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ABSTRACT

Diffusion probabilistic models (DPMs), while effective in generating high-quality
samples, often suffer from high computational costs due to the iterative sampling
process. To address this, we propose an enhanced ODE-based sampling method
for DPMs inspired by Richardson extrapolation, which has been shown to reduce
numerical error and improve convergence rates. Our method, termed RX-DPM,
utilizes numerical solutions obtained over multiple denoising steps, leveraging
the multiple ODE solutions to extrapolate the denoised prediction in DPMs. This
significantly enhances the accuracy of estimations for the final sample while pre-
serving the number of function evaluations (NFEs). Unlike standard Richardson
extrapolation, which assumes uniform discretization of the time grid, we have
developed a more general formulation tailored to arbitrary time step scheduling,
guided by the local truncation error derived from a baseline sampling method. The
simplicity of our approach facilitates accurate estimation of numerical solutions
without additional computational overhead, and allows for seamless and conve-
nient integration into various DPMs and solvers. Additionally, RX-DPM provides
explicit error estimates, effectively illustrating the faster convergence achieved as
the order of the leading error term increases. Through a series of experiments, we
demonstrate that the proposed method effectively enhances the quality of generated
samples without requiring additional sampling iterations.

1 INTRODUCTION

Diffusion probabilistic models (DPMs) have emerged as a powerful framework for generating high-
quality samples in a wide range of applications and domains for images (Ho et al.,[2020; |Song et al.,
2021b; |Dhariwal & Nichol, [2021; [Rombach et al.,[2022)), videos (Ho et al.| 2022; |Singer et al., [2022}
Zhou et al., 2022; Wang et al., [2023)), 3D shapes (Zeng et al.,[2022), efc. While DPMs demonstrate
impressive performance in data fidelity and diversity, they also have limitations, particularly their
computational inefficiency due to the sequential nature of sampling. Addressing this issue is crucial
for enhancing the practicality of DPMs in real-world scenarios, where computational resources are
often limited.

The generation process of DPMs can be formulated as a problem of finding solutions to SDEs
or ODEs (Song et al., 2021b)), where the truncation errors of the numerical solutions are highly
correlated to the quality of the generated samples. To enhance the quality of these samples, it is
essential to reduce truncation errors, which can be achieved by adopting advanced solvers or numerical
techniques that improve the order of accuracy of numerical estimations. In this context, we aim to
lower truncation errors by applying numerical extrapolation to existing sampling methods for DPMs,
utilizing estimations over different numbers of steps. The key ingredient of the proposed method is
Richardson extrapolation, which has been proven to be reliable and is widely used, particularly in the
mathematical modeling of physical problems, e.g., fluid dynamics and heat transfer, which demand
high computational resources. As a well-established method, numerous variants have be proposed,
and its efficacy and application strategies for different problems have been investigated (Richards)
1997; Botchev & Verwer, 2009; Zlatev et al., 2010), but for DPMs. The method uses a simple
linear combination of multiple numerical estimates in progressively finer resolutions of a grid to
approximate the ideal solution, which is expected to be reached by the limit of the series of estimates.
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We propose the extrapolation algorithm that is applied
repeatedly every k denoising steps of an ODE-based
sampling method to improve the accuracy of interme-
diate denoising steps. This is achieved by utilizing
an additional ODE solution which is computed from
a single step estimation over an interval of k time
steps. Figure[I]illustrates this concept with k£ = 2 on
time step [t;, t;—1, t;—2], which is an unit block where
an extrapolation is performed. Two ODE solutions—
single-step and two-step estimations at ¢;_o from ¢,—
can be leveraged to achieve approximations closer to
the ideal solution @}, ,, which is unknown. The stan-
dard Richardson extrapolation is limited to employing
a uniform discretization over a time grid. However,
constructing denoising time steps with uniform dis-
cretizations might be suboptimal for DPMs; a smaller

------------- > ideal solution

——> n-step estimation oo
________ > extrapolated estimation

Figure 1: Application of the proposed extrap-
olation on two denoising steps (k = 2) with
time steps of [t;,t;_1,t;—2]. ig"_)z denotes
that n steps are used by the baseline sampler
within the same interval. :2%232 represents
the extrapolated estimation using two ODE

time interval near the clean sample is often much
more beneficial, depending on datasets and DPM back-
bones (Karras et al., 2022; Song et al.,|2021a) despite using the same number of steps. Considering
such characteristics of DPMs, in order not to be restricted from existing benefits, we introduce
a variant of the Richardson extrapolation algorithm specifically tailored for DPMs, applicable to
arbitrary discretizations of time steps. We observe that this non-uniform discretization approach
yields better performance than conventional methods.

solutions at ¢;_o, :i:ﬁljz and :i:EQL

Although there exist other methods applying extrapolation techniques to diffusion models, their
usages of extrapolation are somewhat different from ours. For example, (Zhang et al., [2024;2023)
utilize estimations from earlier steps to improve the estimation of the time step, ¢;, whereas our
approach adopts two denoised estimations at the same time step, ¢;, to enhance their accuracy at t;.
In addition, unlike other extrapolation methods (Zhang et al.,|2024; 2023)), the main building block of
our approach, Richardson extrapolation, is proven to enhance numerical accuracy and provides an
explicit estimate of the error, which allows for a clear understanding of the convergence behavior.
Furthermore, the implementation of our algorithm is simple and cost-effective because it requires no
additional network evaluations and insignificant computational overhead to perform the extrapolation.
We refer to the proposed sampling algorithm as RX-DPM.

Our main contributions are summarized below:

* We introduce an improved diffusion sampler, RX-DPM, motivated by Richardson extrapola-
tion, which effectively increases the order accuracy of the existing ODE-based samplers.
We develop an algorithm for arbitrary discretization, specifically tailored for DPMs.

* We systematically develop an algorithm on how to leverage Richardson extrapolation to
general DPM solvers with arbitrary time step scheduling starting from the derivation of a
truncation error formula of the Euler method on a non-uniform grid. We also provide details
on how to implement it across various diffusion samplers without incurring additional NFEs.

* Our experiments across various well-known baselines demonstrate that RX-DPM exhibits
strong generalization performance and high practicality, regardless of ODE designs, archi-
tectures and base samplers.

The rest of the paper is organized as follows. Section 2]discusses closely related papers and Section [3]
provides a brief overview of the basics of DPMs and Richardson extrapolation. Following that,
Section 4] describes the development process of the proposed extrapolation algorithm with the DPM
context. We demonstrate experimental results and their analyses in Section[5} and conclude our paper
in Section

2 RELATED WORK

There exists a substantial body of research that seeks to reduce the computational burden of DPMs
while maintaining their performance. One approach in this direction involves exploring alternative
modeling strategies for the reverse process. For example, the networks in |Salimans & Ho| (2022);
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Song et al.| (2023); Kim et al.| (2024) learn alternative objectives, the outputs obtained by iterative
inferences of the pretrained networks or teacher models, through knowledge distillation. On the
other hand, Bao et al.|(2022bja) models more accurate reverse distribution explicitly by incorporating
optimal covariance, while Xiao et al.|(2022)); Kang et al.|(2024) implicitly estimate precise reverse
distribution by utilizing GAN components.

Another line of research for fast sampling interprets generation process of diffusion models as solving
an ODE or SDE (Song et al.,|2021b; Karras et al.,|2022). For instance, DDIM (Song et al.,|2021al)
proposes to skip intermediate time steps, which is equivalent to solving an ODE using the Euler
method with a large step size. To further improve sampling quality, a large volume of research (Karras
et al., 2022; |Dockhorn et al.l [2022; [Liu et al., 2022} Zhang & Chenl 2023 |Lu et al., [2022} [2023))
applies classical higher-order solvers or tailors them for diffusion models. Specifically, Karras et al.
(2022) adopts the second-order Heun’s method and Dockhorn et al.| (2022) applies the second-
order Taylor expansion. In addtion, [Liu et al.|(2022)) proposes a pseudo-numerical solver, which
approximates classical higher-order numerical methods such as Runge-Kutta (Stili & Mayers|, 2003)),
and|Zhang & Chen|(2023)) refines the coefficients of the high-order polynomials.

On top of the methods that apply ODE solvers, [Zhang et al.[(2023};2024])) introduce extrapolation
to further improve the sample quality. To be specific, Zhang et al.|(2023) linearly extrapolates the
previous and current predictions of the solution at ¢ = 0—the solution on the image manifold—while
Zhang et al.| (2024) uses a linear combination of recent r + 1 gradients to compute integration. The
clear distinction of our approach from these methods is that, while they adopt score (noise) predictions
over multiple time steps for extrapolation, we utilize multiple denoised outputs obtained at the same
time step.

3 PRELIMINARIES

3.1 DIFFUSION PROBABILISTIC MODELS AS SOLVING ODE

For pg = Pdaa and x € R4, Karras et al.|(2022) defines a marginal distribution at ¢ as

pe(@) = s(t)""p(a/s(t);0(t)), (1)
where p(x;0) = Pya * N(0,0(t)*I), and s(t) and o(t) are non-negative functions satisfying
5(0) = 1,0(0) = 0, and lim; o, Zf = o0o. The probability flow ODE,

dx = [5(t)/s(t) — s(t)*6(t)o(t) Vg logp(x/s(t);o(t)]dt, =(T) ~ pr(x), (2)

matches the marginal distribution. In|Karras et al.| (2022), the specific choices s(t) = 1 and o(t) = ¢
are adopted and Equation (2) is reduced to the following equation:

der = —tVglogp(x;t)dt, x(T)~ pr(x). (3)

Diffusion models now learn the score function V log p(a; t), which is the only unknown component
in the equation. For sufficiently large 7', the marginal distribution pr () can be approximated by
N (z;0,T?I) and the generation process is equivalent to solving for z(0) using Equation (3) with
the boundary condition, (T") ~ N(0,72I). Since the analytic solution of Equation (3 cannot
be expressed in a closed form, numerical methods are used to solve the ODE. Given the time step
scheduling, 0 =ty < t; < ... <ty =T, the solution is given by

0
z(0) = x(T) +/T —tV log p(x(t); t)dt 4
—a(T)+ Y [ tValogple(it, )
i=N Yt

where each integration from ¢; to ¢,_; can be approximated by ODE solvers such as the Euler or
Heun’s method.
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3.2 RICHARDSON EXTRAPOLATION

Given a boundary condition z(7T') = zr in the 1-dimensional case of Equation , let the exact
solution at ¢ = 0 and the numerical solution at ¢ = 0 obtained by a step size A (0 < h < 1) be V* and
V' (h), respectively. If V* = limy,_,o V' (h) and the order of truncation error is known, the Richardson
extrapolation (Richardson, [1911) can be used to identify a faster converging sequence, V (h). For
instance, V' (h) with a truncation error in the order of O(hP) is expressed by the following equation:

V* =V(h) 4+ ch? + O(h?), (6)
for 0 < p < g and 3¢ # 0. Then, for a fixed constant k& > 1,
V= V(h/k) + k—cph” +O(h). 7
From Equations (6) and (7), we obtain
(kP — 1)V* = kPV(h/k) — V(h) + O(hY), ®)

and equivalently

b8y VBV )

This solution has a truncation error of O(h?), which is asymptotically smaller than O(hP).

(€))

4 RX-DPM

Before discussing the proposed method, we first outline the algorithmic development process for the
most simplified problem and then explore an extension to a general DPM solver.

4.1 TRUNCATION ERROR OF EULER METHOD ON NON-UNIFORM GRID

We now derive the truncation error formula for the Euler method on a non-uniform grid, based on the
local truncation error, the error caused by one-step approximation. For intuitive clarity, we consider a
one-dimensional ODE of the form

dx = f(x,t)dt,
where f is a smooth function. Let the numerical solution be obtained using the Euler method with the
discretization points [t;,t;_1, ..., t;—k] in the time-reversed direction given the boundary condition
z(t;) = z,. From now on, we denote igl) as the numerical solution at t; obtained by n iterations
and 7, as the exact solution at ¢;. For h = ti —ti—p,and \; = %(ti,jﬂ —ti—;),j=1,...,k, the
local truncation error of the one-step Euler method obtained by the Taylor expansion is given by
BV =, = Mbf(et) = ot — %x;'ixth +O(h%). (10)

Then, the truncation error of the two-step numerical solution is derived as

w2, =a) | = Xahf(af)) (11)
=, — g A4 O() — MahfGY) (12)
= 47, = dehf(a,) — 5l P+ ORY) — Mahf )+ dehf(a, ) ()
=i, — %x,’f;ilx\ghQ — %x;;/\%hz +O(h®) (. fis smooth) (14)
—a - %x;;(Xf SR+ 0(h®) (- f is smooth). (15)

Inductively, we can obtain the truncation error for the k-step solution as
#P = - %x; zk: X202+ O(h?), (16)

j=1

which approximates x; _, with a truncation error of O(h?).
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4.2 RX-EULER

We now describe RX-Euler, performing extrapolation every k steps on the Euler method. Extrapola-
tion is executed as a linear combination of two different numerical solutions sfcgblz , and cf:gi) , obtained
by the Euler solver over 1 step on the grid [t;, ¢;—x| and k steps on the grid [t;, t;—1,...,t;—%]. To
calculate coefficients for extrapolation, we use the truncation error derived in Section which
can be also applied to Equation (3 in Section[3.1] as the ideal score function can be considered

smooth; its derivative is Lipschitz continuous, referring to the equation in Appendix B.3 of |Karras

et al.[(2022). From Equations and , we obtain the following expressions for @E}jk and :ﬁif}k ,
respectively, for a constant c:
:%SEA =z , - ch? + O(h®) and (17)
k
et =i Y NRE 0. (18)

Jj=1

Then, by solving the linear system of Equations and (1'1;8[), we can approximate x;,_, through the
following extrapolation:

~(k k ~(1
~ (k) $§1—)k - Ej:l Agwglk

- 19)

ti—k k 2 ’ (
1- Zj:l A J

which involves a truncation error of O(h?), smaller than O(h?).

In the sampling process, we set the initial condition at the next denoising step, ¢;_, as :Z'gi)l and

repeatedly perform the proposed extrapolation technique every k steps. Because this approach
provides provably more accurate solutions at every k steps, we can reduce error propagation and
expect better quality of generated examples.

The proposed method is applicable to first-order methods in general, including DDIM (Song et al.,
2021a), which is arguably the most widely used DPM sampler. In this context, we interpret DDIM as
the Euler method applied to the following ODE:

dy = ep(x(t),t)d, (20)

where y(t) = x(t)y/1+~v(t)? and v(¢t) = 4/ 1;?? in the variance-preserving diffusion pro-

cess (Song et al., 2021b), i.e., pi(z|xo) = N(auwxo, (1 — aF)I). Thus, instead of using a time

grid, we compute the A ;) values from Equation in terms of the corresponding ~y(t), while the
other procedures remain the same.

RX-Euler (RX-DDIM) does not require additional NFEs beyond the number of time steps, as the first
prediction of every k-step-interval can be stored during the computation of &(*) and reused to obtain
(1. The only extra computation involves a linear combination of two estimates, which is negligible
compared to the forward evaluations of DPMs.

4.3 RX-DPM WITH HIGHER-ORDER SOLVERS

We now present the algorithm for general ODE samplers of DPMs including high-order solvers.
When the extrapolation spans & steps, the error form of the ODE solver satisfies

x; =&l 4 eh? +0h) 1)

for 0 < p < g and ¢ # 0. Analogous to Equation (I8)), we suppose the following equation holds for

~(k . . . .
wggk with the linear error accumulations assumption:

k
i, =) +cd N+ O(hY), 22)

j=1
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By solving linear system of Equations (Z2I)) and (22), the extrapolated solution is given by

~(k k ~(1
~ (k) wgz—)k - Zj:l )\_Z;wglzk
Ty, = % ; (23)
- Y

which approximates x;,  with a truncation error of O(h?), asymptotically smaller than O(hP).
Although Equation (22)) may not hold in general, this simplification is justified under the standard
assumptions of Richardson extrapolation (see Appendix [B). Algorithm[I]summarizes the procedure
of the proposed method with a generic ODE solver under the assumption that N is a multitude of k
for simplicity; it is simple to take care of the last few steps by either adjusting % for the remaining
steps or skipping the extrapolation.

However, obtaining two estimations, :fc,(fllzk and :ﬁgf}k throught naive application of higher-order

solvers requires additional network evaluations compared to the baseline sampling. For the baseline
ODE solver that iif,)k is computed over k steps, if z&i}zk can be derived directly from ﬁ:gfi)k without
requiring additional network evaluations, our method can be applied to high-order solvers without
increasing NFEs. We will now illustrate how this is achieved using specific examples of higher-order
ODE solvers. Common higher-order solvers often rely on interpolation-based techniques such as
Runge-Kutta method (Siili & Mayers} 2003)) and linear multistep methods (Timothy} |2017). Runge-
Kutta family employs the evaluation on multiple intermediate points, and linear multistep methods
leverage evaluations of the previous steps.

RX-Runge-Kutta We consider the second-order Runge-Kutta method with k£ = 2. A sequence of
one-step estimates are given by

58831 =Ty, — (ti — ti_1)(a1Zi + agzi_(g) and (24)

ci:flz = :E:SL — (tic1 — ti—2)(@12i-1 + a2zi—1-s). (25)

where z; = eg(x(t;),t;) for t;_1 < tj_s < t;. Then, we can express the single combined-step
estimate at ¢;_o as

. (1

33%32 =z, — (ti — ti—2)(a12; + a2z _s'), (26)
where, since z; is reused from the calculation of @,Elz > we only need to compute z;_s/, which is

approximated as z;_1 or z;_1_s, depending on the proximity of its time step. This approach allows
us to efficiently extrapolate the solutions without compromising the quality of the generated samples.

RX-Adam-Bashforth Suppose that, by the s-step Adams-Bashforth method, extrapolation is
performed on a grid with an interval h every k steps. By the Adams-Bashforth method, we are given

ig?k = iti—kJrl + hzbj€0(i:ti—k+j’ti_k+j) (27)
j=0
for predefined b;’s. We compute aﬁ'glzk for extrapolation as
igllzk =T, +kh Z bjee(iti—k+jk ) ti7k+jk) (28)
j=0

which requires no additional NFE by storing the network evaluations.

4.4 ANALYSIS ON GLOBAL TRUNCATION ERRORS

We perform global truncation error analyses on Euler method and RX-Euler under the same NFEs.
Assume we are solving ODE satisfying Lipshitz condition from ¢ = 0 to ¢ = 1 with N NFEs.

Euler Since Euler method requires a single network evaluation for each time step, the number of
time steps is V. The local truncation error of Euler method on step size of b = 1 /N can be expressed
as ch? + O(h?) and therefore the global truncation error is

@#+mm»xN:%+owﬂy (29)

Therefore, the dominating global truncation error term of Euler method is ¢/N.
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Algorithm 1 Sampling of RX-DPM

Require: ¢y(-), N, T =ty >...>tr =0
1: Input: k, ®(-) (ODE solver), p
2: xp ~ pr(x)
3: fori =1to N do
4: if i mod kK == 1 then

5: h=tn_it1 —tN—i—pt1
6: @ﬁi{m . T # Initialization.
7: end if
8: )\1 — (tN7i+1 — tN,Z')/h
9: @ﬁi{i — @(@ﬁi{m JIN—it1, tN—is€g(r)) # Store €4(t)’s if neccessary.
10: if ¢ mlod k == 0 then
11: Xy, Py pn N+ R tn_ii€) # No NFE required.
5B snidk—1ypa()
12: :Eg?_i +— th?il,zZ:J;%—l /\’Pth*’ # Extrapolation.
J= J
13: Lin_; < Zﬁgi)_l
14: end if
15: end for

16: return x;,

RX-Euler We consider RX-Euler where extrapolation occurs every k steps. Then for equal NFEs,
N, as in Euler case, N/k extrapolations are performed. The local truncation error for RX-Euler on
every k steps, which has the interval of h = k/N, can be expressed as ¢’h® + O(h*) and therefore
the global truncation error is
113 4 N _ K -3

(dh® +O(h%)) x = N2 +O(N7T?). (30)
Therefore, the dominating global truncation error term of RX-Euler is £%¢/ /N2. Given that RX-Euler
exhibits a better global truncation error convergence rate compared to Euler method under the same
NFEs, it allows us to attain a similar global error even with larger step sizes, which implies that
RX-Euler requires fewer NFEs to produce comparable results. Similarly, for higher-order solvers, we
can demonstrate that RX-DPM has a more rapid convergence of the global truncation errors using the
same approach.

5 EXPERIMENT

5.1 IMPLEMENTATION DETAILS

‘We conduct the experiment using EDM (Karras et al., 2022), Stable Diffusion VZF_] (Rombach et al.,
2022), DPM-Solver (Lu et al., |2022), PNDM (Liu et al., [2022), SN-DPM and NPR-DPM (Bao
et al.}2022a) using their official implementations and provided pretrained models. Throughout all
experiments, we do not modify any default settings including the seed number from the official codes
except for additional hyperparameters related to the proposed method. For the experiment with EDM,
DPM-Solver, PNDM, SN-DPM, and NPR-DPM backbones, we generate SOK images, and then use
included code in their implementations to measure FID (Heusel et al., 2017). For Stable Diffusion,
we use PyTorch implementation of FID E] and CLIP (Radford et al., [2021) modelE]with the patch size
of 32 x 32.

5.2 VALIDITY OF RX-DPM

We first conduct validity test of RX-Euler under EDM backbone with & € {2,3,4}. Smaller k
implies that extrapolation occurs more frequently under the same number of time steps. Figure[2]
shows that compared to Euler method without extrapolation, RX-Euler with all k£ improves the FID

"https://github.com/Stability-Al/stablediffusion
Zhttps://github.com/mseitzer/pytorch-fid
*https://huggingface.co/openai/clip-vit-base-patch32
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scores with great margin. In particular, £ = 2 which performs extrapolation every two steps achieves
the best in general throughout a wide range of NFEs. This indicates that frequent extrapolation helps
obtain more accurate prediction of intermediate output thus mitigate negative effect on final sample
from error accumulations. In addition, from the results for £ = 4, which significantly outperform
the baseline with few times of extrapolation, we confirm that the reduced truncation error derived in
Equation (T9) is empirically well-validated for general k. For the rest of our results, we set k = 2.

We also compare the proposed method with con-

ventional Richardson extrapolation using Equa- CIFAR-10 cond. (32x32) FFHQ (64x64)

tion (9) with k& = 2 which is labled as Naive in Euler Euler
Figure[2] We observe that naive implementation of 30 — RXEuer(d) —— RX-Euler (=2)
Richardson extrapolation does not work well for \ rccorden|| 2 Eir s
limited NFEs, and even at larger NFEs, it only re- & 20 Naive £15 Naive

sults in marginal improvements. This is primarily 10

because it fails to benefit from the NFE reduction ° \\ 5 \

effect of repeated extrapolation and the mitiga- = — - N ——

tion of error propagation. Furthermore, our pro- NFE NFE
posed method reflects the characteristics of DPMs,
where the importance of precision varies along the
time (Karras et al.,[2022), leading to better results.

Figure 2: Effect of extrapolation on the Euler
method with different k.

5.3 QUANTITATIVE COMPARISONS ON EDM BACKBONE

Figure|3|compares RX-Euler with other methods on four different datasets—CIFAR-10 (Krizhevsky
& Hinton, 2009), FFHQ (Karras et al., 2019), AFHQv2 (Choi et al., [2020) and ImageNet (Deng
et al.| 2009)—using EDM backbone. First, we compare the result of Heun’s method, labeled EDM,
which is employed by its original paper. Both Heun’s method and RX-Euler have a commonality
in that they achieve a higher order of accuary compared to Euler method as second-order solvers.
We also compares the results with other recent extrapolation-based approaches—LA-DPM (Zhang
et al.,[2023) and ITA (Zhang et al.| 2024). The results for LA-DPM are reproduced by ours with the
extrapolation hyperparameter presented in the paper fixed at A = 0.3. Since we find that LA-DPM
yields better results with Euler method than with Heun’s method, we use the values obtained from
Euler for LA-DPM results. For the results of IIA (Zhang et al., [2024), the values are brought from the
tables of the paper, and between the two suggested methods, IIA and BIIA, the better results are used.

We observe that RX-Euler surpasses the other methods with large margin on a wide range of NFEs
especially for small NFEs, i.e., N < 10 for CIFAR-10, N < 18 for FFHQ and N < 20 for AFHQv2
and ImageNet. In the comparison between RX-Euler and Heun, Heun generally performs better at
larger NFEs and vice versa, suggesting that each method may be advantageous in different ranges.
This implies that we could achieve better results by selecting more favorable solver for each interval.
Selecting solver can be viewed as a question of whether interpolation or extrapolation is more
advantageous. Even if the solvers have the same order of accuracy, the constant of the leading error
term is unknown, making it necessary to conduct experiments to determine which method is superior.
However, one can predict that in the earlier steps, close to the noise and thus prone to have a lower
accuracy of prediction, interpolation is likely to be more stable than extrapolation. Based on this
reasoning, we experiment with a hybrid approach, employing RX-Euler for a portion of the steps and
Heun for the remainder. Specifically, we apply RX-Euler to the middle half of the steps for CIFAR-10
and the last half of the steps for the other datasets. We label such case as RX+EDM in Figure [3|and
we discover that a proper combination of the two methods yields better results than either method
alone, achieving the best performance over a wider range of intervals, especially for FFHQ, AFHQv2,
and ImageNet datasets. Although this approach is heuristic, it suggests that there is still room for
improvement in our algorithm and provides another direction for future work.

5.4 STABLE DIFFUSION

We also apply RX-DDIM on Stable Diffusion V2 which provides various conditional generations. We
run text-to-image generation using 10K different texts from COCO2014 (Lin et al.,|2014)) validation
set to generate 10K images sized 512 x 512 and measure FID and CLIP scores of DDIM and
RX-DDIM. Table [I] shows that our method also works for the large models from improved FID
scores. However, we observe RX-DDIM has lower CLIP scores for 15 NFEs. On this issue, we
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CIFAR-10 cond. (32x32) FFHQ (64x64) 10 AFHQV2 (64x64) ImageNet cond. (64x64)
34 EDM 18 EDM EDM 18 EDM
—— LA-DPM —— LA-DPM —— LA-DPM —— LA-DPM
26 IIA-EDM 14 BIIA-EDM 8 RX-Euler 14 RX-Euler
RX-Euler RX-Euler —— RX+EDM —— RX+EDM
a \ —— RX+EDM QO — RX+EDM 2 ¢
w18 [ ™

//
i

5 10 15 20 10 20 30 40 10 20 30 40 10 20 30 40
NFE NFE NFE NFE

Figure 3: FIDs of RX-Euler, Heun’s method (EDM), LA-DPM and ITA (/BIIA) versus NFEs on
CIFAR-10 (cond.), FFHQ, AFHQv2, and ImageNet (cond.) datasets using EDM backbone.

Table 1: FID and CLIP scores of DDIM and RX-DDIM using Stable Diffusion V2.

NFE 15 20 30 50

Metric FID(}) CLIP(}) FID() CLIP({) FID({) CLIP(1) FID() CLIP(})
DDIM 19.15 31727 1843 31716 19.00  31.750 1865 31711
RX-DDIM 1724 31.629 1712 31721 17.62  31.781 17.83 31727

believe it may be related to the classifier-guidance scales. According to [Rombach et al.| (2022),
optimal classifier-free guidance scales vary for different models, and the default setting is optimized
for DDIM. As we does not perform a search on such hyperparameters, we expect there is room
for improvement in our method. Moreover, Figures [5|and[6]in Appendix [Fjcompare the qualitative
results, where we confirm that the results of RX-DDIM show better image quality and align more
closely with the text conditions.

5.5 HIGHER-ORDER SOLVERS

RX-DPM is also applicable to more advanced ODE-based samplers with higher-order accuracy as
depicted in Section[d.3] In Table[2] we show the effectiveness of RX-DPM upon DPM-Solvers (Lul
et al.| 2022) on CIFAR-10 and LSUN Bedroom (Yu et al.|[2015) datasets. Among the variations of
DPM solvers, the single-step version of DPM-Solver-2 and DPM-Solver-3 are used. Note that, since
a single-step DPM-solver-n can be considered as an n'"-order Runge-Kutta-like solver, we apply
RX-DPM with p = n + 1 in Equation (23) for the DPM-solver-n. Additionally, we compare the
results with another accelerated diffusion sampler, DEIS (Zhang & Chen, 2023)) on class-conditioned
ImageNet (64 x 64) in Table [5] of Appendix [D]and observe that RX-DPM demonstrates the best
performance across all NFEs.

As another type of advanced sampler, we choose PNDM (Liu et al., [2022)); S-PNDM and F-PNDM
utilize the linear multistep methods, i.e., 2-step and 4-step Adam-Bashforth methods, respectively,
except for the first few time steps. Therefore, we apply RX-DPM with p = 3 and p = 5 in
Equation for S-PNDM and F-PNDM, respectively. The results on CIFAR-10, CelebA (Liu
et al., 2015) and LSUN Church (Yu et al., [2015) datasets are shown in Table E} While RX-DPM
shows improved performances in most cases, there is a notable exception with F-PNDM solver on
LSUN Church dataset, where RX-DPM does not work well. Analyzing this, we find that the baseline
result of F-PNDM is best when the number of time steps is 10, and it gets progressively worse as the
number of time steps increases (even up to 250, the result with 10 steps is still the best). RX-DPM
leverages the momentum from the improvement of the baseline solver’s accuracy over finer time steps.
However, in this case, finer intervals result in worse performance, indicating that the extrapolation
does not enhance performance as expected. Regarding this, ITA (Zhang et al., 2024) also reported
similar phenomena with F-PNDM on LSUN datasets.

5.6 DPMS WITH OPTIMAL COVARIANCES

Previously, we conducted experiments from the perspective of ODE solvers. To verify the effective-
ness of our method on models optimized with SDE, we also conduct experiment with the SN-DPM and
NPR-DPM (Bao et al.,|2022a) on CIFAR-10 (Krizhevsky & Hinton), |2009) and CelebA datasets (Liu
et al., 2015). SN-DPM and NPR-DPM are two different models that correct the imperfect mean
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Table 2: FID scores of DPM-Solvers (Lu et al.,[2022)) and RX-DPMs applied to DPM-Solvers on
CIFAR-10 and LSUN Bedroom datasets. All baseline results are reproduced under the same setting
as RX-DPMs.

CIFAR-10 (32x32) LSUN Bedroom (256 x256)
Method \ NFEs 9 10 12 15 9 10 12 15
DPM-Solver-2 - 15.06 1133 7.36 - 14.67 1138  6.44
RX-DPM-Solver-2 - 12.94 9.80 6.53 - 12.66 10.13 5.72
DPM-Solver-3 12.39 - 6.76 5.00 8.79 - 5.37 4.04
RX-DPM-Solver-3  11.50 - 6.62 4.85 8.12 - 5.18 4.04

Table 3: FID scores of two PNDM solvers (Liu et al.,|2022) and RX-DPMs applied to each PNDM
on CIFAR-10, CelebA and LSUN Church datasets. Note that S-PNDM and F-PNDM require 1 and
9 additional NFEs to the number of time steps, respectively. The baseline results are copied from
PNDM (Liu et al., 2022).

CIFAR-10 (32x32) CelebA (64x64) LSUN Church (256 x256)
Method \ # of steps 5 10 20 5 10 20 5 10 20
S-PNDM 183 8.64 5.77 152 122 9.45 205 11.8 9.20
RX-S-PNDM 19.69 7.64 4.72 11.56 922 6.89 21.15  10.96 8.96
F-PNDM 182 7.05 4.6l 11.3 7.71 551 148  8.69 9.13
RX-F-PNDM - 6.60 3.99 - 710 499 - 8.85 9.41

Table 4: FID scores for CIFAR-10 and CelebA on DDIM, NPR-DDIM and SN-DDIM models. The
values for each baseline and LA-DDIM results are copied from Zhang et al.[(2023)).

Dataset CIFAR-10 (32x32) CelebA (64x64)

NFE 10 25 50 100 200 10 25 50 100 200
DDIM 21.31 1070  7.74 6.08 5.07 20.54 1345 933 6.60 496
RX-DDIM 1478 842 630 496 4.31 1831 10.54 6.88 447 3.56
NPR-DDIM 1340 543 399 352 340 1494  9.18  6.17 440 3.67
LA-NPR-DDIM 10.74 471 364 333 329 1425 883 567 376 295
RX-NPR-DDIM 635 392 334 313 318 1158 6.61 398 275 2.51
SN-DDIM 12.19 428 339 323 322 10.17 562 390 321 294
LA-SN-DDIM 848 315 293 292 3.08 8.05 456 293 239 219
RX-SN-DDIM 750 512 440 418 3.62 520 272 225 249 244

prediction in the reverse process of existing models through optimal covariance learning. Therefore,
when performing DDIM using these models, stochasticity arises due to optimal covariances, resulting
in a non-ODE solution. To apply our method in this case, we calculate 53?} , and i'?l , from t; using
an ODE solver, i.e., DDIM, without adding covariances. Then after the extrapolation, we apply the
optimal covari 7% I i hod applies th i

ptimal covariance to &, ~ correct the values. In this way, our method applies the covariance usage

steps in a limited manner (half times) compared to the baseline sampling with the same NFEs.

In Table 4] we show the results on NPR-DDIM and SN-DDIM along with the vanilla DDIM and
compare with LA-DPM (Zhang et al., 2023)) as well. We observe that our method outperforms in
most cases, although a performance degradation was noted with SN-RX-DDIM on the CIFAR-10
dataset. Upon analysis, we find that this model has a relatively large covariances compared to other
cases. Consequently, our approach of solving the ODE less benefits from the model’s optimization.
Despite this, we observe significant performance improvements at the most extreme NFEs = 10.
Moreover, our method significantly exceeds the baseline, even surpassing LA-DPM with a large
margin for limited NFEs with models with less stochasticity.

6 CONCLUSION

We presented an advanced sampling method, RX-DPM, which performs extrapolation by employs two
ODE solutions with different discretizations. In consequence, we could reduce the local truncation
error effectively, thereby achieving better sample qualities. We showed the effectiveness of RX-DPM
by conducting experiments on well-known baseline models, datasets, and comparing RX-DPMs with
other sampling methods.

10



Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

This paper leverages pretrained diffusion probabilistic models to generate high-quality images. The
proposed method is focused on efficiency and thus our application of diffusion models does not
directly introduce hazardous elements. Nonetheless, we recognize that it can potentially be used to
synthesize data with unexpectedly inappropriate or sensitive content.

REPRODUCIBILITY STATEMENT

We provide detailed instructions for implementation and reproducibility of our results in Section[5.1]
and pseudo code of the main part in Algorithm[I] We will release the code.
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APPENDIX

A LIMITATIONS

As our method is primarily designed for an ODE solver, to integrate it with an SDE solver (or a
stochastic sampling method), we partially apply the stochasticity component of the SDE solver as
demonstrated in Section 5.6. Consequently, in some cases, the effectiveness is offset because the
full effects of stochasticity are not captured. However, in scenarios where NFE is very limited,
which are of greater interest to us, the combined effect of RX-DPM and stochastic sampling has
been empirically shown to be highly beneficial. We leave the development of methods that can
perform better in more general cases for future work. Additionally, in the extension of the RX-Euler
algorithm to a higher-order solver in Section 4.3, there remains room for improvement since we
impose assumptions about linear error propagation. We believe that relaxing these assumptions or
deriving more accurate equations could further enhance the performance.

B JUSTIFICATION ON EQUATION (22))

Assuming a uniform grid as in the context of conventional Richardson extrapolation in Section[3.2]
and the ODE solver with O(h?™!) of local truncation error formula, we have

V* =V(h) + ch? + O(h?™') and (31
V* = V(%)+c(%)7’+0(hp+1), (32)

since we expect the O(h?) of the global truncation error. Then, we have the following extrapolated
solution with a truncation error of O(h?*!) by Richardson extrapolation (Equation (9)):

- KV (h/k) — V()

V(h, k)= 33
( ) ) kp _ 1 ( )
Now, considering the case of Equations (ZI) and (22)) with uniform discretization, we have
V*=V(h) + WP+ O(hP*?)  and (34)
h h
V= V(E) + kc’(E)pH + O(hP+?), (35)

each correspondingly. Then, the extrapolated solution V. obtained from solving linear system of
Equations (34) and (35) becomes

o RV~ V(R

ours — kp . 1 I (36)

which turns out to be exactly the same as Equation (33). Thus, we believe our approach can
be considered to employ assumptions shared by those used in common practices of Richardson
extrapolation and also can reduce global errors which is backed by experimental results as well.
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C DIAGRAMS

Figure ] compares the diagrams of an ODE solver, the proposed method with an ODE solver, and the
proposed method with an SDE solver. To integrate our method with the SDE solver, we interpret the
SDE solver as a combination of a deterministic sampling component and a stochasticity component.
We then utilize the deterministic sampling part as an ODE solver, as illustrated in Figure ] (c).

@ ODE solver —

(a) One step of an ODE solver
k

ODE solver - = ODE solver
O
ODE solver 1

- (
Lt

T
|

(b) k steps of RX-DPM applied to an ODE solver

k
ODE solver - - — ODE solver ﬂ
Add
@< 1) Eq (24) stochasticity
ODE solver aAZtA_k

(c) k steps of RX-DPM applied to an SDE solver

Figure 4: Digarams of the baseline and the proposed sampling methods. The blue-bordered boxes in
(b) and (c) indicate that the corresponding operation does not require network evaluation. The ODE
solver in (c) refers to the deterministic sampling component of the SDE solver.

D CoMPARISON WITH DEIS

Table 5: Comparisons of DEIS variants (Zhang & Chenl |2023), DPM-Solvers and RX-DPMs applied
to DPM-Solvers on class-conditioned ImageNet (64 x64). All results of DEIS and DPM-Solvers are
copied from DEIS (Zhang & Chen| [2023)) except for the result of DPM-Solver-3 with NFEs = 9.

NFEs

Method 9 10 12 18 30

tAB-DEIS - 6.65 3.99 321 281
pAB-DEIS - 9.28 6.46 374 287
DPM-Solver-2 - 7.93 5.36 3.63  3.00
pMid-DEIS - 9.12 6.78 400 299
RX-DPM-Solver-2 - 6.11 5.61 3.64 293
DPM-Solver-3 7.45 - 5.02 3.18 2.84
pKutta-DEIS - - 13.12  3.63 282
RX-DPM-Solver-3  7.08 3.90 236 218
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E COMPUTATIONAL COMPLEXITY

We compare the computational costs of the Euler method and RX-Euler using the EDM backbone
in Table[§] The average runtime per batch is measured for 10-step sampling with a batch size of
128. The additional operations introduced by our method, which consist of linear combinations of
precomputed values, result in negligible computational overhead compared to the time required for
the network forward pass. Furthermore, as the model size increases, the relative overhead diminishes
(e.g., only a 0.11% increase for ImageNet class-conditional sampling).

Table 6: Comparison of per-batch computation times between the Euler method and RX-Euler with
the EDM backbone. The reported values represent the average runtime across 100 measurements (in
seconds).

CIFAR-10 cond. (32x32)  FFHQ (64x64) ImageNet cond. (64x64)

Euler 1.737 £ 0.028 3.895 £ 0.023 6.436 + 0.033
RX-Euler 1.743 £ 0.031 3.903 £ 0.025 6.443 £ 0.039

F QUALITATIVE RESULTS

We provide qualitative results on Stable diffusion V2 in Figures [5] and [f]and EDM backbone in
Figures [7]to[10}
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NFEs = 15 NFEs = 20 NFEs = 30 NFEs = 50

DDIM RX-DDIM DDIM

RX-DDIM

v 2
“A woman is looking at a grey horse in the eye.”

Figure 5: Qualitative results on Stable Diffusion V2 of DDIM and RX-DDIM.
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NFEs = 15 ; NFEs = 30 NFEs = 50

RX-DDIM DDIM

DDIM

RX-DDIM

“A herd of sheep walking down a road in front of a silver truck.”

Figure 6: Qualitative results on Stable Diffusion V2 of DDIM and RX-DDIM.
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g~ *ﬁﬂl

Es — 11, FID: 14.46)

ik | . . | ’
RX-Euler (NFEs = 10, FID 4.35) RX+EDM (NFEs = 10, FID 4.26)

Figure 7: Qualitative results of CIFAR-10 of different sampling methods with EDM backbone.
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Figure 8: Qualitative results of FFHQ of different sampling methods with EDM backbone.
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) . A 5
RX+EDM (NFEs = 9, FID: 3.88)

’

RX-Euler (NFEs = 8, FID: 6.49)

Figure 9: Qualitative results of AFHQV2 of different sampling methods with EDM backbone.
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RX-Euler (NFEs = 10, FID: 6.95)

Figure 10: Qualitative results of ImageNet of different sampling methods with EDM backbone.
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