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ABSTRACT

Modern large-scale machine learning tasks often require multiple workers, devices,
CPUs, or GPUs to compute stochastic gradients in parallel and asynchronously to
train model weights. Theoretical results typically distinguish between two settings:
(1) the homogeneous setting, where all workers have access to the same data distri-
bution, and (ii) the heterogeneous setting, where each worker operates on different
data distributions. Known optimal time complexities in these settings reveal a
significant gap, with far more pessimistic guarantees in the heterogeneous case. In
this work, we investigate whether these pessimistic optimal time complexities can
be overcome under different assumptions. Surprisingly, we show that improvement
is provably impossible under widely used first- and second-order similarity assump-
tions for a broad family of algorithms. We then turn to the interpolation regime
and demonstrate that the weak interpolation assumption alone is also insufficient.
Finally, we introduce a minimal combination of irreducible assumptions, strong
interpolation and the local Polyak-Lojasiewicz condition, to derive a new time
complexity bound that matches the best-known result in the homogeneous setting,
without requiring identical data distributions.

1 INTRODUCTION

We consider optimization problems described by

min {f(2) = 4 Y- Be,oo, [fi(2:6)] }. M
z€R4 i=1

where f; : R x S¢; — R and &; is a random variable with distribution D; on S¢, for all i € [n].
Let us denote f;(z) := E¢,wp, [fi(z;&)]. In our setup, we have n workers/clients/CPUs/GPUs
working in parallel and asynchronously, and each worker ¢ has access only to the stochastic gradient
V fi(x;&;) of the function f; for all z € R%. We want to find a (possibly random) point Z such that

E[||Z — x.]|*] < &, where z, is a solution of (1). Such a problem arises in many machine learning
(ML), deep learning, federated learning (FL), and data science problems (Konec¢ny et al., 2016;
McMahan et al., 2017; Goodfellow et al., 2016).

We focus on the modern setup where many workers work together in a distributed environment,
where the workers can have arbitrarily computation behaviors due to hardware delays or network
connectivity problems. Most previous works typically assume that the workers have the same
performance that does not change over time. In contrast, our focus is on the setting where the
computation times are heterogeneous and non-constant.

In the literature, the optimization problem (1) in the asynchronous environment is considered in two
regimes: i) heterogeneous setting, where the functions f; can be arbitrarily different; in the context of
ML and FL, it means the workers have access to different datasets. ii) homogeneous setting, where
the functions f; are equal; in the context of ML and FL, it means the workers have access to the same
dataset (Koloskova et al., 2022; Mishchenko et al., 2022; Feyzmahdavian & Johansson, 2023).

1.1 Notations
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[n] :={1,...,n}; Ng:={0,1,2,...}; ||| is the standard Euclidean norm; (-, -} is the standard dot
product; g = O(f) : exist C > O such that g(z) < C x f(z)forallz € Z; g = Q(f) :existC > 0

suchthat g(z) > C x f(z)forallz € Z;9=0(f) : g = O(f)and g = Q(f); g = O(f) : the same
as g = O(f) but up to logarithmic factors.

1.2 PREVIOUS WORK

Oracle complexity. In the classical optimization theory (Nemirovskij & Yudin, 1983), algorithms
are compared in terms of oracle calls. Assume that the number of workers is one and we work with
nonconvex functions and the following standard assumptions:

Assumption 1.1 (Global smoothness). The function f is differentiable and L—smooth, i.e.,
IVf(z) = Vi)l < Lllz —yl| forall z,y € R".

Assumption 1.2 (Unbiased and o2-variance-bounded noise). For all 2 € R¢, stochastic gra-
dients Vf;(z;&) are unbiased and o?-variance-bounded, i.e., E¢, [V fi(z;&)] = Vfi(z) and
Ee, [|V fi(2;: &) — V fi(z)||?] < o? forall i € [n], where 0% > 0.

It is well known (Arjevani et al., 2022; Carmon et al., 2020) that the optimal oracle complexity is
O (EA/e 4 0*LA/:2) to find & € R? such that E[[|V f(Z)[*] < e. Itis attained by the vanilla SGD
method: zF+! = 2k —yV f(2F; €F), where £* are i.i.d. random samples, A := f(z°) — f*, 20 € R?
is a starting point, and v = © (min{l/r,¢/Ls?}) is a step size. In the convex setting (Assumption 5.1),
the optimal oracle complexity is © (VL£/,/z + *1?/c*) (Lan, 2020; Nemirovskij & Yudin, 1983)
to find z € R? such that E[f(z)] — f(z.) < ¢, where R := ||2° — x| . In the p—strongly convex
setting, the optimal complexity © (VL) i+ o*/u*<?) is to find Z € R? such that |z — z. I? < e (up
to logarithmic factors).

Oracle complexity with many workers. Many works discovered oracle complexities with multiple
workers. Arjevani & Shamir (2015); Scaman et al. (2017) analyze the heterogeneous convex setting
and provide lower bounds when the workers are synchronized. Lu & De Sa (2021) consider the
similar setup but in the nonconvex setting. Arjevani et al. (2020) analyze settings where methods
receive delayed stochastic gradients. Woodworth et al. (2018) provide lower bounds for parallel
setups with intermittent communications and delayed updates. The primary limitation of these results
is the assumption that all workers have consistent computational performance, without accounting for
individual delays, random lags, or variations in performance over time.

Time complexity. To address the problem of analyzing methods with workers having different
computation capabilities and performances, Mishchenko et al. (2022) proposed to consider the fixed
computation model. In this model, it is assumed that

worker ¢ requires at most 7; seconds to calculate one stochastic gradient.

Without loss of generality, we assume that the times are sorted: 71 < --- < 7,. One of the most
popular methods is Asynchronous SGD (Lian et al., 2015; Zhang et al., 2015; Feyzmahdavian et al., 2016;
Sra et al., 2016; Dutta et al., 2018; Stich & Karimireddy, 2020; Wu et al., 2022; Islamov et al., 2024). In the
homogeneous setting, Mishchenko et al. (2022); Koloskova et al. (2022); Cohen et al. (2021) showed
that Asynchronous SGD and Picky SGD can provably improve the performance of the synchronized
Minibatch SGD method that does the steps ¥+ = zF —v/n 3°7 | V f(2*; £F), where v is a stepsize,
¢F are i.i.d. samples, and V f(x*; £F) are calculated in parallel in n workers. Minibatch SGD requires
O (LA/e + o*LA/ne?) iterations (Cotter et al., 2011; Goyal et al., 2017; Gower et al., 2019) in the non-

convex setting. Moreover, Minibatch SGD converges after O (max;e(n) 7 X (EA/= + 0°LA/ne?)) sec-
onds because it waits for the slowest worker with max;¢,) 7; in every iteration. Asynchronous SGD,

methods with the step zF 1 = 2% —+*/n 377 | V f(2F 0%, 55_5’“) and d;—delayed stochastic gradi-
ents, improve this time complexity to O((1/n 337, /)" (EA/e + 0*LA/ne?)).
Optimal time complexities in the heterogeneous and homogeneous settings. Surprisingly, the

time complexity can be further improved. In the nonconvex setup (under Assumptions 1.1, and 1.2),
Tyurin & Richtérik (2023) formalized the notion of time complexities and showed that the optimal
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time complexity is

m —1
o (5 o))

seconds in the homogeneous setup to find an e—stationary point, achieved by the Rennala SGD
method!, where, without loss of generality, the times are sorted: 71 < - - < 7,. In the heterogeneous
setup, the optimal time complexity is

Theter := © (m? + (; > n») ",iﬁﬁ) : A3)

i=1

achieved by the Malenia SGD method (we discuss the methods in detail in Section 2).

Difference between the two settings. Using the inequality of arithmetic and harmonic means, one
can easily show that Thomog < Theter (ignoring constant factors). At the same time, the gap between
the complexities can be arbitrarily huge. Indeed, when the performance 7 of the fastest worker tends
to 0, one can easily show that Tjomee — 0 and Therer — © (TnLA/a + (% >, Ti) GZLA/H€2) , and
Theter improves by at most Z;;l Ti/ Z?:Q 7; < 2. While the improvement in the homogeneous setup
is oo. Consider another example when the performance 7,, of the slowest worker (straggler) tends to
00. Then Theer = 00 and Thomog — O(mitlyep, 1 [(Yn S0, Yr) ™ (EA/e 4+ 0*LA/me?)]), s0 the
complexity Thomog 1S robust to stragglers unlike Theqer-

Arbitrarily computation dynamics. The previous discussion explain that a significant gap appears
between homogeneous and heterogeneous problems under the fixed computation model. This
“arithmetic mean vs harmonic mean gap” was also observed in (Tyurin, 2025), where the author
generalizes the fixed computation model to the universal computation model, accounting for potential
disruptions caused by hardware or network delays, and any variations in computation speeds. For
simplicity, in this work, we will continue working with the fixed computation model, but we also
show how our final results translate to the universal computation model in Section A.

Convex world. When we want to find a point Z such that E [f(Z)] — f* < e in the convex setup, the
gap is similar. The optimal time complexity in the homogeneous setup is

m -1
o) : 1 1 VLR U2R22 4
ERC-DNCED]) g

K2

seconds (Tyurin & Richtarik, 2023). While the optimal time complexity in the heterogeneous setup is

S (rn LIy (i > n) ,ﬁ) )

i=1

seconds under Assumptions 5.1, 1.1, and 1.2 (our new contribution, Theorem D.4; the final puzzle
piece needed to reveal the systematic gap between the two settings). Both complexities are achieved
by the accelerated versions of Rennala SGD and Malenia SGD accordingly.

Strongly convex world. Assume additionally that the function f is p—strongly convex. Using
reduction (Woodworth & Srebro, 2016), up to logarithmic factors, we can obtain the optimal time

complexity
m -1
fa : 15 1 L o?
o ([ (552) " (/)

in the homogeneous setting and the optimal time complexity

fa L s~ o2
5(nmyE+(2150) ) ™)
in the heterogeneous setting when we want to find a point Z such that E [f(Z)] — f* < e. Here we

also observe a large gap between the settings. Note that the complexities (3), (5), and (7) can only be
improved under additional assumptions because they are optimal.

'Tt can also be achieved by another recent optimal method, Ringmaster ASGD (Maranjyan et al., 2025)
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Main question: Having the systematic gap between the homogeneous and
heterogeneous setups, the goal of this work is to identify theoretical assump-
tions that are as weak as possible to improve the results of asynchronous
methods in heterogeneous scenarios. Under which assumptions can we im-
prove the dependence on the arithmetic mean of {7;} (see (3), (5), and (7)) to
the dependence on the harmonic mean of {7;} (see (2), (4), and (6))? Right
now, the only possible way is to assume that the functions { f; } are equal—an
assumption we clearly want to avoid in the heterogeneous setting. Is there any
chance to relax this assumption?

Addressing the potential for improving the pessimistic guarantees in heterogeneous settings is a
crucial endeavor for understanding parallel distributed methods.

1.3 CONTRIBUTIONS

We observe that both Rennala SGD and Malenia SGD can be unified under a more general framework,
Weighted SGD, which provides a natural foundation for analyzing heterogeneous methods. Since
breaking the lower bounds in the heterogeneous setting requires additional assumptions, we start by
introducing as few as possible to determine when Weighted SGD can outperform Malenia SGD.

Analysis of first- and second-order similarity. First, we consider the celebrated first- and second-
order similarity and, surprisingly, prove that even under these assumptions—no matter how close the
functions { f;} are—Weighted SGD converges if and only if it again reduces to Malenia SGD. Thus, it
is infeasible to break the dependence on the arithmetic mean of {7;} under these assumptions.

Investigate the interpolation assumption. Next, we decided to go in another direction and consider
the interpolation assumption. Using Theorem 3.1, we demonstrate that operating in the interpolation
regime is essential. Thus, we introduce two additional assumptions, strong interpolation and the local
Polyak-Lojasiewicz condition, and prove that it is impossible to drop either of these assumptions for
improvement.

Bridging the gap. By identifying this minimal set of assumptions, we derive a new time complexity
result that matches the best-known bound in the homogeneous setting (Section 5.2), but without
requiring the functions f; to be identical. Our theoretical results are validated numerically in
Section H.

To bridge the gap in Section 5.2, we need to introduce Assumptions 5.6 and 5.7. However, our
primary goal was to illustrate and prove that these assumptions are indeed necessary. Merely stating
the assumptions might not be convincing; this is why the central part of our paper investigates
different assumptions and shows that most of them do not allow bridging the gap. We believe that
the significance of our contribution lies in this exploration process. While previous work noted the
existence of the gap, our contribution goes further by systematically investigating which assumptions
are sufficient and which are insufficient to eliminate it.

2 A UNIFYING PERSPECTIVE ON Rennala SGD AND Malenia SGD

We start our work by looking closer to the Rennala SGD and Malenia SGD methods (see Algorithm 1)
that achieve the optimal time complexities (2) and (3) in the homogeneous and heterogeneous setting,
accordingly. We now recall how they work. In every iteration, Rennala SGD and Malenia SGD ask all
workers to calculate stochastic gradients asynchronously at the same iterate z:*. Assume that worker
i has calculated BY stochastic gradients for all i € [n] at the iteration k. Then the methods do the
steps

n BY
A=k gk g8 = sy 2 3 VAERE) (Rennala SGD)
=17 2] =
and
n By
gkl =gk — gk gk o= % D Blk Vfi(x’“;ffj), (Malenia SGD)
=11 j=1

N
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Algorithm 1 Weighted SGD (reduces to Malenia SGD or Rennala SGD when w! are chosen as
wr = 1/B¥ or w¥ = n/s>n | B respectively)

Input: point 2, stepsize -y, parameter S,
weights {wF}

2: fork=0,1,..., K — 1do

3:  Ask all workers to calculate stochastic gradients at 2*

4:  InitgF =0and BF =0

5. while (13" (wF)2BF) ! < 5 do

6: Wait for the next worker j

7: Update Bj’-c = Bj’-€ +1

8: Receive a calculated stochastic gradient V f; (z*; & ;‘3 B f)
9: g5 = 95 + V"€ i)

10: Ask this worker to calculate a stochastic gradient at z*
11:  end while

n n By
2 gh=1 21 =3 X vk X Vhiatieh)

13 aftl =2k — gk

14:  Stop all the workers’ calculations (or ignore the unfinished calculations in the subsequent
iterations)

15: end for

accordingly. Rennala SGD and Malenia SGD ask all workers calculating stochastic gradients until
Ly BF > S/wand (2307 1/B") > S/n correspondingly, where S is a parameter. Hence,
both methods asynchronously collect and aggregate stochastic gradients to compute g& and gf, and

then perform a descent step. However, the way the methods aggregate is both different and important.
It turns out the variance of the Rennala SGD’s update is smaller. Indeed, one can easily show that

E (o B [o4)|] < % (2 0, BY) ™ and E [|lgf— B [gh]|*] < = () .

i=1 gk
i

Thus, the variance of Rennala SGD improves with the arithmetic mean of Bf, while the variance of
Malenia SGD improves with the harmonic mean of B, which can be much smaller. Why wouldn’t
we use Rennala SGD in all scenarios if it is better? Because gF is biased if { f;} are non-homogeneous.

In general, E [gk] # L Y7 | f;(x), while it is always true that E [gfi] = 1 3" | f;(x).

Takeaway 1: The optimal methods calculate stochastic gradients at the last fixed point but
employ different asynchronous aggregation strategies.

Taking into account Takeaway 1, it is reasonable to investigate their generalization, called Weighted
SGD:

Ud
S

n
ahHl = gk — gk gk 7; Z ) Vfi(x ’5 ), (Weighted SGD)

\ |
—

where the weights {w/} are free parameters. If we take w¥ = n/s°r_ B for all i € [n], we get
Rennala SGD with small variance. If we take w” = 1/B%, we get Malenia SGD with high variance but
with an unbiased estimator. The weights enable interpolation between the methods.

Further, we assume that the workers send the same number of stochastic gradients in each iteration,
i.e., BY = B, foralli € [n],k > 0, and the weights also do not change, i.e., w¥ = w; for all
i € [n], k > 0. We also assume that = 37" | w; B; = 1. Otherwise, we can simply reparametrize and

take v := /(L Y7, wiB;).
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3 NON-CONVERGENCE OF Weighted SGD WITH w* # 1/B*

Our goal now is to understand the possibility of decreasing the variance of Malenia SGD by choosing
appropriate weights {w; } in the heterogeneous setting such that Weighted SGD converges. We start
with the following pessimistic result.

Theorem 3.1. Consider the Weighted SGD method with quadratic optimization problems, where
fi(x) : R = R such that f;(z) = 0.5(x — a;)? and a; € R for all i € [n]. Assume that there is
no noise in the stochastic gradients, which means V f;(x;&;) = V fi(x) deterministically for all
& €S, i€ n)andx € R?, Then Weighted SGD converges to the minimum only if w; B; = 1 for all
i1 € [n] (Malenia SGD-like weighing); either it does not converge or it converges to % Z;’L:I w;jBja;
instead of =37, a;.

The theorem says that we can not naively apply Weighted SGD in solving (1) and ensure that we can
find a point that is close to a solution in the heterogeneous setting unless we take w; = 1/B; for all
i € [n] (what we want to avoid).

Takeaway 2: Even for simple quadratic problems without stochasticity, there is no hope of
using any averaging other than Malenia SGD. Thus, in general, we must rely on Malenia SGD
with the pessimistic dependence on the arithmetic mean of {7;}.

4 FIRST-ORDER AND SECOND-ORDER SIMILARITY DON’T HELP

The main problem with the example from Theorem 3.1 is that it represents a worst-case scenario.
Clearly, we have to introduce assumptions to ensure that Weighted SGD converges with weights
distinct from those of Malenia SGD, due to Theorem 3.1 and the fact that Malenia SGD is optimal.
One of the most popular assumptions in the literature is first-order and second-order similarity of the
functions (Arjevani & Shamir, 2015; Szlendak et al., 2021; Mishchenko et al., 2022):

Assumption 4.1 (First-Order Similarity). The functions fi satisfy
max; e |V fi(z) —ij(av)H2 < 0 for all + € R? for some 6; > 0. It implies
LS IVfi(a) — VF()]]? < 6 forallz € RY

Assumption 4.2 (Second-Order Similarity).  The functions fi satisfy
max; jefn || V2fi(x) fvzfj(:v)HZ < gy for all z € R? for some 6o > 0. It implies
L5 |V2fi(x) — V2 f ()| < 62 forall 2 € R

One might expect that when both §; or d- are small, it would be possible to exploit the similarity and
design a method with smaller variance and better dependence on {7;}. Surprisingly, it is not the case:
for any 6; > 0 or §3 > 0, one can construct a problem for which only Malenia SGD converges:

Theorem 4.3. Consider the Weighted SGD method with f;(x) : R — R such that fi(z) =
Bla;, ) + g |z, a; € R foralli € [n], X Yoiia; =0, and ||a;|| = 1, where B > 0 is free

parameter. Assume that there is no noise i;l the stochastic gradients, which means V f;(x;§;) =
V fi(x) deterministically for all §; € S¢,, i € [n], and x € R, Then Weighted SGD converges to the
point % Z?:l w;Bja; instead of x. = 0, Assumption 4.1 (the first-order similarity) is satisfied with
81 = 232, and Assumption 4.2 (the second-order similarity) is satisfied with 65 = 0.

Remark 4.4. Note that % E?Zl wjBja; = z, = 0 for all a; € R if and only if w;B; = 1 for all

i € [n] (Malenia SGD-like weighting).

Hence, for any small §; > 0 and d5 > 0, convergence is only possible with Malenia SGD. Due to the
construction in Theorems 4.3, we can choose any 5 > 0, and hence any §; > 0. No matter how close
the functions are to each other, Weighted SGD can converge close to the solution only if w; B; = 1 for
all ¢ € [n]. In view of this, we argue that additional assumptions about the first- and second-order
similarity will not help to improve the time complexity of Malenia SGD.

Remark 4.5. For the construction in Theorem 4.3, we can also show that ||V fi(z)[|> < 2|V f(z)|* +
2432 for all i € [n], which corresponds to the p—strong growth condition when 3 = 0 and p = 2
(Schmidt & Roux, 2013). Since Theorem 4.3 holds for all 5 > 0, we have proved the result for a
“slightly” broader class of problems and have “almost” established that, even under the strong growth
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Table 1: The summary of our results and the time complexities (up to logarithmic factors) to get a
point Z, such that E[||Z, — Z.||°] < ¢ under the fixed computation model (worker i requires at most
T; seconds to calculate one stochastic gradient; 7, < --- < 7,) and Assumptions 5.1, 5.2, 1.2, and
1.1, where T, is the closest solution to Z. The table compares methods in the fully heterogeneous setting
and lists the extra assumptions the methods require to work.

Method Time Complexity Guarantees (previous results) Additional Assumptions
- L 2
Minibatch SGD Tn (17 + #) —
Asynchronous SGD & - (L e ) {f;} are equal
(Mishchenko et al., 2022) e T Ji—strong convexity
Malenia SGD n 2
(Tyurin & Richtérik, 2023) 7—”% + (% > Tz) P _
(Theorem E.2) , i=1 "
Rennala SGD m -1 L B
(Tyurl?T(?;el;;gl;‘:é\éll;,) 2023) 7;1,2[2] (ﬁi, z;l }) (Tt + m":j) {fi} are equal

Lower Bounds (new results)

Under the first-order and second-order similarity, the following results state that
the family of methods Weighted SGD can converge if and only if it reduces to Malenia SGD:

Family of methods Weighted SGD Assumptions 4.1 and 4.2
(Theorem 4.3) (first-order and second-order similarity don’t help)
The following results state that the family of methods Weighted SGD (includes Rennala SGD and Malenia SGD)
can not improve Malenia SGD for small ¢ if we discard Assumption 5.6 or 5.7:

Family of methods Weighted SGD N (1 n ) 2 Assumptions 5.4 and 5.7
- nep?

(Theorem 5.8) n L; Ti (weak interpolation is not enough)

Only Malenia SGD converges

Family of methods Weighted SGD 1 & »? R ]
(Theorem 5.9) = (ﬁ El Ti | nen? Assumption 5.6

i=

Upper Bound (new result)

The following results state that under Assumption 5.6 or 5.7 it is possible to improve Malenia SGD:

m -1 p .
Rennala SGD min {(izi> (Ix 4+ )} Assumptions 5.6 and 5.7

(Theorem 5.10) meln) | \™ 2 T " mep? (weaker than the equality of functions { f; })

condition, only Malenia SGD converges to the minimum. Whether a similar result holds for the class
of problems satisfying max;e(y, [V fi(2)||> < 2||Vf(x)|? for all z € R? remains an important
open research question.

Takeaway 3: Even with first-order and second-order similarity, when using the family of methods
Weighted SGD, there is still no hope of using any averaging other than Malenia SGD.

5 UNDERSTANDING THE GAP VIA INTERPOLATION ASSUMPTIONS

To understand the problem, we now focus on the standard setting of convex smooth functions under
the PE-condition, where the latter is a much weaker assumption than p—strong convexity (Karimi
et al., 2016).

Assumption 5.1 (Convexity). The functions f; are convex for all ¢ € [n]. The function f attains a
minimum at a (non-unique) point z,, € R%.

Assumption 5.2 (Global Polyak-Eojasiewicz condition). There exists 1 > 0 such that ||V f(z)[|> >
2 (f(x) — f*) forall z € R?, where f* is the finite optimal function value of f.

Assumption 5.3 (Local smoothness). The functions f; are differentiable and L;,—smooth. We also
define Lyax = maxX;c[n) Ls. Note that I < Lyyax.

Looking at Takeaways 2 and 3, we see that a different similarity assumption is required to close
the gap between the heterogeneous and homogeneous results. Recall Theorem 3.1, which states
that Weighted SGD converges to /n 37, w; Bja; instead of 1/n 37| a;. These two expressions
are equal only if the minima «a; of the functions f; are the same. Therefore, to ensure convergence
when w; B; # 1 and to understand the gap between the homogeneous and heterogeneous settings,
Theorem 3.1 motivates us to explore an alternative assumption known as the interpolation assumption
(Vaswani et al., 2019). This assumption provides another way to capture the similarity among the
functions f; by requiring that they share the same set of minimizers as the function f.
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Assumption 5.4 (Weak Interpolation). If z* is a minimizer of f, thatis, V f (z*) = 0, then 2* is also a
minimizer of each f; for all i € [n].

Interpolation is a property of the solutions of f;, whereas the heterogeneity assumptions, Assump-
tions 4.1 and 4.2, concern the gradients and Hessians. These are different characteristics of f;, and
understanding their connection could be an important future work.

Under Assumption 5.4, Theorem 3.1 is not a barrier anymore. Assumption 5.4 is considered practical
in modern optimization literature, as there is evidence that it holds for large deep learning models
(Zou & Gu, 2019; Zhang et al., 2021). However, as we show next, this assumption alone is not
sufficient to achieve improved time complexity, leading to yet another pessimistic result:

Theorem 5.5. Consider the Weighted SGD method. Let us fix any €, Ly, R, jt, 0% > 0 such that
1 < Liax/(2n),e < 0.01, and R > 10. For all By, ..., B, > 0 and any possible choice of weights
{w;(Bu,...,Byn)} as functions of B1, ..., By, there exist functions { f;} and stochastic gradients
{V fi(-; )} such that { f;} satisfy Assumptions 5.1, 5.3, and 5.4, f satisfies Assumptions 5.2 and 1.1
with L = Lyax, {V fi(+; )} satisfy Assumption 1.2 such that the method requires at least

(457 ()

seconds to find e—solution in terms of distances to the solution set, when the method starts at a point
in a distance less or equal to R to the closest solution.

Thus, even under Assumption 5.4, we can not improve the arithmetic mean dependence on {7, }.

Takeaway 4: Using the weak interpolation assumption, which captures the similarity of
the functions in a different way compared to first-order and second-order similarity, it is still
infeasible to improve the pessimistic dependence on {7; } achieved by Malenia SGD using the
family of methods Weighted SGD.

5.1 STRONG INTERPOLATION AND LOCAL P CONDITION ARE BOTH REQUIRED

Once again, we need to go deeper and introduce additional assumptions to break the lower bound
from Theorem 5.5. To further investigate the problem, we now turn to two related assumptions.

Assumption 5.6 (Strong Interpolation). For all ¢ € [n], a point z* is a minimizer of f, that is,
V f(z*) = 0, ifand only if it is also a minimizer of f;.

This assumption is clearly stronger than the weak interpolation assumption since it requires all the
functions to share the set of minimizers.

Assumption 5.7 (Local Polyak-Eojasiewicz condition). There exists 1 such that |V f;(z)|* >
2 (fi(x) — f7) forall z € R? and for all i € [n], where f; is the finite optimal function value of f;.

This assumption, unlike Assumption 5.2, requires each function to satisfy PL condition. It turns out
again that if we do not assume both Assumption 5.6 and Assumption 5.7, then it is infeasible to
get a time complexity faster than in Malenia SGD with any weights {w; } for £ small enough. This
statement is formalized in the following two theorems.

Theorem 5.8. Consider the Weighted SGD method. Let us fix any €, Lyax, R, jt, 02 > 0 such that
1 < Limax/(2n), e < 0.01, and R > 10. For all By, ..., B, > 0and any possible choice of weights
{w;(By,...,Byn)} as functions of By, ..., By, there exist functions { f;} and stochastic gradients
{Vfi(:; )} such that { f;} satisfy Assumptions 5.1, 5.3, 5.4, and 5.7 (do not satisfy Assumption 5.6
in general), f satisfies Assumptions 5.2 and 1.1 with L = Lyyax, {V fi(+;-)} satisfy Assumption 1.2
such that the method requires at least

o((t50) ()

seconds to find e—solution in terms of distances to the solution set, when the method starts at a point
in a distance less or equal to R to the closest solution.
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Theorem 5.9. Consider the Weighted SGD method. Let us fix any €, Liax, R, 0 > 0 such that
i < Limax/(2n), e < 0.01, and R > 10. For all By, ..., B, > 1 and any possible choice of weights
{w;(B1,...,Bn)} as functions of By, ..., By, there exist functions { f;} and stochastic gradients
{Vfi(+; )} such that { f;} satisfy Assumptions 5.1, 5.3, 5.4, and 5.6 (do not satisfy Assumption 5.7
in general), | satisfy Assumptions 5.2 and 1.1 with L = Lyax, {V fi(+; )} satisfy Assumption 1.2,
such that the method requires at least

() i)

seconds to find e—solution in terms of distances to the solution set, when the method starts at a point
in a distance less or equal to R to the closest solution.

Takeaway 5: Even when the weak interpolation assumption is combined with only one of
Assumptions 5.6 and 5.7, we still obtain only the arithmetic mean dependence on {; }.

Once we drop either Assumption 5.6 or Assumption 5.7, it becomes possible to construct a “bad”
function (see the proof of Theorems 5.8 and 5.9) that provides no room for Weighted SGD to improve,
regardless of the weight choices.

5.2 FINALLY BRIDGING THE GAP

However, if assume that both Assumption 5.6 and Assumption 5.7 hold, then, finally, we can proof
the convergence with harmonic-like dependence on {r;} :

Theorem 5.10. Let Assumptions 5.1, 5.3, 1.2, 5.6, 5.7 hold*. We choose w¥ = n/s>r_| B* for all
k > 0,i € [n] in Algorithm 1 (Weighted SGD reduces to Rennala SGD). We take ¥ = /Ly, S =

2\ . . 2
40? /L pyaxe, and run Rennala SGD for k > (% log R?) iterations, then E [H kel gkl || } <

e, where 1 is the closest solution to x*+!

method requires
-1
. m o2 2
om[eE)) e ms)

. Moreover, under the fixed computation model, the

seconds.

Under weaker assumptions, without requiring the equality of the functions { f;}, this theorem yields
time complexity guarantees with a “harmonic”-like dependence on the times {7;} for the Rennala
SGD method, improving upon the previous theoretical results in Theorem E.1 and (Tyurin & Richtérik,
2023).

Notice that the method in  Theorem 5.10 is  still  biased  because
E {Z?Zl Zf:il Vil €5)/ >0, sz] # Vf(z) in general. That said, we can success-
fully prove the theorem under this constraint. One of the primary reasons for this is the right choice
of convergence metric. Initially, we aimed to analyze the biased gradient estimator in terms of
function values and gradient norms, trying to prove that the method returns a point z such that
E[f(z)] — f* < e or E[|Vf(z)|*] < . However, the more appropriate approach is to show
E[||Z — 2.*] < e. Using this convergence metric allows us to analyze the biased gradient estimator.
This observation can be important on its own.

Takeaway 6: Improving the pessimistic dependence in Malenia SGD is possible with Ren-
nala SGD and the additional assumptions, Assumption 5.6 and Assumption 5.7, in convex
optimization.

One interesting observation is that there is no single best method between Malenia SGD and Rennala
SGD: either Malenia SGD is the fastest, or Rennala SGD is when both Assumption 5.6 and Assump-
tion 5.7 hold. We could not find a regime in between where any other method or strategy would
improve upon both Malenia SGD and Rennala SGD.

1t is well-know that Assumption 5.3 implies Assumption 1.1. In Section F, we prove that Assumptions 5.1,
5.6 and Assumption 5.7 with constant y imply Assumption 5.2 with constant z/4.
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6 CONCLUSION

In this work, we investigated various assumptions and setups in an effort to break the pessimistic
dependence on {7;} achieved by Malenia SGD. We considered the first- and second-order similarity,
strong growth, and interpolation assumptions. We proved that under the first- and second-order
similarity assumptions, it is infeasible to improve the dependence on the arithmetic mean of {7;}
within the family of Weighted SGD methods. We also showed that under weak interpolation (Assump-
tion 5.4), it is likewise not possible to improve the result by Malenia SGD. Subsequently, we presented
new theoretical results that provide improved time complexity guarantees in the heterogeneous setting,
without assuming that the functions f; are identical (Theorem 5.10). These results are obtained under
the standard assumptions of convex optimization, together with Assumptions 5.6 and 5.7.

Importantly, we have not merely introduced these assumptions to close the gap, but have shown
that both Assumptions 5.6 and 5.7 are provably essential and non-relaxable for the general family
of methods, underscoring the fundamental limits of what can be achieved in heterogeneous convex
stochastic optimization.

There are many unexplored directions that can build on our initial results and observations. While we
focused on the most common assumptions in federated and distributed learning, our findings may
inspire the development of new assumptions and settings where it is possible to improve upon Malenia
SGD. Moreover, our upper bounds and lower bounds were investigated in terms of E[||z* — 2 ||?]
convergence. It would be interesting to see whether similar results can be obtained in terms of
E[||V f(2*)]|?] in the non-convex setting. While Weighted SGD is a natural abstraction of the two optimal
methods, Rennala SGD and Malenia SGD, and is general enough for investigation, it would be interesting
to analyze other classes of methods as well.
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A

A ARBITRARILY COMPUTATION DYNAMICS

Our new result can be readily extended to the universal computation model. To encompass virtually
all computation scenarios, assume that each worker ¢ performs computations based on a computation
power function v; : Ry — R. Then the number of stochastic gradients that worker 7 can calculate
from a time g to a time ¢ is an integral of the computation power v; followed by the floor operation:

ty
“# of stoch. grad. in [tg,t1]” = {/ ’Ui(T)dTJ . ©)
Jto

For instance, if worker ¢ is inactive for the first ¢ seconds and then active again, it would mean
vi(1) = 0forall 7 < t and v;(7) > 0 for all 7 > ¢. Using the universal computation model, we can
prove the theorem:

Theorem A.1. Consider the assump{ions, algorithm, and parameters from Theorem 5.10. Then,

Rennala SGD converges after at most t[cx Lmax Jog B2 ] seconds, where the sequence {ty} is defined
I 5

recursively as tj, =

min {t >0 }Zjl Vtt Ui(T)dTJ > max{[%ﬂ 1}} (10)

forall k > 1 (to = 0), and c is a universal constant.

The similar result was obtained in (Tyurin, 2025). However, Tyurin (2025) requires the equality of
the functions { f;} to get the sequence (10).

B PROOF OF THE MAIN RESULTS

Theorem 3.1. Consider the Weighted SGD method with quadratic optimization problems, where
fi(x) : R = R such that f;(z) = 0.5(x — a;)? and a; € R for all i € [n]. Assume that there is
no noise in the stochastic gradients, which means V f;(x;&;) = V fi(x) deterministically for all
& €St € n)andx € R?, Then Weighted SGD converges to the minimum only if w; B; = 1 for all
i1 € [n] (Malenia SGD-like weighing); either it does not converge or it converges to %L 2?11 w;jBja;
instead of =7, a;.

Proof. Tf w; B; = 1forall i € [n], then Weighted SGD converges with v < 2 because Malenia SGD
converges. If w; B; # 1 for all i € [n], then

1 n
bt = ah v Z;w&(ﬂ - a;)
iz

n k+1 k n J n
1 1 1
= (1 - qu;Bz) LEO—FZ’Y (1 —fynZwiBZ) EZwiBiai
i=1 §=0 i=1 i=1
k

1 &

= 1=+ v (1 -9 =D wiBia;,

n
7=0 =1

where the third equality due to the agreement % 2?21 w; B; = 1.

If v > 2, then 2**! does not converge if 2° # 1 3" | w; B;a; and k — oo. If v < 2, then

1 n
lim ¢ = = E w;Bja;.
k— n

14
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Remark B.1. Ttis possible to find {a;}}"_;, when + > | w; Bja; does not equal ~ 3" | a;

Proof. 1f w; # 1/B; for all i € [n], then there exists k1 € [n] such that Lwy, By, < L.If we take
ar, = 2and a; = 1 forall i & k1, then

1 1+n
fZ’w]B a; = < wlekl (1 — nwlekl>> 72&1,

and the method converges to the point that it is not equal to % Yo a; O

Theorem 5.10. Let Assumptions 5.1, 5.3, 1.2, 5.6, 5.7 hold®. We choose wf = n/sr | BF for all
k > 0,i € [n] in Algorithm 1 (Weighted SGD reduces to Rennala SGD). We take ¥ = 1/Lyux, S =
402/MLmaxa and run Rennala SGD for k > Q (% log R;) iterations, then & [ka-s-l _ xfﬂ Hz} <

k+ k+1

€, where x7 L js the closest solution to x . Moreover, under the fixed computation model, the

method requires
m -1
O 3 i i Lmax 1 n- 8
(i [(552) (s )] e »

seconds.

Proof. Let us define z* as an euclidean projection of the point z**! on to the solution set of the

main problem (1), and take the condition expectation Ey, [-] w.r.t. the randomness from the iteration &
only. Then we have

E, {ka+1 _ xfﬂ’ﬂ <E, [ka+1 _ x’ng}
due to the projection’s properties. Then

B [Jla ! — ]

SEk _rY Zw vaz 751] Ly
2

= |la* — 2" — 2+ <:1: Z Z:vfZ ,gm> 2K, H Z Zsz aki €l

Using unbiasedness (Assumption 1.2) and the variance decomposition equality, we get

[

k2 T Y S
<||a* -2 || 2’y<x x*7nZwiBinZ(x )>

i=1
2

+7°Ex, Z ZVfl Rieh) =V fi(zh))

%waBfVﬁ(:ck)
=1

Consider the last term, due to the independence of stochastic gradients and Assumption 1.2, we
ensure that

H (sz( b &) = Vi)

31t is well-know that Assumption 5.3 implies Assumption 1.1. In Section F, we prove that Assumptions 5.1,
5.6 and Assumption 5.7 with constant y imply Assumption 5.2 with constant z/4.
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—HQZ ZEk[HVﬂ ~VAEI] < 25 Sk Bl

i=1
Thus
B [[l2*+! — ok 7] (11)
2, o,
SH@‘k—Z‘I: ? QVZkak@ — 2k Vfi(a") + Zkaka’( ) %Z(wf)zBf(yQ
i=1 i=1

We now consider the second and the third term. Since + ZZ 1 w¥ BF = 1, using Jensen’s inequality,
we get
2

1 ¢ 1o
— 2y <xk xf,nwaBfoi(zk)> + 2 EwaBfoz(xk)
i=1 =

1 — 1 — 2
< -2y <$k —af, -~ waBfoi(xk)> +72g;w535 [V £i(2")]]

i=1

Due to Assumption 5.6, we get

n

1 1
y 2wt BE[VAGN = 13wl B VA" - Vb
=1

i=1

< % ;wafLi (z% — 2¥ Vfi(a*) = Vfi(al))

B T S A AN
SLmaanwiBi <.Z‘ x*,sz(a: ) sz(x*)>

i=1
= Lmax% ;’walk <xk — mlj, vfl(xk» .

In the first inequality, we use Lemma C.1 under Assumption 5.3 and convexity (Assumption 5.1).
In the second inequality, we use the bound L; < L.y for all ¢ € [n]. Taking v < 1/L,... and
substituting the last inequality to (11), we obtain

E, {kaﬂ _ x§+1”2}

S ka*Iszi(er*Lmaxv Zkak IE *‘T*7Vf1 lZZ Bk ’
< ka—xf - Zkak ab — 2l Vfi(x lQZ )’Bio®.
1=1 i=1

Using the convexity, Assumption 5.7, and Lemma C.2, we get
B [[leh — 2|
2 ol 2
< [t - Sk |t z 2 BEo?.

We take w¥ = /s> | B* in the theorem for all i € [n]. Thus

2 o 2 v2o?

In Algorithm 1, with the chosen weights {w!}, we wait for the moment when }""_; BF > S. Thus

. 2 YL 2 ~20?
B [l = 5] < (12 2 kb T
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Unrolling the recursion and taking the full expectation, we obtain

20.2

E ]kt - bt ] < (1= 27 a0 - 22 +Z(1—f) .
_ﬂk-‘rl 0_02 2'}/0'

g(l 2) | m*y|+75.

. . 2
Due the choice of 7, S, and the condition on k, we have E {ka*l | } <e.

2
O (Lmax log R)
1 €

iterations. In each iteration, the method has to ensure that Y, B¥ > S. A sufficient time for that is

-1
1 &1 4o

2 mi — — 1+ —

WILIél[?z] <mZn—> (+mLmaxsu>

=1

It is sufficient to run the method for

under the fixed computation model (see Theorem 11 in (Tyurin et al., 2024)). O

Theorem A.1. Consider the assumptions, algorithm, and parameters from Theorem 5.10. Then,
Rennala SGD converges after at most t[cx Linex Jog R2'| seconds, where the sequence {ty} is defined
m

min {t >0: Z {/tt vi(T)dTJ > max{[%f‘ ,1}} (10)

forallk > 1 (ty = 0), and c is a universal constant.

recursively as tj, :=

Proof. From the proof of Theorem 5.10, we know that it is sufficient to run the method for
Linax R?
e

€

c X

iterations, where c is a universal constant. The method waits the moment when Y 7, B¥ > Sin
each iteration. The workers work in parallel, and for all ¢ € [n], will calculate

{ /0 t vimer

stochastic gradients after ¢ seconds. In total, all workers will calculate L fo vi (T dTJ stochastic
gradients. Hence, the first iteration will end after

n t
t1 ;= min {t>0 : Z / vi(T)dT >2S},
P 0 J

seconds. After that, the second iteration starts before time ¢; and ends at least at time

n t
ty = min{tZO : Z / vi(T)dT 225},
~ L) |

because worker 7 can calculate at least
t
{ / ’Ui(T)dTJ
2

stochastic gradients between the end of the first iteration and a time ¢. Using the same reasoning, we
can recursively define

t3,... ’t{cx Limax 1o R2'|
The algorithm will converge after ¢ [CX Liax Jog 22 1 seconds due to the discussion at the beginning of
I e

the theorem. ]
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Theorem 5.8. Consider the Weighted SGD method. Let us fix any €, Liax, R, jt, 0? > 0 such that
i < Limax/(2n), e < 0.01, and R > 10. For all By, ..., B, > 0 and any possible choice of weights
{w;(B1,...,Bn)} as functions of By, ..., By, there exist functions { f;} and stochastic gradients
{Vfi(+; )} such that { f;} satisfy Assumptions 5.1, 5.3, 5.4, and 5.7 (do not satisfy Assumption 5.6
in general), | satisfies Assumptions 5.2 and 1.1 with L = Lyax, {V fi(+;-)} satisfy Assumption 1.2
such that the method requires at least

(457 ()

seconds to find e—solution in terms of distances to the solution set, when the method starts at a point
in a distance less or equal to R to the closest solution.

Proof. fw;(By,...,B,) x B; = 1foralli € [n], then it is true since the method reduces to Malenia
SGD. Assume that there exists a combination By, ..., By, such that w;(By, ..., B,) x B; # 1 for
some i € [n]. Let us define the shortcut w;(Bj,...,B,) = w; and fix this combination. Let us

find the index of the weight with the smallest value, i.e., 7 = arg miniew w; B;. Without loss of
generality, assume that j = 1.

For all i € [n], we take the quadratic function f; : R? — R such that f;(,y) = 0.5 Lyaxy? for all
i # 1and fi(x,y) = 0.5unz? + 0.5Lmaxy?, and the stochastic gradients V f;(z, y) + [¢;,0] T for
all i € [n], where &1, .., &, are i.i.d. gaussian noises from N'(0, 02).

One can easily check that these functions satisfy the assumptions from the theorem. Let us consider
the second argument of the functions and consider Weighted SGD:

n
yk+1 = yk — % ;wiBiLmaxyk == (1 - ’YLmax)yka
i=

where we simplify due to the agreement % >oi, w;B; = 1. The sequence y* converges if v <

1/Limax- It is necessary to assume that v < 1/ Ly,ax. Let us now consider the sequence w.r.t. the first
coordinate:

~y B4 n B;

k+1 k k k k

2 =gt — = | Bupna Ty | Y owi [ D
j=1 i=2 j=1

n B;
v
= (1_’Yw131/$)$k - ﬁzwi Zfﬁj
i=1 j=1
Notice that £ Y7 | w; (Zle gz{ij) ~N (0,5 3" w?B;0?) . Therefore
k+1)2 2p k2, VNS, 2 2

Necessarily, wy B; > 0. Otherwise, E “mk“ ﬂ >E “mkﬂ > |1’0|2 for all £ > 1. Unrolling the
recursion and taking the full expectation, we obtain

k 2 n
k+1)2] _ 2k |02 i 2p. 2
E [|x | } = (1 = yw1 Byp)™" |2°] +ZO(1 — yw Bp) EE’LUZ»BlO’
j= i=
Since £ 3" w;B; = 1and v < 1/Lyax < 1/(2nu), we have 0 < yw; Byp < 1/2 and

1—(1—ywiBa)*
w1 By

n
E [|xk+1|2} =(1- 'ywlBl,u)% ‘x0|2 + nZ—,u waBiUQ. (12)
i=1

In order to ensure that [E “xk“ ﬂ < &, Weighted SGD should do at least

2
1 € 1 ||
k> lo > lo (13)
2log (1 —ywi Bir)  © <|z02) dyur B ° ( £
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steps to get (1 — ’ywlBlu)% |a:0|2 < . Note that k£ > 1 because |:c0‘2 > 1land e < 0.01. Thus we
can bound the second term in (12) in the following way:

1— (1 —qw B szB szBa
w131 - 2w1B1 TL2

because (1 — 'ywlBlu)k < ﬁ < % Therefore, it is necessary in the algorithm choose the

Qw}Bl nl—ﬂ i, w?B;o? < e. Using this bound and (13), we obtain

o? " w? {xolz o2 1 G w?B? 1 |x |
k> ———— —B;1 = — 1 .
~ 8B%en?u? z:zl w? e\ e 8nu? n ; wiB? B; 8\ e

Recall that w?B? < w? B2 forall i € [n] Thus, the algorithm has to do

> 2 ts e (1),

steps. Taking 2° = R/v/2 and y° = R//2, we get E {|o:k| + |yk|2} > ¢ and

E [f(z*,y*)] = E [0.50 % (2%)? + 0.5Lmax x (¥*)?] > 0.5ue

< st e ().

Under the fixed computation model, B; = L’;—J , Where t* is the time of one iteration. We can

parameters in a such way that

for all

conclude that the required total time is at least

2 n

L, 0% 1{n 1 " 0 1y [=°]*
t X8&:nu2n;BiIOg< € 28511#25; 7ilog € '

O

Theorem 5.5. Consider the Weighted SGD method. Let us fix any €, Ly, R, jt, 0% > 0 such that
1 < Limax/(2n), e < 0.01, and R > 10. For all By, ..., B, > 0and any possible choice of weights
{w;(Bu,...,Bn)} as functions of By, ..., By, there exist functions { f;} and stochastic gradients
{V fi(; )} such that { f;} satisfy Assumptions 5.1, 5.3, and 5.4, [ satisfies Assumptions 5.2 and 1.1
with L = Lyax, {V fi(:;+)} satisfy Assumption 1.2 such that the method requires at least

(43 ()

seconds to find e—solution in terms of distances to the solution set, when the method starts at a point
in a distance less or equal to R to the closest solution.

Proof. The theorem is a simple corollary of Theorem 5.8 because Theorem 5.8 is stated under more
strict assumptions on the class of the functions and stochastic gradients. The result of Theorem 5.8
holds even under additional Assumption 5.7. O

Theorem 5.9. Consider the Weighted SGD method. Let us fix any €, Lyax, R, 02 > 0 such that
1 < Lmax/(2n), e < 0.01, and R > 10. For all By, ..., B, > 1 and any possible choice of weights
{w;(Bu,...,Byn)} as functions of By, ..., By, there exist functions { f;} and stochastic gradients
{V fi(:; )} such that { f;} satisfy Assumptions 5.1, 5.3, 5.4, and 5.6 (do not satisfy Assumption 5.7
in general), | satisfy Assumptions 5.2 and 1.1 with L = Lyax, {V fi(+; )} satisfy Assumption 1.2,
such that the method requires at least

o((157) ona()

seconds to find e—solution in terms of distances to the solution set, when the method starts at a point
in a distance less or equal to R to the closest solution.
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Proof. Letus define the shortcut w;(By, . . ., B,) = w;. In this construction, we consider the function
fi + R? = R such that

H 2 L 2
filz,y) = + =y
Z’L 1 B1 2

and the stochastic gradients V f;(z,y) + [£;,0] " for all i € [n], where &y, ..., &, are i.i.d. gaussian
noises from A/(0, o2). One can easily check that the assumptions from the theorem hold. Using the
same reasoning as in the proof of Theorem 5.8, we have to take v < 1/Ly,ax. Next, we consider the
sequence of Weighted SGD w.r.t. the first argument:

n n B;
k+1 _ k D Wikt g 1 k
T =z —7 725,1 T —i—EZwi Zgi«,j
=1 B; i=1 j=1
D Wi 7N -
_ i=1 Wi k k
- 1_7/‘271 T )” _gzwi §ij
=1 B; i=1 j=1

Note that %7 1% < Yo, w;B; = ndueto 721 tw;B; = 1,and v < 1/Lyax < 1/(2np).

i=1 B
Using the same reasoning as in the proof of Theorem 5.8, we get

k+1
n 2k I—-11- ’Y;U’ ) n
E+1)2] _ D Wi 0|2 ( El 1B v 25 2
E [Jo"+[*] = (1—W2n11> [« + e o 2 Wi B
i=1 B; n I i=1
Zi:l B; g

Weighted SGD should do at least

1 0
k>wlog<|x| ) (15)
e c

2k
steps to get <1 — 7/1%) ‘330‘2 < e. The parameters should satisfy the inequality
=1 By
! 2B0? <
porany 2n2 Zw ot <e
Y5

to ensure that E “ka ﬂ < ¢ for some k£ > 0. Combining this inequality with (15), we get

n 2 2
k>< 1) o Siw 3Bilog<|x°|>
> (3 i .

= Bi) snute (UL w) €

-1
It is left to use the Cauchy—Schwarz inequality (Zzlliwf);; > (Z?:l Bi> to ensure that the

method will not find an e—solution in terms of the distance to the solution x,, = 0 before

-1
1 o2 n 1 ’:170|2
c— | =T 0

8enp? \ Y0, & -

steps. Since f(z) = a2 + ””" y?, the method will need at least

-1
1 0.2 n o M’!EO’2
16enp \ S0 .- & 5
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Protocol 2 Time Multiple Oracles Protocol

1: Input: function(s) f € F, oracles and distributions ((O1,...,0,), (D1,...,D,)) € O(f),
algorithm A € A

2: 89 =0foralli € [n]

3: fork=0,...,00do

4: (tk+1,ik+1,xk) — Ak(gl,...7gk), > ¢kt > th
St (S0, 05 H) = O (911 aF by €8HD), €T D kT = b g g
6: end for

iterations to find an e—solution in terms of function values. As in the proof of Theorem 5.8, it is
sufficient to take z° = R/+/2 and y° = R/+/2. Under the fixed computation model, B; = {ﬁJ ,

Ti
where t* is the time of one iteration. We can conclude that the required total time is at least

-1 2 2
1 2 0 1 2 1 n 0
% — % log m Z*Lonlog m )
6enp \ >y 5 € 16 enun P €

C AUXILIARY RESULTS

In this section, we present well-known results from optimization.

Lemma C.1 (Nesterov (2018)). Let f : R — R be a function, which L—smooth and convex. Then
forall x,y € R? we have:

IVf(2) = VIWI® < L(Vf(2) = VIy),z—y). (16)

Lemma C.2 (Karimi et al. (2016)). Let f : R — R be a convex function, which satisfies PE condition
with a parameter . (Assumption 5.2). Then, for all x € R, we have

(Vi@)a—z) 2 G |2 - alf an

where T, is the projection of x onto the solution set of mir}l ().
zeR

D LOWER BOUND IN THE HETEROGENEOUS CONVEX SETTING

This section complements the results from (Tyurin & Richtdrik, 2023), where the authors only
prove the optimal time complexities in the homogeneous nonconvex, heterogeneous nonconvex, and
homogeneous convex settings. Here, we resolve the last piece, the heterogeneous convex setting.
Following Tyurin & Richtarik (2023), we have to formalize and introduce the following protocol and
classes.

We investigate the optimization problem (1) when the function f is convex. For the convex case,
using Protocol 2, we use the complexity measure

. . . k .
Mime (A, F) 1= Ag&?gg(o,;)uepo(f)mf {t >0 ’ E [klélgt f(z )] - wlrélgf(l') < 5} )
Sy == {k € No|tF < t},
where the sequences t* and z* are generated by Protocol 2, and @ is a convex set. Let us take any set
@, and consider the following class of convex functions.
Definition D.1 (Function Class F&'7 /).
We assume that a function f : R? — R is convex, differentiable, L-smooth on the set Q,ie.,
IVf(x) = Vil <Llz-yl voyed,
and M -Lipschitz on the set @, i.e.,
lf(@) = f <Mz -yl Vz,yeQ.

A set of all functions with such properties we define as F3'7 1.

(13)
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Definition D.2 (Algorithm Class A,,).
An algorithm A = {A*}2°  is a sequence such that

AP RYx o oxRY 5 Rag x RT VE>1, A% e Rog x RY,
> >
k times

and, for all k > 1 and g*,...,¢" € R?, tk+1 > ¢* where t**! and t* are defined as (tk*1,.) =
AF(gh,. . gF) and (%) = AR (gh, . gM ).

The following oracle helps to formalize the fixed computation model.

OYF : Rsg x R? x (Rsg x RY x {0,1}) xS¢ — (Rsp x RY x {0,1}) xR?
20 X B > >

point

time input state output state
((t,l‘,l), O)a Sq :Oa
such that Off(t,x,(st,smsq),{) = < ((st, Sz, 1), 0), s¢=1landt < s+,
((0,0,0),  Vf(sg;€)), s¢q=1landt > s, + T,

(19)
and V f(-; ) is a stochastic mapping.

Definition D.3 (Oracle Class Oﬁ‘l"jf’j,"’jn).
Let us consider an oracle class such that, for any f € Fg'7 )/, it returns oracles O; = O fi and

distributions D; for all i € [n], where V f;(+; ) is an unbiased o2-variance-bounded mapping on the

set @) of the gradient of the local function in worker ¢. The oracles OTVif i are defined in (19). We
define such oracle class as Oi‘l"?f’g"%”. Without loss of generality, we assume that 0 < 7 < --- < 7,.

3T

Notice that this oracle class differs from the oracle class for convex functions in (Tyurin & Richtarik,
2023) because we consider the heterogeneous setting where the oracles return unbiased stochastic
gradients of the local functions f;, which can be different. We refer the reader to (Tyurin & Richtarik,
2023) for additional details about the time complexities formalization. We are now ready to state the
theorem.

Theorem D.4 (Informal theorem (see the formal Theorem D.5)). Let Assumptions 5.1, 1.1, and 1.2
hold. It is impossible to converge faster than

(C] (Tn\/fR/\/g‘i’ (1/ni7'z> 02R2/n52>

i=1

seconds under the fixed computation model.

Theorem D.5. Let us consider the oracle class (’)i‘l’“v"; for some 0* > 0and0 < 7 < - < 7.
We fix any R, L, M, & > 0 such that VLR > c11/¢ > 0 and 0> > M?. In the view Protocol 2, for

any algorithm A € Ay, there exists a set (), a function f € o.1..m and oracles and distributions

((O1,...,00),(D1,...,Dy)) € O™ (£ such that

T1y.3Tn

E [mf f(a:k)} — inf f(z) > ¢,

keSt zeQ

where S; := {k S Noltk < t} ,

. | VLR MZ?R? 1 « o?R?
=cX [TTLmln{ﬁ7¥ + ﬁ;TL‘ nE2

and R is the euclidean distance between O (starting point) and the closest solution x, € Q. The
quantities c1, and c are universal constants.

)

. . 2 p2 .
Proof. First term. It is easy to prove the dependence on the first term 7, mln{@, ME—QR} using

the same idea as in (Lu & De Sa, 2021; Tyurin & Richtarik, 2023; Huang et al., 2022). It is sufficient
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to put a “hard” convex function (Nesterov, 2018; Woodworth et al., 2018) to the slowest worker
corresponding with the time 7, = max;¢[,) 7. In particular, we can consider the “hard” quadratic

function f from (Nesterov, 2018)[Section 2.1.2] and take the functions

fi(a) = {nx f(z), z::n

0, 7 < n.

forall z € R. The function f = £ 3" | f; = f belongs to the class F&"} . We take the stochastic

gradients without noise, i.e., Vfi(x;&;) = Vf;(z) deterministically for all x € R%, &; € S¢,, and
i € [n]. Itis clear that the only worker that can solve the problem is worker n, and it takes 7,, seconds

to find one gradient by the oracle construction. Thus, the required time complexity is © (Tn \\FTR)

since the required oracle complexity is © ( ) (Nesterov, 2018). One can get © (TnM R’ ) using
the same reasoning.

Second term. The proof of the second term is slightly trickier and uses the construction from
(Woodworth et al., 2018). Let us fix any algorithm. We use the proof of Lemma 10 from (Woodworth
et al., 2018) that has the following result. For any 02, B > 0 and any algorithm, it is possible to
construct a one dimensional linear function g : R — R on the domain {z € R : |z| < B}, a
stochastic gradient mapping Vg : R x S¢ — R, and a distribution D such that

. oB
E[g(x")] - min g(z) > ==

after NV queries of the oracle, where Vg is unbiased and o2-variance-bounded.

(20)

The idea is to put g to each worker but with different domain sizes. In particular, for all ¢ € [n], we
take the function f; : R™ — R such that

fi(z) = g(x:), (21)
where g is the function from Lemma 10 of (Woodworth et al., 2018), and z; is the i coordinate of
a vector z. For all ¢ € [n], we consider the function f; on the domain {z; € R| |z;| < R;}, where
R, = Rx — VT One can see that f is convex, O—smooth (because g is linear), and M —Lipschitz

V Z?:l Ti
(because o < M). The distance between 0 and the optimal point is less or equal to R because

iRQ ZR2 T _ R
=1

’L 17T
and the optimal point for the problem g(z;) — min|,, <, is either R; or —R;. We take
Q={zeR" : |z;| <R; Vie][n]}

Let us define the time
t:= . 22
256n€2 ( Z T ) 22)
By the time ¢, worker 7 can calculate at most

N; = {J (23)

stochastic gradients. Therefore,

BL@)] - nig /o) =+ Y- (Bl@)] - iy o)) = %Z o

TEQR n <

1 z": oRyT Y Z 2eT;
Z;L:lTi i=1 2 Ti

where Z € R"™ is any possible output of the algorithm before the time .
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E PROOF OF THEOREMS E.1 AND E.2
Theorem E.1. Ler Assumptions 5.1, 5.2, 1.2, 1.1 hold, and the functions { f;} are equal. Let us take

v =1/L and S = 49°/uLe, then Rennala SGD (Algorithm 1 with w¥ = n/s° | BF) finds x**1 such
that E [ka“'l - xf‘HHﬂ < ¢ after

m -1
. 1 1 L o R?
7 (”%1[2] l(m 1; T) (ﬁ i mE/ﬂ)] . e) o

k+1

k+

seconds, where x7 L is the closest solution to

Proof. Since the functions are equal, Rennala SGD is equivalent to

k+1

— .k k
T =T = 7Y9R>

o = Bkizw €.

tg=1g=
Clearly, gk is unbiased and
n n 1
Ex [llgk - vr@h)|*] = (ZBf) ZZEk IV £(*: k) = V£ (a* (ZB ) .
=1 =1 j=1

Rennala SGD waits for the moment when Y| B¥ > S (see Alg. | with w? = n/s>r_, BF). Thus

2 L
B [[lok - VAHI| < T < B
We can use Theorem E.3 to get
e R e A e

Since v = %, we obtain

BHL _ gkt 7ﬁ>+1 o_ k)%, ¢
A Pl (- ) a4 £

The last inequality ensure that the method finds an e—solution after
L
I
iterations. In each iteration, the method has to ensure that Z?:l Bf > S. A sufficient time for that is

2 min (;ii) (1+5)

me[n] Py

under the fixed computation model (see Theorem 11 in (Tyurin et al., 2024)). It is left to multiply this
time by O (ﬁ) . O

Theorem E.2. Let Assumptions 5.1, 5.2, 1.2, 1.1 hold. Let us take y = /L and S = 49°/uLe, then
Malenia SGD (Algorithm I with w® = 1/B¥) finds 2**1 such that E [ka“ — gkl H2] < ¢ after

O <[Tnﬁ + (}Lzé 7'7;) er? } log > (25)

k+ k+1

seconds, where x7 L is the closest solution to
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Proof. The proof of this theorem almost repeats the proof of Theorem E.1. The variance of Malenia
SGD is

2

n qu 2
e ok - V1] =B | |23 e SovaGhe) - vreh)| [ <2 (LY 4
j=1 /

i=1 i
. ~1
The method waits for the moment when (1 "% | 1/5%)"" > 2. Therefore
o2

B [[loh - V'] < 5

Using the same reasoning, the method finds an e—solution after

°(5)

. . . . -1 . .
iterations. In each iteration, the method has to ensure that (% Y Bf) > % A sufficient time

for that is
_ 1 — S
t=2 n - I

under the fixed computation model because the number of computed stochastic gradients BF > L%J ,
and

1<~ 1 1<~ 1 1 < 27
ZBkSZMSnZt<Z”

i=1 i=1

where we use |z] > % for all z > 1. Multiplying ¢ by O (%) , we get the result. O
Theorem E.3. Consider the method

= ok — 9V f(ak;Eh), (26)
where By, [V f(a*;6F)] = Vf(a*), By [va ko gk)y — H ] < 02, and 0® > 0. Let As-

sumptions 5.1, 5.2, and 1.1 hold. Let us take v = /L. and S = 20°/uLe, then the method finds x*+*
such that

o7 2 2y0?
B [l = a7 < (1= ) fao -+ 2

)

k k+1

where 81 is the closest solution of min f(x) tox
z€R

Proof. Using the properties of the projection and (26), we have
By [l — 2t || < B :Hw’““ —at|’]
= 5 [l 2Vt ) k]
= B [[l2* — ok [*] - 29Ex [(VF(ah;65), " —ab)] + 2 7B [ V(6]
=By [[[o* = 25||"] = 29 (VS ("), 2% — ab) + 2B ||V 55 -

In the last equality, we use the unbiasedness. Due the variance decomposition equality, we get

B [[l+1 - 2] < B [[l* — 24]7) 25 (V7). 0" — o8) 452 [V FGH) | +47E [[9F b en) - V)]
) 27
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Since the function f is L-smooth and V f (%) = 0, we obtain

— 2y (V) 2" — o) + 97 | Vi)

= 2y (V") = V() 2" = 2¥) + 47 |V f(a*) = Vf ()|
—2v(Vf(@¥) = Vf(z.),2a" —al) + Ly*(Vf )—Vf(x*)w’“—w@

=7 (Ly —2)(Vf(z*) fo@s*),x —al).

Taking v < % and substituting the inequality to (27), we get
B [t = ab 1 °] < B [lo* - of]*] - (VA@b), 0k - ok) + B |V ("

The o2—variance bounded ensures that

B [+ — o] < By [l - ot

2
] —y(Vf(z"), 2" —2l) + %0
Due to convexity and Assumption 5.2, we can use Lemma C.2, which yields

By |+ = ok ] < By [l — b)) - B fl2* - ok 44707

(=) ufi -

Unrolling the recursion and taking the full expectation, we obtain

B [+t = < (1) et -

) ﬂ +7%07

2 2
L 2ot
M

F ASSUMPTIONS 5.1, 5.6 AND 5.7 IMPLY ASSUMPTION 5.2

Theorem F.1. Let {f;} satisfy Assumption 5.1, 5.6, and Assumption 5.7 with constant p, then f
satisfies Assumption 5.2 with constant .

Proof. Wefix x € R<. Since Assumption 5.6 hold, then the functions share the closest solution z, to
z. Assumption 5.7 ensures that

filw) = fiz) 2 5 o — .|
for all ¢ € [n] (Karimi et al., 2016). Thus

@) = fla) = 5l =

W=

Due to convexity, we get

f(@e) = f2) +(V (@), 2. — ).

Therefore
2
f(@) = f(2.) <(Vf(@), 2 —2.) <[[Vf(@2)l |z — 2 < V()] \/;\/f(x) — flzs)
and
1
E(f@) = f(z) < 5 V@),
which is Assumption 5.2 with constant 4. O

26
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G FIRST-ORDER SIMILARITY AND SECOND-ORDER SIMILARITY

Theorem 4.3. Consider the Weighted SGD method with f;(x) : R — R such that f;(z) =
Blag, ) + g |z, a; € R foralli € [n], LS Lai =0, and ||a;|| = 1, where 8 > 0 is free
parameter. Assume that there is no noise in the stochastic gradients, which means V f;(xz;&;) =
V fi(x) deterministically for all §; € Se,, i € [n], and x € R, Then Weighted SGD converges to the
point % Z;.Lzl w;Bja; instead of x. = 0, Assumption 4.1 (the first-order similarity) is satisfied with
81 = 232, and Assumption 4.2 (the second-order similarity) is satisfied with 63 = 0.

Proof. The first-order similarity of these functions is

2
max max |[Vfi(z) = Vfj@ )|* = r;lg[x la; — a;]|* < 26°.

Thus, the parameter S from the construction controls this similarity. Taking g small, we increase

similarity between the functions. At the same time, the distance H% E;;l w;Bja;|| between the

minimum z, = 0 and the point 2?21 w;Bja; where Weighted SGD converges does not depend
on 3.

Notice that the second-order similarity between the functions is zero since V2 f;(x) = f/'(x) = 3
forall i € [n].

The rest of the proof is almost the same as in Theorem 3.1. If w; B; = 1 for all i € [n], then Weighted
SGD converges with v < % because Malenia SGD converges. If w; B; # 1 for all i € [n], then

1 n
k1 _ ok 1 B.B(a: + 2
x x vn;wl iB(a; + %)
1 n X 1 n
= 1—752%‘315 T _V/BEZwiBiai
1=1 =1
=(1—vﬁ)xk—vﬁlzn:w'3a'
nl: K3 1
k
= (1=98)" 2+ > 4B (1—~8) szBaz,
=0

where the second equality due to the agreement ; 37 w; B; = 1. If y > 2, then 2"+ does not
converge when & — oco. If y < =, then

lim z* E w;Bja;.
k—oo
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H EXPERIMENTS

We conduct a comparison between Rennala SGD and Malenia SGD on both stochastic quadratic opti-
mization tasks and real-world machine learning problems. These are standard quadratic optimization
and computer vision problems, the design of which we explain in Section I. We developed a library
that simulates the behavior of n = 100 workers. Both methods have two hyperparameters: step
size v and parameter S. We do a grid search for both methods and find the best pairs in all setups.
We start with synthetic quadratic optimization problems, which are generated without and with the
interpolation regime. The procedure is described in Section I.1.

H.1 WITHOUT INTERPOLATION

—&— Malenia SGD: Step size: 1.0
10t <+~ Rennala SGD: Step size: 0.0625

<t

A <

7 3 3 6
times (seconds) le6

Figure 1: Comparison of the methods on a quadratic optimization problem without interpolation. We
take the computation time 7, = % for all i € [n].

In Figure 1, we present results without interpolation. The plots concur with the theory from Section 5,
where we explain that it is essential to have interpolation to break the time complexity of Malenia SGD.
Rennala SGD has biased gradient estimators and does not converge to a minimum of the quadratic
optimization problem in Figure 1.

H.2 WITH INTERPOLATION

100 1 —— Malenia SGD: Step size: 2.0 10 1 —— Malenia SGD: Step size: 2.0
<~ Rennala SGD: Step size: 2.0 <~ Rennala SGD: Step size: 1.0
_ 10°
x
x
=107t
|
= My
=
1073 e [T ke %
|
<« 3
a9y W J <,<1<1<] &
10»4 <
0 10000 20000 30000 40000 0 500 1000 1500 2000 2500 3000 3500 4000

times (seconds) times (seconds)

Figure 2: Comparison of the methods on quadratic optimization problems with interpolation. Times
{7;} less diverse: Left plot: T; = Viforalli e [n]. Right plot: 1 =0.01,72 =1,...,7, = L.

In Figures 2 and 3, we consider the methods in the interpolation regime. As expected, according to
Section 5.2, Rennala SGD outperforms Malenia SGD in all experiments. We compare the methods with
different {7;}. In Figures 2, the times {;} are less diverse, so the difference between the methods is
less profound. In Figures 3, {7;} are more different; thus, we can see that Rennala SGD converges
much faster to low function values because it has much less variance in the corresponding gradient
estimator.
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—&— Malenia SGD: Step size: 1.0 «
<~ Rennala SGD: Step size: 2.0

—&— Malenia SGD: Step size: 1.0
<~ Rennala SGD: Step size: 1.0

a, 4\ %'y
«
4 4yta ahl ]
< a

7 3 7
times (seconds)

6 0
le6

T000 2000 3000 4000 _ 5000 6000 7000
times (seconds)

Figure 3: Comparison of the methods on quadratic optimization problems with interpolation. Times
{7:} more diverse: Left plot: 7; = i? for all i € [n]. Right plot: 71 = 0.001, 75 = 1,...,7, = 1.

H.3 RESNET-18 AND CIFAR-10

We also verify how Rennala SGD and Malenia SGD work with ResNet-18 and the CIFAR-10 classifi-
cation problem (Krizhevsky et al., 2009) (License: MIT). Both algorithms take step size v = 0.25,
sample a batch of size 128, and the smallest S such that all workers calculate at least one batch. The
dataset CIFAR-10 is split between the workers, so we consider the heterogeneous setting; all workers
access different samples. The results of the experiments are presented in Figure 4. One can see that

Rennala SGD converges faster in terms of accuracy, which might be explained by the fact that neural
networks work in the interpolation regime.
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Figure 4: Comparison of the methods on the CIFAR-10 classification problem with ResNet-18. We

take the computation time 7; = i2.

29



Under review as a conference paper at ICLR 2026

I EXPERIMENTS DETAILS

The experiments were run in Python 3 using an Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz.

I.1 QUADRATIC OPTIMIZATION TASK GENERATION PROCEDURE

In Section H, we perform experiments using synthetic quadratic optimization problems

. 1 n 1 . .
- 2T A —2h ).
Below, we present the algorithm, based on (Szlendak et al., 2021), that generates these problems. In
all experiments, we take s = 3 to ensure that the generated matrices are diverse. We take n = 100,
d = 100, and A = 0.001. The stochastic gradients are equal to the true gradients plus standard
Gaussian noise added to the coordinates to emulate stochasticity.

With these parameters and procedures, we run the experiments from Section H.1. To conduct the
experiments from Section H.2 in the interpolation regime, we take the matrices A1, - , A,,, vectors
b1, -, b, returned by Algorithm 3. Let T, be the solution of the quadratic optimization problem
LN A@, = 13" | b;. Then, we redefine the vectors {b;} as b; = A;Z, to ensure that we
are working in the interpolation regime. With this strategy, the matrices are still different, and the
functions { f;} are not equal.

Algorithm 3 Generate quadratic optimization tasks

1: Parameters: number nodes n, dimension d, regularizer ), and noise scale s.
2: fort=1,...,ndo

3:  Generate random noises 1{ = 1 + s¢; and n? = s¢?, i.i.d. ¢F,¢P ~ N(0,1)
4:  Take vector b; = L (—1+7?,0,---,0) € R?

5. Take the initial tridiagonal matrix

Ai:ﬁ Lo GRdXd

end for

Take the mean of matrices A = L 3" | A,
Find the minimum eigenvalue A, (A)

9: fori=1,...,ndo

10:  Update matrix A; = A; + (A — Apin(A))I

@ RD

11: end for
12: Take starting point 2° = (v/d, 0, -- - ,0)
13: Output: matrices A1, --- , A,,, vectors by, - - - , b,,, starting point 2°

1.2  EXPERIMENTS WITH RESNET AND CIFAR-10

In Section H.3, we consider the standard computer vision classification problem with ResNet-18 (He
et al., 2016) and CIFAR-10 (Krizhevsky et al., 2009). We conduct the experiments using PyTorch
and implement both Rennala SGD and Malenia SGD optimizers. For reproducibility, we use the
default ResNet-18 architecture provided in PyTorch and split randomly and evenly the CIFAR-10
dataset across multiple workers to create a heterogeneous data distribution scenario. We use standard
preprocessing techniques for CIFAR-10, including normalization and random cropping, and train the
network for a fixed number of epochs. The performance metrics include top-1 accuracy. In total, we
solve the optimization problem

min 2 3" (% > 0=, loss(ResNet(a;j; ), y”)) ,

z€R
where “loss” is the standard cross-entropy loss, {a;;, y;;} are samples from CIFAR-10 splitted
between the workers.
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