∥∥∇f(xk; ξk)
∥∥2]

= Ek

[∥∥xk − xk
∗
∥∥2]− 2γ

〈
∇f(xk), xk − xk

∗
〉
+ γ2Ek

[∥∥∇f(xk; ξk)
∥∥2] .

In the last equality, we use the unbiasedness. Due the variance decomposition equality, we get

Ek

[∥∥xk+1 − xk+1
∗
∥∥2] ≤ Ek

[∥∥xk − xk
∗
∥∥2]− 2γ

〈
∇f(xk), xk − xk

∗
〉
+ γ2

∥∥∇f(xk)
∥∥2 + γ2Ek

[∥∥∇f(xk; ξk)−∇f(xk)
∥∥2] .

(27)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Since the function f is L–smooth and ∇f(xk
∗) = 0, we obtain

− 2γ
〈
∇f(xk), xk − xk

∗
〉
+ γ2

∥∥∇f(xk)
∥∥2

= −2γ
〈
∇f(xk)−∇f(x∗), x

k − xk
∗
〉
+ γ2

∥∥∇f(xk)−∇f(x∗)
∥∥2

≤ −2γ
〈
∇f(xk)−∇f(x∗), x

k − xk
∗
〉
+ Lγ2

〈
∇f(xk)−∇f(x∗), x

k − xk
∗
〉

= γ (Lγ − 2)
〈
∇f(xk)−∇f(x∗), x

k − xk
∗
〉
.

Taking γ ≤ 1
L and substituting the inequality to (27), we get

Ek

[∥∥xk+1 − xk+1
∗
∥∥2] ≤ Ek

[∥∥xk − xk
∗
∥∥2]− γ

〈
∇f(xk), xk − xk

∗
〉
+ γ2Ek

[∥∥∇f(xk; ξk)−∇f(xk)
∥∥2] .

The σ2–variance bounded ensures that

Ek

[∥∥xk+1 − xk+1
∗
∥∥2] ≤ Ek

[∥∥xk − xk
∗
∥∥2]− γ

〈
∇f(xk), xk − xk

∗
〉
+ γ2σ2.

Due to convexity and Assumption 5.2, we can use Lemma C.2, which yields

Ek

[∥∥xk+1 − xk+1
∗
∥∥2] ≤ Ek

[∥∥xk − xk
∗
∥∥2]− γµ

2

∥∥xk − xk
∗
∥∥+ γ2σ2

=
(
1− γµ

2

)
Ek

[∥∥xk − xk
∗
∥∥2]+ γ2σ2.

Unrolling the recursion and taking the full expectation, we obtain

E
[∥∥xk+1 − xk+1

∗
∥∥2] ≤ (1− γµ

2

)k+1 ∥∥x0 − x0
∗
∥∥2 + 2γσ2

µ

F ASSUMPTIONS 5.1, 5.6 AND 5.7 IMPLY ASSUMPTION 5.2

Theorem F.1. Let {fi} satisfy Assumption 5.1, 5.6, and Assumption 5.7 with constant µ, then f
satisfies Assumption 5.2 with constant µ

4 .

Proof. We fix x ∈ Rd. Since Assumption 5.6 hold, then the functions share the closest solution x∗ to
x. Assumption 5.7 ensures that

fi(x)− fi(x∗) ≥
µ

2
∥x− x∗∥2 .

for all i ∈ [n] (Karimi et al., 2016). Thus

f(x)− f(x∗) ≥
µ

2
∥x− x∗∥2 .

Due to convexity, we get

f(x∗) ≥ f(x) + ⟨∇f(x), x∗ − x⟩ .

Therefore

f(x)− f(x∗) ≤ ⟨∇f(x), x− x∗⟩ ≤ ∥∇f(x)∥ ∥x− x∗∥ ≤ ∥∇f(x)∥
√

2

µ

√
f(x)− f(x∗)

and
µ

4
(f(x)− f(x∗)) ≤

1

2
∥∇f(x)∥2 ,

which is Assumption 5.2 with constant µ
4 .

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

G FIRST-ORDER SIMILARITY AND SECOND-ORDER SIMILARITY

Theorem 4.3. Consider the Weighted SGD method with fi(x) : R → R such that fi(x) =

β ⟨ai, x⟩ + β
2 ∥x∥2 , ai ∈ R for all i ∈ [n], 1

n

∑n
i=1 ai = 0, and ∥ai∥ = 1, where β > 0 is free

parameter. Assume that there is no noise in the stochastic gradients, which means ∇fi(x; ξi) =
∇fi(x) deterministically for all ξi ∈ Sξi , i ∈ [n], and x ∈ R, Then Weighted SGD converges to the
point 1

n

∑n
j=1 wjBjaj instead of x∗ = 0, Assumption 4.1 (the first-order similarity) is satisfied with

δ1 = 2β2, and Assumption 4.2 (the second-order similarity) is satisfied with δ2 = 0.

Proof. The first-order similarity of these functions is

max
x∈Rd

max
i,j∈[n]

∥∇fi(x)−∇fj(x)∥2 = β2 max
i,j∈[n]

∥ai − aj∥2 ≤ 2β2.

Thus, the parameter β from the construction controls this similarity. Taking β small, we increase
similarity between the functions. At the same time, the distance

∥∥∥ 1
n

∑n
j=1 wjBjaj

∥∥∥ between the

minimum x∗ = 0 and the point 1
n

∑n
j=1 wjBjaj where Weighted SGD converges does not depend

on β.

Notice that the second-order similarity between the functions is zero since ∇2fi(x) = f ′′
i (x) = β

for all i ∈ [n].

The rest of the proof is almost the same as in Theorem 3.1. If wiBi = 1 for all i ∈ [n], then Weighted
SGD converges with γ < 2

β because Malenia SGD converges. If wiBi ̸= 1 for all i ∈ [n], then

xk+1 = xk − γ
1

n

n∑
i=1

wiBiβ(ai + xk)

=

(
1− γ

1

n

n∑
i=1

wiBiβ

)
xk − γβ

1

n

n∑
i=1

wiBiai

= (1− γβ)xk − γβ
1

n

n∑
i=1

wiBiai

= (1− γβ)
k+1

x0 +

k∑
j=0

γβ (1− γβ)
j 1

n

n∑
i=1

wiBiai,

where the second equality due to the agreement 1
n

∑n
i=1 wiBi = 1. If γ ≥ 2

β , then xk+1 does not
converge when k → ∞. If γ < 2

β , then

lim
k→∞

xk+1 =
1

n

n∑
j=1

wjBjaj .

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

H EXPERIMENTS

We conduct a comparison between Rennala SGD and Malenia SGD on both stochastic quadratic opti-
mization tasks and real-world machine learning problems. These are standard quadratic optimization
and computer vision problems, the design of which we explain in Section I. We developed a library
that simulates the behavior of n = 100 workers. Both methods have two hyperparameters: step
size γ and parameter S. We do a grid search for both methods and find the best pairs in all setups.
We start with synthetic quadratic optimization problems, which are generated without and with the
interpolation regime. The procedure is described in Section I.1.

H.1 WITHOUT INTERPOLATION

0 1 2 3 4 5 6
times (seconds) 1e6

10 2

10 1

100

101

f(x
t)

f(x
*)

Malenia SGD: Step size: 1.0
Rennala SGD: Step size: 0.0625

Figure 1: Comparison of the methods on a quadratic optimization problem without interpolation. We
take the computation time τi = i2 for all i ∈ [n].

In Figure 1, we present results without interpolation. The plots concur with the theory from Section 5,
where we explain that it is essential to have interpolation to break the time complexity of Malenia SGD.
Rennala SGD has biased gradient estimators and does not converge to a minimum of the quadratic
optimization problem in Figure 1.

H.2 WITH INTERPOLATION

0 10000 20000 30000 40000
times (seconds)

10 4

10 3

10 2

10 1

100

101

f(x
t)

f(x
*)

Malenia SGD: Step size: 2.0
Rennala SGD: Step size: 2.0

0 500 1000 1500 2000 2500 3000 3500 4000
times (seconds)

10 5

10 4

10 3

10 2

10 1

100

101

f(x
t)

f(x
*)

Malenia SGD: Step size: 2.0
Rennala SGD: Step size: 1.0

Figure 2: Comparison of the methods on quadratic optimization problems with interpolation. Times
{τi} less diverse: Left plot: τi =

√
i for all i ∈ [n]. Right plot: τ1 = 0.01, τ2 = 1, . . . , τn = 1.

In Figures 2 and 3, we consider the methods in the interpolation regime. As expected, according to
Section 5.2, Rennala SGD outperforms Malenia SGD in all experiments. We compare the methods with
different {τi}. In Figures 2, the times {τi} are less diverse, so the difference between the methods is
less profound. In Figures 3, {τi} are more different; thus, we can see that Rennala SGD converges
much faster to low function values because it has much less variance in the corresponding gradient
estimator.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6
times (seconds) 1e6

10 3

10 2

10 1

100

101

f(x
t)

f(x
*)

Malenia SGD: Step size: 1.0
Rennala SGD: Step size: 2.0

0 1000 2000 3000 4000 5000 6000 7000
times (seconds)

10 6

10 5

10 4

10 3

10 2

10 1

100

101

f(x
t)

f(x
*)

Malenia SGD: Step size: 1.0
Rennala SGD: Step size: 1.0

Figure 3: Comparison of the methods on quadratic optimization problems with interpolation. Times
{τi} more diverse: Left plot: τi = i2 for all i ∈ [n]. Right plot: τ1 = 0.001, τ2 = 1, . . . , τn = 1.

H.3 RESNET-18 AND CIFAR-10

We also verify how Rennala SGD and Malenia SGD work with ResNet-18 and the CIFAR-10 classifi-
cation problem (Krizhevsky et al., 2009) (License: MIT). Both algorithms take step size γ = 0.25,
sample a batch of size 128, and the smallest S such that all workers calculate at least one batch. The
dataset CIFAR-10 is split between the workers, so we consider the heterogeneous setting; all workers
access different samples. The results of the experiments are presented in Figure 4. One can see that
Rennala SGD converges faster in terms of accuracy, which might be explained by the fact that neural
networks work in the interpolation regime.

0 5000 10000 15000 20000 25000 30000
times (seconds)

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

 (T
es

t)

Malenia SGD: Step size: 0.25
Rennala SGD: Step size: 0.25

Figure 4: Comparison of the methods on the CIFAR-10 classification problem with ResNet-18. We
take the computation time τi = i2.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

I EXPERIMENTS DETAILS

The experiments were run in Python 3 using an Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz.

I.1 QUADRATIC OPTIMIZATION TASK GENERATION PROCEDURE

In Section H, we perform experiments using synthetic quadratic optimization problems

min
x∈Rd

1

n

n∑
i=1

(
1

2
x⊤Aix− x⊤bi

)
.

Below, we present the algorithm, based on (Szlendak et al., 2021), that generates these problems. In
all experiments, we take s = 3 to ensure that the generated matrices are diverse. We take n = 100,
d = 100, and λ = 0.001. The stochastic gradients are equal to the true gradients plus standard
Gaussian noise added to the coordinates to emulate stochasticity.

With these parameters and procedures, we run the experiments from Section H.1. To conduct the
experiments from Section H.2 in the interpolation regime, we take the matrices A1, · · · ,An, vectors
b1, · · · , bn returned by Algorithm 3. Let x̄∗ be the solution of the quadratic optimization problem
1
n

∑n
i=1 Aix̄∗ = 1

n

∑n
i=1 bi. Then, we redefine the vectors {bi} as bi = Aix̄∗ to ensure that we

are working in the interpolation regime. With this strategy, the matrices are still different, and the
functions {fi} are not equal.

Algorithm 3 Generate quadratic optimization tasks

1: Parameters: number nodes n, dimension d, regularizer λ, and noise scale s.
2: for i = 1, . . . , n do
3: Generate random noises ηsi = 1 + sζsi and ηbi = sζbi , i.i.d. ζsi , ζ

b
i ∼ N (0, 1)

4: Take vector bi =
ηs
i

4 (−1 + ηbi , 0, · · · , 0) ∈ Rd

5: Take the initial tridiagonal matrix

Ai =
ηsi
4


2 −1 0

−1
.
. −1

0 −1 2

 ∈ Rd×d

6: end for
7: Take the mean of matrices A = 1

n

∑n
i=1 Ai

8: Find the minimum eigenvalue λmin(A)
9: for i = 1, . . . , n do

10: Update matrix Ai = Ai + (λ− λmin(A))I
11: end for
12: Take starting point x0 = (

√
d, 0, · · · , 0)

13: Output: matrices A1, · · · ,An, vectors b1, · · · , bn, starting point x0

I.2 EXPERIMENTS WITH RESNET AND CIFAR-10

In Section H.3, we consider the standard computer vision classification problem with ResNet-18 (He
et al., 2016) and CIFAR-10 (Krizhevsky et al., 2009). We conduct the experiments using PyTorch
and implement both Rennala SGD and Malenia SGD optimizers. For reproducibility, we use the
default ResNet-18 architecture provided in PyTorch and split randomly and evenly the CIFAR-10
dataset across multiple workers to create a heterogeneous data distribution scenario. We use standard
preprocessing techniques for CIFAR-10, including normalization and random cropping, and train the
network for a fixed number of epochs. The performance metrics include top-1 accuracy. In total, we
solve the optimization problem

min
x∈Rd

1
n

∑n
i=1

(
1
m

∑m
j=1 loss(ResNet(aij ;x), yij)

)
,

where “loss” is the standard cross-entropy loss, {aij , yij} are samples from CIFAR-10 splitted
between the workers.

30

	Introduction
	Notations
	Previous work
	Contributions

	A Unifying Perspective on Rennala SGD and Malenia SGD
	Non-Convergence of Weighted SGD with wk =1Bk
	First-Order and Second-Order Similarity Don't Help
	Understanding the Gap via Interpolation Assumptions
	Strong interpolation and local PLcondition are both required
	Finally bridging the gap

	Conclusion
	
	Arbitrarily computation dynamics
	Proof of the Main Results
	Auxiliary Results
	Lower Bound in the Heterogeneous Convex Setting
	Proof of Theorems E.1 and E.2
	Assumptions 5.1, 5.6 and 5.7 imply Assumption 5.2
	First-Order Similarity and Second-Order Similarity
	Experiments
	Without interpolation
	With interpolation
	ResNet-18 and CIFAR-10

	Experiments Details
	Quadratic optimization task generation procedure
	Experiments with ResNet and CIFAR-10

