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Abstract
We study the problem of efficiently computing the
derivative of the fixed-point of a parametric non-
differentiable contraction map. This problem has
wide applications in machine learning, including
hyperparameter optimization, meta-learning and
data poisoning attacks. We analyze two popular
approaches: iterative differentiation (ITD) and ap-
proximate implicit differentiation (AID). A key
challenge behind the nonsmooth setting is that the
chain rule does not hold anymore. We build upon
the work by Bolte et al. (2022), who prove linear
convergence of nonsmooth ITD under a piecewise
Lipschitz smooth assumption. In the determinis-
tic case, we provide a linear rate for AID and an
improved linear rate for ITD which closely match
the ones for the smooth setting. We further intro-
duce NSID, a new stochastic method to compute
the implicit derivative when the contraction map
is defined as the composition of an outer map and
an inner map which is accessible only through a
stochastic unbiased estimator. We establish rates
for the convergence of NSID, encompassing the
best available rates in the smooth setting. We also
present illustrative experiments confirming our
analysis.

1. Introduction
In this paper, we study the problem of efficiently approxi-
mating a generalized derivative (or Jacobian) of the solution
map of the parametric fixed point equation

wpλq “ Φpwpλq, λq pλ P Rmq, (1)

when Φ is not differentiable, but only piecewise differen-
tiable. We address both the case that Φ can be explicitly
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evaluated, and the case that Φ has the composite form

Φpw, λq “ GpT pw, λq, λq

T pw, λq “ ErT̂ξpwpλq, λqs,
(2)

where the external map G can be evaluated, but the inner
map T is accessible only via a stochastic estimator T̂ξ , with
ξ a random variable.

A main motivation for computing the implicit derivative
of (1) is provided by bilevel optimization, which aims to
minimize an upper level objective function of wpλq. Im-
portant examples are given by hyperparameter optimization
and meta-learning (Franceschi et al., 2018; Lee et al., 2019),
where (1) expresses the optimality conditions of a lower-
level minimization problem. Further examples include learn-
ing a surrogate model for data poisoning attacks (Xiao et al.,
2015; Muñoz-González et al., 2017), deep equilibrium mod-
els (Bai et al., 2019) or OptNet (Amos & Kolter, 2017).
All these problems may present nonsmooth mappings Φ.
For instance, consider hyperparameter optimization or data
poisoning attacks for SVMs, or meta-learning for image
classification, where Φ is evaluated through the forward
pass of a neural net with RELU activations (Bertinetto et al.,
2019; Lee et al., 2019; Rajeswaran et al., 2019). In addition,
when such settings are applied to large datasets, evaluating
the map Φ would be too costly, but we can usually apply
stochastic methods through the composite stochastic struc-
ture in (2), where only T involves a computation on the full
training set (e.g., a gradient descent step).

Nowadays, automatic differentiation techniques (Griewank
& Walther, 2008) popular for deep learning, can also be
used to efficiently, i.e. with a cost of the same order of that
of approximating wpλq, approximate Jacobian-vector (or
vector-Jacobian) products of wpλq by relying only on an
implementation of an iterative solver for problem (1). There
are two main approaches to achieve this: ITerative Differen-
tiation (ITD) (e.g., Maclaurin et al. (2015); Franceschi et al.
(2017)), which differentiates through the steps of the solver
for (1), and Approximate Implicit Differentiation (AID)
(e.g., Pedregosa (2016); Lorraine et al. (2020)), which relies
on approximately solving the linear system emerging from
the implicit expression for the Jacobian-vector product. De-
spite the analysis of such methods has been usually done
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in the case that Φ is smooth, there are now several open
source implementations relying on popular deep learning
frameworks (e.g., Grazzi et al. (2020); Blondel et al. (2022);
Liu & Liu (2021)), which practitioners can use even when Φ
is not differentiable. However, when Φ is not differentiable
despite existing algorithmic proposals (Ochs et al., 2015;
Frecon et al., 2018), establishing theoretical convergence
guarantees is challenging, since even if the solution map
w is almost everywhere differentiable and the Clarke sub-
gradient is well defined, the chain rule of differentiation,
exploited by AID and ITD approaches, does not hold.

Recently Bolte & Pauwels (2021) introduced the notion of
conservative derivatives as an effective tool to rigorously ad-
dress automatic differentiation of neural networks with non-
differentiable activations (e.g., ReLU). Moreover, if Φp¨, λq

is a contraction and under the general assumption that Φ is
piecewise Lipschitz smooth with finite pieces, Bolte et al.
(2022) provide an asymptotic linear convergence rate for
deterministic ITD.1 However, such rate is worse than that
of the smooth case and we are not aware of any result of
this type for the AID method and for the stochastic setting
of problem (2), even when Gpv, λq “ v. In particular the
compositional structure (2) allows us to cover e.g., proximal
stochastic gradient methods, which are a common and prac-
tical example of nonsmooth optimization algorithms, but it
adds additional challenges since we do not have access to
an unbiased estimator of Φ as for the smooth stochastic case
studied in (Grazzi et al., 2021; 2023).

Contributions We present theoretical guarantees on AID
and ITD for the approximation of the conservative deriva-
tive of the fixed point solution of (1), building upon the
framework of Bolte et al. (2022). Specifically:

• We prove non-asymptotic linear convergence rates for
deterministic ITD and AID which, from one hand ex-
tend the rates for the case where Φ is Lipschitz smooth
given in (Grazzi et al., 2020), which are fully recovered
as a special case, and on the other end, improve the
result in (Bolte et al., 2022) for nonsmooth ITD. The
given bounds indicate that AID converges faster than
ITD, which we verify empirically. We also identify
cases in which this difference in performance in favor
of AID might be large due to nondifferentiable regions.

• We propose the first nonsmooth stochastic AID ap-
proach with proven convergence rates, which we name
nonsmooth stochastic implicit differentiation (NSID).
Notably, we prove that NSID can converge to a true
conservative Jacobian-vector product with rate Op1{kq,
where k is the number of samples, provided that the
fixed-point problem is solved with rate Op1{kq.

1Therein, referred to as piggyback automatic differentiation.

• Finally, we provide experiments on two bilevel opti-
mization problems, i.e. hyperparameter optimization
and adversarial poisoning attacks, confirming our theo-
retical findings.

Related Work When Φ is differentiable and under some
regularity assumptions, approximation guarantees have been
established for AID and ITD approaches in the determinis-
tic setting (Pedregosa, 2016; Grazzi et al., 2020), and for
AID in the special case of the stochastic setting (2) where
Gpv, λq “ v (Grazzi et al., 2021; 2023). Furthermore, sev-
eral works established convergence rates and, in the stochas-
tic setting, sample complexity results for bilevel optimiza-
tion algorithms relying on AID and ITD approaches, see e.g.,
(Ghadimi & Wang, 2018; Ji et al., 2021; Arbel & Mairal,
2021; Chen et al., 2021).
Aside from (Bolte et al., 2022), in the nonsmooth case,
Bertrand et al. (2020; 2022) present deterministic and
sparsity-aware nonsmooth ITD and AID procedures together
with asymptotic linear convergence guarantees when wpλq

is the solution of a composite minimization problem where
one component has a sum structure. Contrary to this work
and to (Bolte et al., 2022), their results rely on some differ-
entiability assumptions on the algorithms, which are verified
after a finite number of iterations. For bilevel optimization,
some recent works have provided stochastic algorithms with
convergence rates for the special case where the lower-level
problem has linear (Khanduri et al., 2023) or equality (Xiao
et al., 2023) constraints.

2. Preliminaries
Notation If U and V are two nonempty sets, we denote
by F : U Ñ V a set-valued mapping which associates to an
element of U a subset of V . A selection of F is a single-
valued function f : U Ñ V such that, for every x P U ,
fpxq P F pxq. We denote with ∥¨∥ the Euclidean and opera-
tor norm when applied to vectors and matrices, respectively.
Set inclusion is denoted by Ă. We define Minkowski oper-
ations on sets of matrices as follows: if A,B Ă Rnˆp and
C Ă Rpˆd then

A ` B :“ tA ` B |A P A, B P Bu,

AC :“ tAC |A P A, C P Cu

A˚ :“ tA˚ |A P Au with ˚ P tJ,´1u.

We let copAq be the convex envelope of A, and define
∥A∥sup “ supt∥A∥ |A P Au. It will be convenient to
define for every A Ă Rnˆpp1`p2q the map acting between
sets of matrices, which we still denote by A, such that for
every X Ă Rp1ˆp2

ApX q:“A
„

X
Ip2

ȷ

:“
␣

A1X ` A2

ˇ

ˇ rA1, A2s P A, X P X
(

,

(3)
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where Ip2
is the identity matrix of dimensions p2 ˆ p2.

For any integer r ě 1 we set rrs “ t1, . . . , ru. If
F : Rp1`p2 Ñ Rd is differentiable, we denote by F 1pxq P

Rdˆpp1`p2q the derivative of F (its Jacobian) at x and by
B1F pxq P Rdˆp1 and B2F pxq P Rdˆp2 the partial deriva-
tives of F with respect to the first and second block of
variables respectively. Let F : U Ă Rd Ñ Rp, we say
that F is smooth (nonsmooth) if it is differentiable (not
differentiable) and Lipschitz smooth with constant L or L-
smooth if it is smooth and DL ą 0 such that @x, y P U
∥F 1pxq ´ F 1pyq∥ ď L∥x ´ y∥. For a random vector
ξ P Rd, we denote with Erξs its expectation and with
Varrξs “ E∥ξ ´ Erξs∥2 its variance. In our assumptions
we will consider the class of the so called definable func-
tions, which includes the large majority of functions used
for machine learning applications (see Appendix A).

2.1. Conservative Derivatives

We provide some definitions related to path differentiability
and sets of matrices and vectors. They are mostly borrowed,
possibly with slight modifications, from (Bolte & Pauwels,
2021), where additional details can be found.
Definition 2.1 (Conservative Derivatives). Let U Ă Rp be
an open set and F : U Ă Rp Ñ Rd be a locally Lipschitz
continuous mapping. We say that a set-valued mapping
DF : U Ñ Rdˆp is a conservative derivative of F , if DF

has closed graph, nonempty compact values, and for every
absolutely continuous curve γ : r0, 1s Ñ U Ă Rp we have
that, for almost every t P r0, 1s

d

dt
F pγptqq “ V γ1ptq, @V P DF pγptqq. (4)

The function F is called path differentiable if it admits a
conservative derivative.

Conservative derivatives are extensively analyzed in (Bolte
& Pauwels, 2021). Some key properties are that: (1) they
are almost everywhere single-valued and equal to classical
derivatives; (2) for path differentiable functions, the Clarke
subgradient is the minimal conservative derivative up to
a convex envelope; (3) chain rule holds for conservative
derivatives; (4) locally Lipschitz definable mappings admit
conservative derivatives. We also point out that – as it is
usual for generalized derivatives – conservative derivatives
are unique only up to a set of Lebesgue measure zero. This
accounts for the fact that there are multiple ways to express
a path differentiable function as a composition of others but
applying the chain rule produces conservative derivatives
that can differ but are always valid.

Similarly to (Bolte et al., 2022), to address the fact that
conservative derivatives are set-valued mappings, we will
use the following quantity to measure the error in the con-
servative derivative approximation.

Definition 2.2 (Excess). Let A and B be two bounded sub-
sets of matrices or vectors. The excess2 of A over B is

epA,Bq :“ sup
APA

inf
BPB

∥A ´ B∥.

Note that epA,Bq“0 ùñ A Ă B and ∥A∥sup “ epA, t0uq.
The excess satisfies several properties similar to the ones of
a distance, even though it is not symmetric (see Lemma B.1).
Similarly to (Scholtes, 2012) we give the following concept
of piecewise continuity and smoothness (which is slightly
more general than that given in (Bolte & Pauwels, 2021)).
Definition 2.3. Let F1, . . . , Fr : U Ă Rp Ñ Rd be con-
tinuous mappings defined on a nonempty open set U . A
continuous selection of F1, . . . , Fr is a continuous map-
ping F : U Ñ Rd such that for every x P U : F pxq P

tF1pxq, . . . , Frpxqu. In such case the active index set
mapping is the set-valued mapping IF : U Ñ rrs, with
IF pxq “ ti P rrs |Fipxq “ F pxqu. Moreover, if the Fi’s
are differentiable we set Ds

F : U Ă Rp Ñ Rdˆp such that

Ds
F pxq “ coptF 1

i pxq | i P IF pxquq, (5)

where F 1
i pxq is the classical derivative (Jacobian) of Fi at x.

Theorem 2.4. Let F : U Ă Rp Ñ Rd be a continuous
selection of definable and continuously differentiable map-
pings F1, . . . , Fr : U Ñ Rd. Then F is definable if and
only if IF : Rp Ñ rrs is definable, and in such case Ds

F is a
conservative derivative of F .

We can also define partial conservative derivatives. If p “

p1 ` p2 and F : U Ă Rp1`p2 Ñ Rd, we have DF : U Ñ

Rdˆpp1`p2q and we set DF,1 : U Ñ Rdˆp1 and DF,2 : U Ñ

Rdˆp2 such that for j P t1, 2u

DF,jpxq “
␣

Aj | rA1, A2s P DF pxq
(

.

Finally, we denote by F 1pxq an arbitrary element of DF pxq

and by B1F pxq P Rdˆp1 and B2F pxq P Rdˆp2 the first and
second block component of F 1pxq respectively, which yield
the classical (partial) derivatives if F is differentiable. By
building on (Bolte et al., 2022, Lemma 3), we prove the
following result (the proof is in Appendix B).
Lemma 2.5. Let F : U Ă Rp Ñ Rd be a continuous defin-
able selection of the definable Lipschitz smooth mappings
F1, . . . , Fr : U Ñ Rd. Let Li be the Lipschitz constant of
F 1
i and set L “ max1ďiďr Li. Then for every x P U , there

exist Rx ą 0 such that for every x1 P U

epDs
F px1q, Ds

F pxqq ď Lxpx1q∥x ´ x1∥, (6)

where

Lxpx1q :“

#

L if ∥x ´ x1∥ ď Rx

L ` Mx{Rx otherwise

2e is referred in (Bolte et al., 2022) as gap, while the standard
name is excess (Beer, 1993, Section 1.5).
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and Mx :“ maxiPrms minjPIF pxq∥F 1
i pxq ´ F 1

jpxq∥.

Note that in the smooth case (r “ 1), (6) corresponds to
global L-smoothness (since Mx “ 0), while in general
it is weaker. In particular, the quantity L ` Mx

Rx
is well

defined even when F is not differentiable at x, but blows up
when x approaches a point of non-differentiability, e.g., for
ReLUpxq “ maxp0, xq, limxÑ0` Mx{Rx “ 8, since if
x ‰ 0Mx “ 1 and Rx “ |x|, while for x “ 0, Mx{Rx “ 0
since Mx “ 0 and Rx ą 0 can be chosen arbitrarily.

3. Differentiating a Parametric Fixed Point
Instances of Parametric Fixed Point Equations A gen-
eral class of problems that can be recast in the form (1) is
that of the parametric monotone inclusion problem

0 P Aλpwq ` Bλpwq, (7)

where Aλ : Rd Ñ Rd and Bλ : Rd Ñ Rd are multi-valued
and single-valued maximal monotone operators respectively.
These types of problems are at the core of convex analysis
and can cover a number of optimizations problems includ-
ing minimization problems as well as variational inequal-
ities and saddle points problems. It is a standard fact (see
(Bauschke & Combettes, 2017)) that (7) can be rewritten as
the equation

RγAλ
pw ´ γBλpwqq “ w pγ ą 0q,

where RγAλ
is the resolvent of the operator γAλ. This gives

a fixed-point equation of a composite form, and comparing
with (2), it is clear that we can also address situations in
which Bλ “ ErB̂λp¨, ξqs. Bolte et al. (2024) investigates
conservative derivatives of the solution map of such mono-
tone inclusion problems in nonsmooth settings.

A special case of (7) is the minimization problem

min
w

Erf̂λpw, ξqs ` gλpwq, (8)

where fλ “ Ef̂λp¨, ξq is convex L-smooth, while gλ is con-
vex lower semicontinuous extended-real valued. This can
be cast into (2) by setting η P r0, 2{Lr, T̂ξpw, λq “ w ´

η∇̂fλpw, ξq and Gpw, λq “ Proxηgλpwq with Proxhpxq “

argminyphpxq ` p1{2q∥x´ y∥2q being the proximity oper-
ator of h. Several machine learning problems can be written
in form (8) where gλ is nonsmooth, e.g., LASSO, elastic
net, (dual) SVM.

Main assumptions Referring to problem (1), when Φ is
differentiable and ∥B1Φpwpλq, λq∥ ď q ă 1, by differenti-
ating (1) we have

w1pλq “ B1Φpwpλq, λqw1pλq ` B2Φpwpλq, λq

w1pλq “ pI ´ B1Φpwpλq, λqq´1B2Φpwpλq, λq.
(9)

The first relation above shows that w1pλq P Rdˆp is a fixed
point of the map X ÞÑ B1Φpwpλq, λqX ` B2Φpwpλq, λq.
Here, dealing with the nonsmooth case, we will mimic the
above formulas. The crucial assumption of our analysis is
the following.

Assumption 3.1. Let OΛ Ă Rm be an open set and Λ Ă OΛ

be a nonempty closed and convex set.

(i) Φ: Rd ˆ OΛ Ñ Rd is definable and a continuous se-
lection of the L-Lipschitz smooth definable mappings
Φ1, . . . ,Φr and we set DΦ : Rd ˆ OΛ Ñ Rdˆpd`mq,

DΦpu, λq“Ds
Φpu, λq“ coptΦ1

ipu, λq | i P IΦpu, λquq.
(10)

(ii) For all pu, λq P Rp ˆ OΛ, ∥DΦ,1pu, λq∥sup ď q ă 1.

Theorem 2.4 ensures that DΦ, as defined in (10), is a con-
servative derivative of Φ. Moreover, recalling (4), it is
easy to see that Assumption 3.1(ii) ensures that Φp¨, λq is
a q-contraction and hence that there exists a unique fixed
point of Φp¨, λq that we will denote by wpλq. Finally, if
A P DΦ,1pu, λq, we have ∥A∥ ă 1 and hence I ´ A is
invertible. Thus, mimicking what happens for the smooth
case in (9) one defines

Dimp
w pλq“

␣

pI´A1q´1A2 | rA1,A2sPDΦpwpλq, λq
(

(11)

Dfix
w : λ Ñ fixrDΦpwpλq, λqs, (12)

where fixrDΦpu, λqs is the unique fixed “point” of the map
X ÞÑ ApX q, where A “ DΦpu, λq (see equation (3)),
which acts between compact sets of d ˆ m matrices. In
(Bolte et al., 2021) it is proved that if Φ is path differen-
tiable and Assumption 3.1(ii) holds, the set-valued mappings
Dimp

w and Dfix
w are both conservative derivatives of wpλq

and Dimp
w pλq Ă Dfix

w pλq.

Assumption 3.1 yields the following lemma through a direct
application of Lemma 2.5.

Lemma 3.2. Under Assumption 3.1(i), for every λ P Λ,
there exist Rλ ą 0 such that for every u P Rd

epDΦpu, λq, DΦpwpλq, λqq ď Cλpuq∥u ´ wpλq∥,

where

Cλpuq :“

#

L if ∥u ´ wpλq∥ ď Rλ

L ` Mλ{Rλ otherwise
(13)

and Mλ :“ max
iPrrs

min
jPIΦpwpλq,λq

∥Φ1
ipwpλq, λq ´Φ1

jpwpλq, λq∥.

Lemma 3.2 can be used as a substitute for the Lipschitz
smoothness of Φ with respect to the first variable, indeed
note that in our analysis λ (and hence wpλq) is fixed.

4



Nonsmooth Implicit Differentiation

Remark 3.3. Our theoretical analysis requires only that Φ
is definable piecewise smooth and that the inequality in
Lemma 3.2 holds for some conservative derivatives of Φ,
even if it is not computed according to (10). One such situa-
tion occurs for instance when Φ has the structure of a finite
sum, that is, Φ “

řn
i“1 Φ

piq, where each Φpiq satisfies As-
sumption 3.1(i) with corresponding conservative derivative
Ds

Φpiq . Then, it is clear that Φ is still definable and piecewise
Lipschitz smooth. Moreover, using the properties of con-
servative derivatives (see Corollary 4 in (Bolte & Pauwels,
2020)), DΦ “

řn
i“1 D

s
Φpiq is a conservative derivative of Φ.

Thus, using the property of the excess (see Lemma B.1(ii))
it directly follows that the inequality in Lemma 3.2, and
hence our theory, still holds for such Φ.

4. Deterministic Iterative and Approximate
Implicit Differentiation

We now formalize two deterministic methods for approxi-
mating the conservative derivative of the solution map w.

Iterative Differentiation (ITD) This method approxi-
mates Dfix

w pλq through the following iterative procedure,
starting from w0pλq P Rd, Dw0

pλq “ t0u,

for t “ 1, 2 . . .
—

—

—

—

–

wtpλq “ Φpwt´1pλq, λq

Dwtpλq “ DΦpwt´1pλq, λq

„

Dwt´1
pλq

Im

ȷ

,

(14)

where we used the definition in (3). Note that the iteration
for Dwt

pλq is based on the chain rule and results in a conser-
vative derivative of wtpλq. This is the same set-valued itera-
tion studied in (Bolte et al., 2022). We note that if Φp¨, λq is
a q-contraction, it holds ∥wtpλq ´ wpλq∥ “ Opqtq.

Approximate Implicit Differentiation with Fixed Point
(AID-FP) An alternative method for approximating the
implicit conservative derivative is the following. Assume
that wtpλq is generated by any algorithm converging to wpλq

(for instance the one in (14)), then, starting from D0
wt

pλq “

t0u, define

for k “ 1, 2 . . .
Z

Dk
wt

pλq “ DΦpwtpλq, λq

„

Dk´1
wt

pλq

Im

ȷ

.
(15)

Efficient Implementation In practice we do not compute
the full set-valued iterations in (14) and (15), but rather we
select just one element at each iteration. Moreover, if we let
x P Rm and y P Rd, the ITD method can exploit automatic
differentiation to efficiently compute an element of the con-
servative Jacobian-vector products DwtpλqJy (in reverse
mode) and Dwtpλqx (in forward mode). Similarly AID can

efficiently compute an element in Dk
wt

pλqJy. Thanks to
Automatic Differentiation, if k “ t the standard implemen-
tation of both AID-FP and ITD has a cost in time of the
same order of that of computing wtpλq. However, while
AID-FP only uses wtpλq, ITD has a larger Θptq memory
cost, since it needs to store the entire optimization trajectory
pwipλqq0ďiďt.

Convergence Guarantees In the Lipschitz smooth case
Grazzi et al. (2020) proved non-asymptotic linear conver-
gence rates for both methods, revealing that AID-FP is
slightly faster than ITD. We now extend this analysis to non-
smooth ITD and AID-FP, focusing on the convergence of the
set-valued iterations in (14) and (15). Thanks to Lemma 3.2
and the properties of the excess, the proof (in Appendix C)
can proceed similarly to the one for the smooth case.

Theorem 4.1 (nonsmooth ITD and AID-FP Rates). Let
Assumption 3.1 hold. For every λ P Λ, let Rλ and
Mλ be the quantities defined in Lemma 3.2 and Bλ :“
∥DΦ,2pwpλq, λq∥sup. For every t, k P N, let ∆t “

∥wtpλq ´ wpλq∥, δλptq :“ 1t∆t ą Rλu and δ̄λptq “

t´1
řt´1

i“0 δλpiq. Then the following hold.

(i) The ITD iteration in (14) satisfies

epDwt
pλq, Dfix

w pλqq ď
Bλ

1 ´ q
qt

`
Bλ ` 1

1 ´ q

´

L `
Mλ

Rλ
δ̄λptq

¯

∆0 t q
t´1.

(16)

(ii) The AID-FP iteration in (15) satisfies

epDk
wt

pλq, Dfix
w pλqq ď

Bλ

1 ´ q
qk

`
Bλ ` 1

1 ´ q

´

L `
Mλ

Rλ
δλptq

¯1 ´ qk

1 ´ q
∆t.

(17)

Moreover, if wtpλq “ Φpwt´1pλq, λq, then ∆t ď q∆t´1 ď

qt∆0 and there exists τλ P N such that δλptq “ 1tt ă τλu

and thus δλptq ď δ̄λptq ď 1.

To compare the two rates in Theorem 4.1, let t “ k and
wtpλq “ Φpwt´1pλq, λq, so that both AID-FP and ITD
have time complexity of the order of computing wtpλq. In
that situation, since 1 ´ qk “ 1 ´ qt ă q´1p1 ´ qqt and
δλptq ď δ̄λptq, the upper bound of AID-FP is always lower
than that of ITD. Moreover, if we let κ “ p1 ´ qq´1 to
play a similar role to the condition number, we observe that
both methods converge linearly: AID-FP as Opκ2e´t{κq,
while ITD slightly slower as Opκte´t{κq. When t ě τλ,
δλptq “ 0 while δ̄λptq “ τλ{t, which might cause a wide
difference between the two bounds if Mλ{Rλ is large, and
such ratio can get arbitrarily large the closer pwpλq, λq is to
regions where Φ is not differentiable. Finally, if we replace
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Lemma 3.2 with the L-smoothness of Φ, we essentially
recover the same bounds reported by Grazzi et al. (2020),
where the terms δλ, δ̄λ do not appear.

The work by (Bolte et al., 2022) also reports a rate for nons-
mooth ITD of Opp

?
q ` ϵqtq for arbitrary ϵ ą 0. However,

this rate does not match the best available rate for smooth
ITD (Grazzi et al., 2020). Theorem 4.1 (in (16)) fills this gap
since it achieves3 an improved rate of Oppq ` ϵqtq. More-
over, our rate is more explicit, since it does not involve any
arbitrary ϵ.

We conclude the section by noting that Theorem 4.1 ensures
that the sequence constructed by selecting one element at
each iteration in (14) and (15), is guaranteed to converge,
up to a subsequence, to the set Dfix

w pλq.

5. Nonsmooth Stochastic Implicit
Differentiation

In this section we study the stochastic fixed point formula-
tion in (2) and present an algorithm that, given a random
vector y P Rd and an approximate solution wtpλq, effi-
ciently approximates an element of Dimp

w pλqJy accessing
only T̂ξ, G and fixed selections of their conservative deriva-
tives. Similarly to deterministic AID, here we assume that
wtpλq is generated by a stochastic algorithm which con-
verges in mean square to wpλq. Several algorithms can
ensure such convergence guarantees for the composite mini-
mization problems in (8) (e.g, Rosasco et al. (2020) provide
a proximal stochastic gradient algorithm with rate Op1{tq)
and composite monotone inclusions (Rosasco et al., 2014).
We recall that for a path differentiable function F : U Ă

Rp1`p2 Ñ Rd, we denote by F 1 an arbitrary selection of
DF and by B1F pxq P Rdˆp1 and B2F pxq P Rdˆp2 the first
and second block component of F 1pxq respectively, so that
we can write F 1pxq “ rB1F pxq, B2F pxqs.

We consider the following assumptions
Assumption 5.1.

(i) T and G satisfy Assumption 3.1(i) individually, with
constant LT and LG respectively. Let T 1 and G1 be
selections of the conservative derivatives DT and DG

respectively. Also, Φpu, λq “ GpT pu, λq, λq.

(ii) For every pu, λq P Rd ˆ Λ, ∥DT,1pu, λq∥sup ď 1 and
∥DG,1pu, λq∥sup ď 1 and either T or G satisfies As-
sumption 3.1(ii).

(iii) y P Rd is a random vector.

Assumption 5.2. The random variable ξ takes values in Ξ
and for every x P Ξ

(i) T̂x : Rd ˆ OΛ Ñ Rd and ErT̂ξpu, λqs “ T pu, λq.

3For any ϵ P r0, 1 ´ qs, DC ą 0 such that tqt´1
ď Cpq ` ϵqt.

(ii) T̂x is path differentiable and T̂ 1
x is a selection

of its conservative derivative DT̂x
and there exist

σ1, σ2, σ
1
1, σ

1
2 ě 0 such that for every u P Rd, λ P Λ

ErT̂ 1
ξpu, λqs “ T 1pu, λq P DT pu, λq,

VarrT̂ξpu, λqs ď σ1 ` σ2∥u ´ T pu, λq∥2,
VarrB1T̂ξpu, λqs ď σ1

1, VarrB2T̂ξpu, λqs ď σ1
2.

where T̂ 1
xpu, λq “ rB1T̂xpu, λq, B2T̂xpu, λqs.

Remark 5.3. The above assumptions can be satisfied in
the following situations: (1) G is nonsmooth, e.g., some
proximity operator or the projection on some simple con-
straints, while T and T̂x are smooth (e.g., one step of gra-
dient descent of a twice differentiable loss); (2) in view of
Remark 3.3, when T “ 1

n

řn
i“1 T̂i, T 1 “ 1

n

řn
i“1 T̂

1
i with

T̂ 1 P Ds
T̂i

and ξ is uniformly distributed on rns.

Assumption 5.1 ensures that DΦ obtained via the chain
rule for conservative derivatives in (Bolte & Pauwels, 2021)
(see Appendix D) is a conservative derivative of Φ and that
∥DΦ,1pu, λq∥sup ď q ă 1. Thus, wpλq is well defined and
it has conservative derivatives Dimp

w and Dfix
w . Assump-

tion 5.2 is a nonsmooth generalization of the correspond-
ing one in (Grazzi et al., 2021; 2023). Finally, recalling
(11), if we set B2Φpu, λq “ B1GpT pu, λq, λqB2T pu, λq `

B2GpT pu, λq, λq then

B2Φpwpλq, λqJvpwpλq, λq P Dimp
w pλqJy (18)

where, for every u P Rd, vpu, λq is a solution of the linear
system

pI ´ B1T pu, λqJB1GpT pu, λq, λqJqv “ y. (19)

Algorithm and convergence guarantees Our method is
inspired by (18) and (19) but it uses mini-batch estimators
of T and B2Φ. To that purpose we assume to have two
independent sets of samples ξp1q “ pξ

p1q

j q1ďjďJ and ξp2q “

pξ
p2q

i q1ďiďk, being i.i.d. copies of the random variable ξ.
Moreover, we define the path differentiable functions

T̄ pu, λq“
1

J

J
ÿ

j“1

T̂
ξ

p1q

j
pu, λq, Φ̄pu, λq “ GpT̄ pu, λq, λq.

In fact our approach first replaces the linear system (19)
with

pI ´ B1T pwtpλq, λqJB1GpT̄ pwtpλq, λq, λqJqv “ y, (20)

where the solution is in turn approximated by a stochastic
sequence pvkqkPN, which has access only to T̂x, G, and
wtpλq. Second, it outputs B2Φ̄pwtpλq, λqJvk, where for
any u P Rd, λ P OΛ,

B2Φ̄pu, λq“B1GpT̄ pu, λq, λqB2T̄ pu, λq ` B2GpT̄ pu, λq, λq,
(21)

6
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with T̄ 1pu, λq:“rB1T̄ pu, λq, B2T̄ pu, λqs“ 1
J

řJ
j“1 T̂

1

ξ
p1q

j

pu, λq,

which thanks to the chain rule is an element of a partial
conservative derivative of Φ̄ (see also Appendix D).

We now provide a general bound for the mean square er-
ror of an estimator of an element of the Jacobian vector
product Dimp

w pλqJy, which is agnostic with respect to the
algorithms solving the fixed point equation (1) and the lin-
ear system (20). The proof (in Appendix D) uses similar
techniques as the one for the smooth case in (Grazzi et al.,
2021; 2023).

Assumption 5.4. Let ρλ : N Ñ R`, σλ : N Ñ R` be such
that limtÑ`8 ρλptq “ 0, limkÑ`8 σλpkq “ 0.

(i) pwtpλqqtPN is a sequence of random vectors in Rd and

Er∥wtpλq ´ wpλq∥2s ď ρλptq,

(ii) For every pu1, u2q P Rd ˆRd, pvkpu1, u2qqkPN is a se-
quence of random vectors in Rd which is independent
on pwtpλqqtPN and such that

Er∥vkpu1, u2q ´ v̄pu1, u2q∥2 | ys ď ∥y∥2σλpkq,

where v̄pu1, u2q is the unique fixed point of the affine
mapping v ÞÑ B1T pu1, λqJB1Gpu2, λqJv ` y.

(iii) The r.v. y satisfies Er∥y∥2 |wtpλqs ď b2 a.s.

Theorem 5.5. Under Assumption 5.1, 5.2, and 5.4, let κ “

p1 ´ qq´1. We define the estimator

pw1pλqJyqp :“ B2Φ̄pwtpλq, λqJvk
`

wtpλq, T̄ pwtpλq, λq
˘

.

Then for every t, k, J P N, we have

E
“

e
`

pw1pλqJyqp,Dimp
w pλqJy

˘2‰
“

b2 ˆ O
`

σλpkq ` κ4
`

J´1 ` ρλptq
˘˘

.

We preset the full procedure, named nonsmooth stochastic
implicit differentiation (NSID), in Algorithm 1, where the
sequence vk considered in Assumption 5.4(ii) is generated
by a simple stochastic fixed-point iteration algorithm (de-
scribed in (Grazzi et al., 2021) and recalled in Appendix D)
with step sizes pηiq1ďiďk.

Note that all steps can be efficiently implemented via auto-
matic differentiation by using only vector-valued function
evaluations and conservative Jacobian-vector products with-
out the expensive computation of the full matrix derivatives.
Also, using a fixed selection for the conservative derivative
of T̂x and G corresponds to the standard implementation.

If Gp¨, λq is the identity and T is smooth, NSID reduces to
the same procedure given in (Grazzi et al., 2023), which

Algorithm 1 NSID

1: Input: k, J P N, wtpλq, y P Rd, ξp1q, ξp2q

2: T̄tpλq Ð T̄ pwtpλq, λq (using ξp1q)
3: Ψ̂ : pv, xq ÞÑ B1T̂xpwtpλq, λqJB1GpT̄tpλq, λqJv ` y
4: for i “ 1 to k do
5: vi Ð p1 ´ ηiqvi´1 ` ηiΨ̂pvi´1, ξ

p2q

i q

6: end for
7: Return pw1pλqJyqp :“ B2Φ̄pwtpλq, λqJvk

also provide the bound O
`

σλpkq ` κ2J´1 ` κ4ρλptq
˘

in
Theorem 7. Compared to the bound given in Theorem 5.5,
we note that the only difference is in the constant in front of
the term J´1, which we believe may be related to the term
G. Indeed handling a general G provides an additional chal-
lenge since we do not have access anymore to an unbiased
estimator of Φ. However, we could overcome this issue by
using different samples sequences for the two factors occur-
ing in Ψ̂. Incidentally, one of those sequences can be the one
used to compute a mini-batch estimator of B2Φ. Ultimately,
this does not call for any additional samples compared to
the smooth version, but it could worsen some constants in
the bound.

Finally, we specialize the result of Theorem 5.5 to Algo-
rithm 1. The proof is in Appendix D.

Theorem 5.6. Under Assumption 5.1, 5.2, and 5.4(i)(iii), let
pw1pλqJyqpbe generated by Algorithm 1 with ηi “ Θpi´1q

and assume that ρλptq “ Opκαt´1q, with α ą 0. Then

E
“

e
`

pw1pλqJyqp, Dimp
w pλqJy

˘2‰
“ O

ˆ

κ5

k
`
κ4

J
`
κ4`α

t

˙

.

Hence if J “ Optq, k “ Optq, the mean square error is ď ϵ
after Opκ5`αϵ´1q samples.

Note that the sample complexity Opϵ´1q matches the per-
formance of SGD for minimizing strongly convex and Lip-
schitz smooth functions (Bottou et al., 2018), which are a
special cases of Problem (2). Furthermore it is the same one
that the SID algorithm by Grazzi et al. (2021; 2023) attains
when Gpv, λq “ v and Φ is Lipschitz smooth. A limitation
is the choice of step-sizes pηiq, problematic in practice.

6. Application to Bilevel Optimization
In this section, we consider the following bilevel problem
with the fixed point problem in (1) at the lower level

min
λPΛ

tEpwpλq, λq : wpλq “ Φpwpλq, λqu, (22)

where E : Rd ˆ OΛ Ñ R. We will show how we can
use AID-FP, ITD and NSID to approximate an element of
the conservative derivative of the bilevel objective fpλq :“
Epwpλq, λq and retain the same convergence rates.

7
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In addition to the requirement that Φ satisfies Assump-
tion 3.1, we also make the hypothesis that E satisfies the
first item of same assumption with corresponding conser-
vative derivative DE “ Ds

E . Therefore, applying the usual
chain rule, we have that for ˚ P timp,fixu

D˚
f pλq:“DEpwpλq, λq

„

D˚
wpλq

Im

ȷ

is a conservative derivative for f . We also let ftpλq :“
Epwtpλq, λq, where wtpλq is an approximate solution for
the fixed point problem.

Deterministic Case The approximate derivatives

(BITD) Dftpλq:“DEpwtpλq, λq

„

Dwt
pλq

Im

ȷ

(BAID-FP) Dk
ftpλq:“DEpwtpλq, λq

„

Dk
wt

pλq

Im

ȷ

converge to Dfix
f pλq with the same rate as ITD and AID

(Theorem E.3).

Stochastic Case We study the bilevel problem

min
λPΛ

fpλq :“ ErÊζpwpλq, λqs,

wpλq “ G
`

ErT̂ξpwpλq, λqs, λ
˘

.
(23)

where ζ is a random variable. We consider Algo-
rithm 2, which additionally computes Ē1pwtpλq, λq :“

J´1
1

řJ1

j“1 Ê
1

ζ
p1q

j

pwtpλq, λq, a minibatch gradient estimator

of E1 P DE , using the sequence ζp1q “ pζp1qq1ďjďJ1
of

i.i.d. copies of ζ.

Algorithm 2 NSID-Bilevel

1: Input: k, J1, J2 P N , wtpλq P Rd, ξp1q, ξp2q, ζp1q

2: Compute Ē1pwtpλq, λq (using ζp1q)
3: y Ð B1Ēpwtpλq, λqJ

4: rpwtpλq, λq Ð NSIDpk, J2, wtpλq, y, ξp1q, ξp2qq

5: Return ∇̂fpλqJ :“ rpwtpλq, λqJ ` B2Ēpwtpλq, λq

With additional mild assumptions on the variance of Ê and
when Ep¨, λq is Lipschitz, we recover the same convergence
rates as NSID, but this time to Dimp

f pλq (Theorem E.6).

On the convergence of the bilevel problem Despite these
encouraging results and the fact that in the smooth case sev-
eral works provide convergence rates to a stationary point
of the gradient of f (Ji et al., 2021; Arbel & Mairal, 2021;
Grazzi et al., 2023, and others), proving such type of results
or even asymptotic convergence (without rates) in our nons-
mooth case is more challenging and we leave it for future
work. One crucial issue is that in the analysis, the constant
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Figure 1. AID vs ITD for synthetic elastic-net. t corresponds to the
number of steps to find an approximate fixed point and the dashed
vertical line is the step where the support is identified. AID-FP
converges faster than ITD; note that after support identification
there is a wide gap between the methods, as anticipated by our
theoretical bounds. AID-CG does not converge in plot on the right,
probably due to sensitivity to numerical errors.

defined in Lemma 2.5, which we use in place of that of
Lipschitz smoothness, cannot be properly controlled on the
whole Λ as required in the smooth case: it becomes arbi-
trarily large when pwpλq, λq approaches nondifferentiable
regions of Φ.

7. Experiments
The experiments aim to achieve two primary goals. Firstly,
we aim to empirically demonstrate the practical manifes-
tation of distinct behaviors between AID and ITD, as out-
lined in the theoretical findings of Section 4. Emphasis
is placed on aspects specific to the nonsmooth analysis.
Secondly, we intend to evaluate the empirical performance
of our stochastic method NSID presented in Algorithm 1.
We implement NSID by relying on PyTorch automatic dif-
ferentiation for the computation of Jacobian-vector prod-
ucts. For AID and ITD, we use the existing PyTorch imple-
mentations4. We provide the code to reproduce our ex-
periments at https://github.com/prolearner/
nonsmooth_implicit_diff

Experimental Setup We consider two problems where
we are interested in approximating an element of the
conservative Jacobian-vector product of the solution map
Dfix

w pλqJy for y P Rd. With a focus on bilevel optimization,
we set y as the gradient of the validation loss in wtpλq, as
explained in Section 6, while to compute the approximation
error we use the procedure described in Appendix F.1.

Elastic Net Let pX, yq P Rnˆd ˆ Rn be a training regres-
sion dataset. The elastic net solution wpλq is the minimizer
of the objective function 1

n∥Xw´y∥2`λ1∥w∥1` λ2

2 ∥w∥22,
where λ “ pλ1, λ2q are the regularization hyperparameters.

4https://github.com/prolearner/hypertorch
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Data Poisoning We consider a data poisoning scenario simi-
lar to the one in (Xiao et al., 2015), where an attacker would
like to corrupt part of the training dataset by adding noise
in order to decrease the accuracy of an elastic-net regular-
ized logistic regression model after training. In particular,
let c be the number of classes and pX̃, ỹq P Rn1

ˆd ˆ rcsn
1

be the examples to corrupt while pX, yq P Rnˆd ˆ rcsn

are the clean ones. Let also Γ P Rn1
ˆd represent the

noise and define the data poisoning elastic net solution as
wpΓq “ argminwPRd fpΓ, wq`λ1∥w∥1 ` λ2

2 ∥w∥22, where
fpΓ, wq “ ℓpXw, yq{2 ` ℓppX̃ ` Γqw, ỹq{2 and ℓ is the
cross-entropy loss. A strategy to find Γ would be by approx-
imating an element of the conservative Jacobian-vector prod-
uct DwpΓqJy where y is the gradient of the cross-entropy
loss on an hold out set. This setting is of particular in-
terest, since Γ is high dimensional and hence zero-order
methods like grid or random search are less appropriate.
For both settings and all considered methods, we find an
approximate solution wtpλq always by iterating the contrac-
tion map which describes the iterates of the deterministic
iterative soft-thresholding algorithm (see e.g., (Combettes
& Wajs, 2005)). Although this may be inefficient in the
stochastic setup, it yields a fairer comparison, since both the
stochastic and deterministic algorithms will have the same
wtpλq as input. Additional details are in the appendix.

AID and ITD We consider the Elastic Net scenario and
construct a synthetic supervised linear regression problem
with 100 training examples and 100 features, of which 30
are informative. As the fixed point map Φ we use one step
of iterative soft-thresholding. The appropriate choice for
the step-size guarantees that Φ is a contraction, in our case
we set it equal to 2{pL ` µ ` 2λ2q, where L and µ are the
largest and smallest eigenvalues values of n´1XJX .
We compare ITD, AID-FP, and AID-CG a variant of AID
which uses conjugate gradient to solve the linear system
(Grazzi et al., 2020), where the vector y for the Jacobian-
vector product is the gradient of the square loss on a val-
idation set, computed on the t-the iterate (∇Epwtpλq, λq

where E is defined in (22)). In Figure 1 we can see two
runs, each one for two particular choices of λ which high-
light a wide gap in performance after support identification,
i.e. when both wtpλq and wpλq have the same non-zero ele-
ments. This was predicted by Theorem 4.1, since support
identification coincides with ∥wtpλq ´ wpλq∥ ď Rλ.

Stochastic Methods We compare our stochastic method
NSID (Algorithm 1) against AID-FP and the algorithm SID
in (Grazzi et al., 2023). In particular, for NSID T̂x cor-
responds to one step of gradient descent on a minibatch
of training points, while G is soft-thresholding. We im-
plement SID by setting in NSID Gpu, λq “ u and using
Φ̂ξpu, λq “ GpT̂ξpu, λq, λq in place of T̂ξ. Note that al-
though the theoretical convergence guarantee for SID do not

0 20 40 60
# of epochs

10 2

10 1

100

= (0.1, 0.01)
AID-FP
NSID dec
SID dec

0 50 100 150 200
# of epochs

10 4

Data Poisoning. = (0.02, 0.1)
AID-FP
NSID dec
NSID const

Figure 2. Stochastic implicit differentiation for elastic net (left) and
data poisoning (right) with constant (const) and decreasing (dec)
step sizes. Mean (solid line) and the geometric standard deviation
(shaded region) of the approximation error over 10 runs. SID
does not converge on elastic net for this specific choice of λ and
diverges in data poisoning (hence we do not report it), while NSID
converges faster (at the beginning) than the deterministic AID-FP.
Note that decreasing step-sizes provide a favorable choice.

hold due to Φ̂ξ being biased, the performance of SID still
effectively measures the impact of such bias in practice.
We consider both the elastic net and the data poisoning se-
tups; see the appendix for more information. The results are
shown in Figure 2. For elastic net, each run corresponds to a
different sampling of the covariance matrix, training points,
true solution vector and minibatches used by the stochastic
algorithms. For Data poisoning, each run corresponds to
different sampling of the noise Γ (sampled from a normal
and then each component projected in r´.1, .1s) and the
mini-batches used by the stochastic algorithms. For AID-FP,
each epoch corresponds to one iteration, since it uses the en-
tire dataset, while for NSID and SID the number of epochs
is equal to pk ` Jqpn1 `nq{b, where b is the minibatch size,
which we set to 10% of the training set, i.e. b “ pn1 `nq{10.
Note that for each point in the plots for NSID and SID, we
need to start the algorithm from scratch since we increase
both k and J simultaneously. In particular we set k “ J for
elastic net and J “ rk{20s for data poisoning.

8. Conclusions
We established convergence guarantees for nonsmooth im-
plicit differentiation methods. Leveraging the foundation
laid by (Bolte et al., 2022), we developed tools facilitating
the translation of results from the smooth case. This allowed
us to provided non-asymptotic linear convergence rates for
AID-FP and ITD, focusing on deviations from their smooth
analogs. Additionally, we introduced NSID, a principled
stochastic algorithm. Numerical experiments underscored
the distinctive behaviors of AID-FP and ITD, along with the
good performance of NSID, which may be useful in large
scale bilevel optimization problems in the future. Despite
our results, establishing rates for solving nonsmooth bilevel
problems is still challenging and we leave it for future work.
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Appendices
This supplementary material is organized as follows. In App. A we recall the notion of definable mappings. App. B gives
some auxiliary results and proof of lemmas in the main body. In App. C we present the proof of Theorem 4.1. App. D gives
the proof of Theorems 5.5 and 5.6. In App. E we address bilevel optimization. Finally, App. F contains more information
on the numerical experiments.

A. Definable Mappings
The concept of definable sets and functions is part of the so called tame geometry. Here we give just a very brief account
(additional details can be found in (Bolte & Pauwels, 2021)). An o-minimal structure on pR,`, ¨q (‘o’ stands for ’ordinal’)
is a collection of sets O “ pOpqpPN such that, for each p P N,

(i) Op is a Boolean algebra, meaning a nonempty family of subset of Rp which is stable by complementations and finite
unions and intersections. Moreover, it contains the algebraic sets, that is, the sets of zeros of polynomial functions in p
variables.

(ii) O1 is made exactly of finite unions of intervals.

(iii) A P Op ñ A ˆ R,R ˆ A P Op`1

(iv) if πp : Rp`1 Ñ Rp is the canonical projection onto the first p components, then A P Op`1 ñ πppAq P Op;

Subsets of Rp which belongs to an o-minimal structure O are called definable in O and set-valued mappings F : Rd Ñ Rp

are said definable in O if their graphs (as a subset of Rd`p) is definable in O.

There are several examples of o-minimal structures. The smallest one is that of real semialgebraic sets, meaning finite
unions of sets which are solutions of a system of polynomial equations and inequalities. Here we consider the larger class of
log´ exp structure, which additionally contains the graph of the exponential function and includes most of the functions
considered in machine learning, including deep learning. So, in this paper definable is meant to be definable in the log´ exp
o-minimal structure.

B. Auxiliary Lemmas
Lemma B.1 (Properties of the excess). Let A,B,A1,B1 Ă Rnˆp and C Ă Rdˆn, D Ă Rpˆd be nonempty sets of matrices.
The following hold true:

(i) epA, Cq ď epA,Bq ` epB, Cq

(ii) epA ` A1,B ` B1q ď epA,Bq ` epA1,B1q

(iii) epCA, CBq ď ∥C∥sup epA,Bq and epAD,BDq ď ∥D∥sup epA,Bq

(iv) If B Ă B1, then epA,B1q ď epA,Bq.

(v) Suppose that n “ p and that all the elements in A and B are invertible. Then

epA´1,B´1q ď ∥A´1∥sup∥B´1∥sup epA,Bq.

(vi) Suppose that p “ p1 ` p2 and set, for k “ 1, 2 pr1 : Rnˆp Ñ Rnˆpk be the canonical projections and

Ak “ prkpAq “ tAk P Rnˆpk | rA1, A2s P Au, Bk “ prkpBq “ tBk P Rnˆpk | rB1, B2s P Au.

Then epAk,Bkq ď epA,Bq.

(vii) Suppose that p “ p1 ` p2. Then, for all X ,Y Ă Rp1ˆp2 , we have

∥ApX q∥sup ď ∥A1∥sup∥X∥sup ` ∥A2∥sup,
epApX q,ApYqq ď ∥A1∥sup epX ,Yq, epApX q,BpX qq ď p1 ` ∥X∥supq epA,Bq

where we recall that ApX q “ tA1X ` A2 | rA1, A2s P A, X P X u.

12



Nonsmooth Implicit Differentiation

Proof. In the following when A is a matrix and B is a set of matrices we set dpA,Bq :“ infBPB∥A ´ B∥, which is the
distance from A to the set B.

(i): Let A P A and B P B. Then

p@C P Cq dpA, Cq ď ∥A ´ C∥ ď ∥A ´ B∥ ` ∥B ´ C∥
ùñ dpA, Cq ´ ∥A ´ B∥ ď ∥B ´ C∥.

Thus
dpA, Cq ´ ∥A ´ B∥ ď dpB, Cq ď epB, Cq

and hence
p@B P Bq dpA, Cq ´ epB, Cq ď ∥A ´ B∥.

So, dpA, Cq ´ epB, Cq ď dpA,Bq ď epA,Bq ùñ dpA, Cq ď epB, Cq ` dpA,Bq. Taking the sup in A P A the statement
follows.

(ii): Let A P A, A1 P A. Then,

p@B P Bqp@B1 P B1q dpA ` A1,B ` B1q ď ∥pA ` A1q ´ pB ` B1q∥
ď ∥A ´ B∥ ` ∥A1 ´ B1∥.

Thus,
dpA ` A1,B ` B1q ď dpA,Bq ` dpA1,B1q ď epA,Bq ` epA1,B1q.

Since A and A1 are arbitrary in A and A1 respectively, the statement follows.

(iii): Let A P A, B P B and C P C. Then

dpCA, CBq ď ∥CA ´ CB∥ ď ∥C∥∥A ´ B∥ ď ∥C∥sup∥A ´ B∥.

Taking the infimum over B P B we get

dpCA, CBq ď ∥C∥sup inf
BPB

∥A ´ B∥ ď ∥C∥sup epA,Bq.

Now, taking the supremum over C P C and A P A, the statement follows. A similar proof can be applied for the other case.

(v): Let A P A and B P B. Then A´1 ´ B´1 “ A´1pB ´ AqB´1 and hence

∥A´1 ´ B´1∥ ď ∥A´1∥∥A ´ B∥∥B´1∥ ď ∥A´1∥sup∥B´1∥sup∥A ´ B∥.

Thus

inf
BPB

∥A´1 ´ B´1∥ ď ∥A´1∥sup∥B´1∥sup inf
BPB

∥A ´ B∥

ď ∥A´1∥sup∥B´1∥sup epA,Bq.

Taking the supremum in A P A, the statement follows.

(vi): We first note that if A “ rA1, A2s P Rdˆpp1`p2q we have

∥A1∥ “ sup
∥x∥ď1

∥A1x∥ “ sup
∥px,0q∥ď1

∥∥∥rA1A2s

„

x
0

ȷ∥∥∥ ď ∥A∥

and similarly ∥A2∥ ď ∥A∥. Now let A1 P A1 and B “ rB1B2s P B. Then there exists A2 such that A “ rA1A2s P A and
hence

dpA1,B1q ď ∥A1 ´ B1∥ ď ∥A ´ B∥.

Since the above inequality holds for every B P B we have

dpA1,B1q ď inf
BPB

∥A ´ B∥ ď epA,Bq
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which in turns holds for every A1 P A1. Thus, taking the supremum in A1 P A1 the statement follows with k “ 1. The
other case is proved in the same manner.

(vii): For the first inequality we have

∥ApX q∥sup “ sup
APA,XPX

∥A1X ` A2∥

ď sup
APA,XPX

p∥A1∥∥X∥ ` ∥A2∥q

ď sup
APA

∥A1∥ sup
APX

∥X∥ ` sup
A1PA

∥A1
2∥ “ ∥A1∥sup∥X∥sup ` ∥A2∥sup.

For the second inequality we have

epApX q,ApYqq “ sup
APA,XPX

inf
A1PA,Y PY

∥A1X ´ A2 ´ A1
1Y ` A1

2∥

ď sup
APA,XPX

inf
Y PY

∥A1pX ´ Y q∥

ď sup
APA

∥A1∥ sup
XPX

inf
Y PY

∥X ´ Y ∥ “ ∥A1∥sup epX ,Yq.

For the third inequality we have

epApX q,BpX qq “ sup
APA,XPX

inf
BPB,X1PX

∥A1X ´ A2 ´ B1X
1 ` B2∥

ď sup
APA,XPX

inf
BPB

∥pA1 ´ B1qX ´ A2 ` B2∥

ď sup
APA,XPX

inf
BPB

p∥A1 ´ B1∥∥X∥ ` ∥A2 ´ B2∥q

ď sup
APA,XPX

inf
BPB

p∥A ´ B∥∥X∥ ` ∥A ´ B∥q

ď sup
XPX

p1 ` ∥X∥q sup
APA

inf
BPB

∥A ´ B∥ “ p1 ` ∥X∥supq epA,Bq.

The proof is complete.

We now recall the following result from (Bolte et al., 2022) (Lemma 4 in the Appendices), which is stated in a slightly more
general form.

Theorem B.2. Let F : U Ă Rp Ñ Rd be a continuous selection of the definable Lipschitz smooth mappings
F1, . . . , Fr : U Ă Rp Ñ Rd. Let Li be the Lipschitz constant of F 1

i and set L “ max1ďiďr Li. Then, for any x P U there
exists Rx ą 0 such that

@x1 P U with ∥x1 ´ x∥ ď Rx : epDs
F px1q, Ds

F pxqq ď L∥x1 ´ x∥.

Proof. Similarly to (Bolte et al., 2022) we define

g : s0,`8r Ñ rrs such that gpρq “ IF pBρpxqq,

where Bρpxq is the closed ball of radius ρ ą 0 centered at x. Now, we note that g is the composition of the maps

φ : s0,`8r Ñ Rp : ρ Ñ Bρpxq, and IF : Rp Ñ rrs.

The first one is clearly semialgebraic and hence definable and the second map is definable by definition (since the Fi’s
are definable, it is easy to see that F is definable if and only if IF is definable). Thus, being g composition of definable
set-valued mappings it is definable. Then, for every I Ă rrs, we have that the set rg “ Is “ tρ P s0,`8r | gpρq “ Iu is
definable and setting J “ tgpρq | ρ P s0,`8ru Ă 2rrs, we have that prg “ IsqIPJ , is a finite partition of s0,`8r made of
definable sets of the real line. Thus, each one of them must be finite unions of disjoints intervals, which shows that g is
piecewise constant. It follows that there exists Rx ą 0 and I Ă rrs such that for every ρ P s0, Rxs gpρq “ I . The proof
continues as in Lemma 4 in (Bolte et al., 2022).
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Proof of Lemma 2.5. Let x P U . Let ∆r “ tα P Rr
` |

řr
i“1 αi “ 1u be the unit simplex of Rr and ∆x

r “ tα P ∆r | @ i P

rrszIF pxq : αi “ 0u (which is essentially the unit simplex of RIF pxq). Set A “ coptBFipxq | i P IF px1quq. Then, using the
property of the excess in Lemma B.1(i)

epDs
F px1q, Ds

F pxqq ď epDs
F px1q,Aq

looooooomooooooon

p1q

` epA, Ds
F pxqq

loooooomoooooon

p2q

.

We will bound the two terms p1q and p2q separately. We recall that

Ds
F px1q “ coptF 1

i px1q | i P IF px1quq and Ds
F pxq “ coptF 1

i pxq | i P IF pxquq.

Then

p1q “ sup
αP∆x1

r

inf
βP∆x1

r

∥∥∥ ÿ

iPIpx1q

αiF
1
i px1q ´

ÿ

iPIpx1q

βiF
1
i pxq

∥∥∥
ď sup

αP∆x1
r

∥∥∥ ÿ

iPIpx1q

αipF
1
i px1q ´ F 1

i pxqq

∥∥∥
ď sup

αP∆x1
r

ÿ

iPIpx1q

αi∥F 1
i px1q ´ F 1

i pxq∥ ď sup
αP∆x1

r

ÿ

iPIpx1q

αiL∥x ´ x1∥ “ L∥x ´ x1∥.

Moreover,

p2q “ sup
αP∆x1

r

inf
βP∆x

r

∥∥∥ ÿ

iPIpx1q

αiF
1
i pxq ´

ÿ

iPIpxq

βiF
1
i pxq

∥∥∥ “ sup
αP∆x1

r

inf
βP∆x

r

∥∥∥ r
ÿ

i“1

pαi ´ βiqF
1
i pxq

∥∥∥
ď sup

αP∆r

inf
βP∆x

r

∥∥∥ r
ÿ

i“1

pαi ´ βiqF
1
i pxq

∥∥∥ “: p˚q.

Now we note that

φpα, βq “

∥∥∥ r
ÿ

i“1

pαi ´ βiqF
1
i pxq

∥∥∥ ` ι∆r
pαq ` ι∆x

r
pβq

is jointly convex, hence α ÞÑ infβ φpα, βq is convex and its maximum is achieved at the vertices of ∆r. Thus, if we set
ei “ pδijq1ďjďr the canonical basis of Rr, we have

p˚q “ max
1ďiďr

inf
βP∆x

r

∥∥∥ r
ÿ

j“1

pδij ´ βjqF 1
jpxq

∥∥∥ “ max
1ďiďr

inf
βP∆x

r

∥∥∥F 1
i pxq ´

r
ÿ

j“1

βjF
1
jpxq

∥∥∥
ď max

1ďiďr
inf

jPIpxq

∥∥∥F 1
i pxq ´ F 1

jpxq

∥∥∥ “ Mx.

In the end
epDs

F px1q, Ds
F pxqq ď Mx ` L∥x1 ´ x∥.

Now, let Rx ą 0 be as in Theorem B.2. Then if ∥x1 ´ x∥ ą Rx we have ∥x1 ´ x∥{Rx ą 1 and hence

epDs
F px1q, Ds

F pxqq ď
Mx

Rx
∥x1 ´ x∥ ` L∥x1 ´ x∥ “

ˆ

Mx

Rx
` L

˙

∥x1 ´ x∥,

otherwise, if ∥x ´ x1∥ ď Rx, then by Theorem B.2, we have

epDs
F px1q, Ds

F pxqq ď L∥x1 ´ x∥ ď

ˆ

Mx

Rx
` L

˙

∥x1 ´ x∥.

The statement follows.
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Lemma B.3. Under Assumption 3.1(ii), for every pu, λq P Rp ˆ Λ,

∥pI ´ DΦ,1pu, λqq´1∥sup ď
1

1 ´ q
, ∥Dimp

w pλq∥sup ď ∥Dfix
w pλq∥sup ď

∥DΦ,2pwpλq, λq∥sup
1 ´ q

.

Proof. As for the first inequality, we recall that for any matrix A such that ∥A∥ ď q ă 1, we have pI ´ Aq´1 “
ř8

n“0 A
n

and hence ∥I ´ A∥ ď
ř`8

n“0∥A∥n ď
ř`8

n“0 q
n “ 1{p1 ´ qq. Thus, if we let A “ DΦpu, λq we have that

∥pI ´ A1q´1∥sup “ sup
A1PA1

∥pI ´ A1q´1∥ ď
1

1 ´ q
.

The second inequality holds since Dimp
w pλq Ă Dfix

w pλq. For the last inequality we note that if we let B “ DΦpwpλq, λq, it
follows from the definition of Dfix

w that
Dfix

w pλq “ BpDfix
w pλqq.

Thus, applying Lemma B.1(vii) and recalling that ∥DΦ,1pwpλq, λq∥sup ď q ă 1 we have

∥Dfix
w pλq∥sup ď ∥DΦ,1pwpλq, λq∥sup∥Dfix

w pλq∥sup ` ∥DΦ,2pwpλq, λq∥sup
ď q∥Dfix

w pλq∥sup ` ∥DΦ,2pwpλq, λq∥sup

which implies the last inequality, after rearranging the terms.

C. Iterative and Approximate Implicit Differentiation
Note that if κ “ 1{p1 ´ qq, then qt “ expp´ logp1{qqtq ď expp´t{κq.

Proof of Theorem 4.1. Let λ P Λ and t P N, t ě 1. For the sake of brevity, we set

bλ,t “
`

∥Dfix
w pλq∥sup ` 1

˘

Cλpwtpλqq,

At “ DΦpwtpλq, λq, At,1 “ DΦ,1pwtpλq, λq, B “ DΦpwpλq, λq,

where Cλ is defined in Lemma 3.2. We recall that

Dwt
pλq “ At´1pDwt´1

pλqq, Dfix
w pλq “ BpDfix

w pλqq.

We also recall that δλptq “ 1t∥wtpλq ´ wpλq∥ ą Rλu P t0, 1u and hence

Cλpwtpλqq “ L `
Mλ

Rλ
δλptq.

ITD (16): Let ∆1
t :“ epDwt

pλq, Dfix
w pλqq. Using the properties in Lemma B.1(i)(vii) we have

∆1
t “ epAt´1pDwt´1pλqq,BpDfix

w pλqqq

ď epAt´1pDwt´1pλqq,At´1pDfix
w pλqqq ` epAt´1pDfix

w pλqq,BpDfix
w pλqqq

ď ∥At´1,1∥sup∆1
t´1 ` p1 ` ∥Dfix

w pλq∥supq epAt´1,Bq

ď q∆1
t´1 ` bλ,t´1∆t´1,

where for the last inequality we used that for any u P Rd, ∥DΦ,1pu, λq∥ ă q and Lemma 3.2. By unrolling the recursive
inequality and using the inequality ∆i ď qi∆0 we obtain

∆1
t ď qt∆1

0 `

t´1
ÿ

i“0

qt´1´ibλ,i∆i ď qt∆1
0 ` qt´1∆0

t´1
ÿ

i“0

bλ,i

ď qt∥Dfix
w pλq∥sup ` ∆0q

t´1tp∥Dfix
w pλq∥sup ` 1qpL ` MλR

´1
λ δ̄λptqq,
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where, in the last inequality, we used ∆1
0 ď ∥Dfix

w pλq∥sup and the definitions of δ̄λptq and Cλpwtpλqq. Applying Lemma B.3,
factoring out t and using the definition of Bλ gives the final result.

AID-FP (17): In this case we have
Dk

wt
pλq “ AtpD

k´1
wt

pλqq.

Set ∆1
k :“ epDk

wt
pλq, Dfix

w pλqq. Then using again Lemma B.1(i)(vii) we have

∆1
k “ epAtpD

k´1
wt

pλqq,BpDfix
w pλqqq

ď epAtpD
k´1
wt

pλqq,AtpD
fix
w pλqqq ` epAtpD

fix
w pλqq,BpDfix

w pλqqq

ď ∥At,1∥sup∆1
k´1 ` p1 ` ∥Dfix

w pλq∥supq epAt,Bq

ď q∆1
k´1 ` bλ,t∆t,

where for the last inequality we used Assumption 3.1(ii) and Lemma 3.2. By unrolling the inequality recursion we obtain

∆1
k ď qk∆1

0 ` bλ,t∆t

k´1
ÿ

i“0

qi “ qk∥Dfix
w pλq∥sup ` bλ,t

1 ´ qk

1 ´ q
∆t.

Applying Lemma B.3 and using the definition of bλ,t, Cλ and δλ gives the final result.

For the final comment, if wtpλq “ Φpwt´1pλq, λq, due to the contraction property of Φ, ∆t “ q∆t´1 ă ∆t´1 and
there exist τλ P t0, . . . , t1

λu with t1
λ :“ rlogp∆0{Rλq{ logp1{qqs, such that ∥wτλpλq ´ wpλq∥ ď Rλ, and if τλ ‰ 0,

∥wτλ´1pλq ´ wpλq∥ ą Rλ. Thus, for every i P N δλpwiq “ 1ti ă τλu and therefore for every t, δλpwtq ď δ̄λptq ď 1.

D. Stochastic Implicit Differentiation
For simplicity let for every u P Rd, λ P OΛ

Ψpu, λq “ pT pu, λq, λq, DΨpu, λq “

"„

C1 C2

0 Im

ȷ

ˇ

ˇ

ˇ
rC1, C2s P DT pu, λq

*

From Lemma 3 in (Bolte & Pauwels, 2021) and Assumption 5.1(i) it follows that DΨ is a conservative derivative of Ψ.
Moreover, we can write Φpu, λq “ GpΨpu, λqq and thanks to the chain rule of conservative derivatives we have that

DΦpu, λq :“ DGpΨpu, λqqDΨpu, λq “ DGpT pu, λq, λq

„

DT pu, λq

0 Im

ȷ

(24)

is a conservative derivative for Φ. Furthermore, if Assumption 5.1(ii) is satisfied, then ∥DΦ,1pu, λq∥sup ď q ă 1 and Dfix
w

and Dimp
w in (12) and (11) are well defined and conservative derivatives of w. Similarly, a conservative derivative of Φ̄ can

be obtained as

DΦ̄pu, λq :“ DGpT̄ pu, λq, λq

„

DT̄ pu, λq

0 Im

ȷ

, with DT̄ pu, λq “
1

J

J
ÿ

j“1

DT̂
ξ

p1q
j

pu, λq. (25)

Note that B2Φ̄pu, λq as defined in (21) is an element of DΦ̄,2.

The following result is similar to Lemma 3.2 and follows directly from Lemma 2.5. The only difference is that the constants
are majorized so to be independent on u. This is done only to simplify the analysis.
Lemma D.1. Under Assumption 5.1, for every λ P Λ, there exist RG,λ, RT,λ ą 0 such that for every u P Rd and

epDGpu, λq, DGpT pwpλq, λq, λq ď CG,λ∥u ´ T pwpλq, λq∥
epDT pu, λq, DT pwpλq, λqq ď CT,λ∥u ´ wpλq∥,

where CG,λ :“ LG ` MG,λ{RG,λ, CT,λ :“ LT ` MT,λ{RT,λ, with

MT,λ :“ max
iPt1,...,ru

min
jPIT pwpλq,λq

∥T 1
i pwpλq, λq ´ T 1

jpwpλq, λq∥

MG,λ :“ max
iPt1,...,ru

min
jPIGpT pwpλq,λq,λq

∥G1
ipT pwpλq, λq, λq ´ G1

jpT pwpλq, λq, λq∥

and LT , LG satisfying Assumption 3.1(i).
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We now present the proof of Theorem 5.5.

Proof of Theorem 5.5. Set, for the sake of brevity, zt “ pwtpλq, λq and z “ pwpλq, λq. We also set vk “ vkpwtpλq, T̄tpλqq,
v̄ “ v̄pwtpλq, T̄tpλqq, and aλ “ ∥wpλq ´T pzq∥. From Assumption 5.2 on the variance of T̂ and since T p¨, λq is 1-Lipschitz
we have

VarrT̂ξpztq |wtpλq, ys ď σ1 ` σ2∥wtpλq ¯ wpλq ´ T pztq ˘ T pzq∥2

ď σ1 ` 3σ2p2∆2
t ` a2λq “: bλp∆2

t q. (26)

Now, recall that G1pT̄ pztq, λq “ rB1GpT̄ pztq, λq, B2GpT̄ pztq, λqs, T 1pztq “ rB1T pztq, B2T pztqs and set

B :“ rB1, B2s “ argmin
B1PDGpT pzq,λq

∥G1pT̄ pztq, λq ´ B1∥

C :“ rC1, C2s “ argmin
C1PDT pzq

∥T 1pztq ´ C 1∥

with B1, C1 P Rdˆd, B2, C2 P Rdˆm, which is valid since the argmin is over compact convex sets. Then, recalling the
definition of excess and applying Lemma D.1 we have that for j “ 1, 2

∥BjGpT̄ pztq, λq ´ Bj∥ ď ∥G1pT̄ pztq, λq ´ B∥ “ epG1pT̄ pztq, λq, DGpT pzq, λqq ď CG,λ∥T̄ pztq ´ T pzq∥,
∥BjT pztq ´ Cj∥ ď ∥T 1pztq ´ C∥ “ epT 1pztq, DGpzqq ď CG,λ∥zt ´ z∥.

(27)

Let also A :“ rA1, A2s with A1 :“ B1C1 and A2 :“ B1C2 ` B2. Since B P DGpT pzq, λq, C P DT pzq we have that
A P DΦpzq (from the definition of DΦ in (24)) and consequently that pI ´ A1q´1A2 P Dimp

w pλq. Hence, recalling the
definition of excess we can write

epB2Φ̄pztq
Jvk, D

imp
w pλqJyq ď ∥B2Φ̄pztq

Jvk ´ AJ
2 pI ´ A1q´Jy∥.

To prove the result, it is therefore sufficient to appropriately control the distance to a particular element of Dimp
w pλqJy,

namely AJ
2 pI ´ A1q´Jy, which is a random variable depending on y, wtpλq, ξp1q (from the definition of B and C). We

have the following error decomposition

epB2Φ̄pztq
Jvk, D

imp
w pλqJyq ď ∥B2Φ̄pztq

Jvk ´ AJ
2 vk∥ ` ∥AJ

2 vk ´ AJ
2 pI ´ AJ

1 q´1y∥q

ď ∥B2Φ̄pztq ´ A2∥∥vk∥ ` ∥DΦ,2pzq∥sup∥vk ´ pI ´ AJ
1 q´1y∥,

where we used that A2 P DΦ,2pzq. Hence, squaring and taking the conditional expectation of both sides yields

ErepB2Φ̄pztq
Jvk, D

imp
w pλqJyq2s |wtpλq, y, ξp1qs ď 2Er∥vk∥2 |wtpλq, y, ξp1qs ¨ ∥B2Φ̄pztq ´ A2∥2

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

p1q

` 2∥DΦ,2pzq∥2supEr∥vk ´ pI ´ AJ
1 q´1y∥2 |wtpλq, y, ξp1qs

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

p2q

.
(28)

Bound for term (1) of (28) We have that

Er∥vk∥2 |wtpλq, y, ξp1qs ď 2Er∥vk ´ v̄∥2 ` ∥v̄∥2 |wtpλq, y, ξp1qs

ď 2
`

Er∥vk ´ v̄∥2 |wtpλq, y, ξp1qs ` ∥y∥2{p1 ´ qq2
˘

ď 2∥y∥2
`

σλpkq ` 1{p1 ´ qq2
˘

.

where in the second last inequality we used Assumption 5.4(ii). Hence

p1q ď 4∥y∥2
`

σλpkq ` 1{p1 ´ qq2
˘

∥B2Φ̄pztq ´ A2∥2.

Now recall that

B2Φ̄pztq “ B1GpT̄ pztq, λqB2T̄ pztq ` B2GpT̄ pztq, λq, A2 “ B1C2 ` B2,
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therefore we have

∥B2Φ̄pztq ´ A2∥ ď ∥B1GpT̄ pztq, λqB2T̄ pztq ´ B1GpT̄ pztq, λqC2∥

` ∥B1GpT̄ pztq, λqC2 ´ B1C2∥ ` ∥B2GpT̄ pztq, λq ´ B2∥

ď ∥B1GpT̄ pztq, λq∥∥B2T̄ pztq ´ C2∥

` ∥C2∥∥B1GpT̄ pztq, λq ´ B1∥ ` ∥B2GpT̄ pztq, λq ´ B2∥

ď ∥B2T̄ pztq ´ B2T pztq∥ ` ∥B2T pztq ´ C2∥

` ∥B2∥∥B1GpT̄ pztq, λq ´ B1∥ ` ∥B2GpT̄ pztq, λq ´ B2∥
p˚q

ď ∥B2T̄ pztq ´ B2T pztq∥ ` CT,λ∥wtpλq ´ wpλq∥

` CG,λp1 ` ∥C2∥qp∥T̄ pztq ´ T pztq∥ ` ∥T pztq ´ T pzq∥q

ď ∥B2T̄ pztq ´ B2T pztq∥ ` rCT,λ ` CG,λp1 ` ∥DT,2pzq∥supqs∆t

` CG,λp1 ` ∥DT,2pzq∥supq∥T̄ pztq ´ T pztq∥,

where in p˚q we used (27) and in the last inequality the the fact that C2 P DT,2pzq. Hence, from Assumption 5.2 and (26),
we have

E
“

∥B2Φ̄pztq ´ C2

∥∥2 ˇˇwtpλq, y
‰

ď 3VarrB2T̄ pztq |wtpλq, ys ` 3rCT,λ ` CG,λp1 ` ∥DT,2pzq∥supqs2∆2
t

` 3C2
G,λp1 ` ∥DT,2pzq∥supq2 VarrT̄ pztq |wtpλq, ys

ď
3σ1

2

J
` 3rCT,λ ` CG,λp1 ` ∥DT,2pzq∥supqs2∆2

t

` 3C2
G,λp1 ` ∥DT,2pzq∥supq2

bλp∆2
t q

J
.

In the end we have

Erp1q |wtpλq, ys ď 12∥y∥2
ˆ

σλpkq `
1

p1 ´ qq2

˙ˆ

σ1
2

J
` rCT,λ ` CG,λMT,λs2∆2

t ` C2
G,λM

2
T,λ

bλp∆2
t q

J

˙

,

where we set MT,λ “ 1 ` ∥DT,2pwpλq, λq∥sup.

Bound for term (2) of (28) We have

∥vk ´ pI ´ AJ
1 q´1y∥ ď ∥vk ´ v̄∥ ` ∥v̄ ´ pI ´ A1q´Jy∥.

Let B̂1 “ B1GpT̄ pztq, λq and Ĉ1 “ B1T pztq and Â1 “ B̂1Ĉ1 and recall that v̄ “ pI ´ ÂJ
1 q´1y and A1 P DΦ,1pzq. Noting

that maxt∥B1∥, ∥C1∥, ∥B̂1∥, ∥Ĉ1∥qu ď 1, maxt∥Â1∥, ∥A1∥u ď q and hence maxt∥pI ´ ÂJ
1 q´1∥, ∥pI ´ AJ

1 q´1∥u ď

1{p1 ´ qq, we obtain

∥vk ´ pI ´ AJ
1 q´1y∥

ď ∥vk ´ v̄∥ ` ∥y∥∥pI ´ ÂJ
1 q´1∥∥pI ´ AJ

1 q´1∥∥Â1 ´ A1∥

ď ∥vk ´ v̄∥ `
∥y∥

p1 ´ qq2
∥B1GpT̄ pztq, λqB1T pztq ´ B1C1∥

ď ∥vk ´ v̄∥ `
∥y∥

p1 ´ qq2

”

∥B1GpT̄ pztq, λqB1T pztq ´ B1B1T pztq∥ ` ∥B1B1T pztq ´ B1C1

˘

∥
ı

ď ∥vk ´ v̄∥ `
∥y∥

p1 ´ qq2

”

∥B1T pztq∥∥B1GpT̄ pztq, λq ´ B1∥ ` ∥B1∥∥B1T pztq ´ C1∥
ı

ď ∥vk ´ v̄∥ `
∥y∥

p1 ´ qq2

”

∥B1GpT̄ pztq, λq ´ B1∥ ` ∥B1T pztq ´ C1∥
ı
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p˚q

ď ∥vk ´ v̄∥ `
∥y∥

p1 ´ qq2

“

CG,λp∥T̄ pztq ´ T pztq∥ ` ∥T pztq ´ T pzq∥q ` CT,λ∥wtpλq ´ wpλq∥
‰

ď ∥vk ´ v̄∥ `
∥y∥

p1 ´ qq2

“

CG,λ∥T̄ pztq ´ T pztq∥ ` pCG,λ ` CT,λq∆t

‰

,

where in p˚q we used (27). Therefore,

E
“

epvk,pI ´ AJ
1 q´1yq2

ˇ

ˇwtpλq, y, ξp1q
‰

ď 3

ˆ

∥y∥2σλpkq `
∥y∥2

p1 ´ qq4

“

C2
G,λ∥T̄ pztq ´ T pztq∥2 ` pCG,λ ` CT,λq2∆2

t

‰

˙

and hence, taking the expectation over ξp1q we obtain

E
“

epvk,pI ´ AJ
1 q´1yq2

ˇ

ˇwtpλq, y
‰

ď 3∥y∥2
ˆ

σλpkq `
1

p1 ´ qq4

“

C2
G,λ VarrT̄ pztq |wtpλq, ys ` pCG,λ ` CT,λq2∆2

t

‰

˙

“ 3∥y∥2
ˆ

σλpkq `
1

p1 ´ qq4

´

C2
G,λ

VarrT̂ξpztq |wtpλq, ys

J
` pCG,λ ` CT,λq2∆2

t

¯

˙

ď 3∥y∥2
ˆ

σλpkq `
1

p1 ´ qq4

´

C2
G,λ

bλp∆2
t q

J
` pCG,λ ` CT,λq2∆2

t

¯

˙

.

In the end we have

Erp2q |wtpλq, ys ď 6∥DΦ,2pwpλq, λq∥2sup∥y∥2
ˆ

σλpkq `
1

p1 ´ qq4

´

C2
G,λ

bλp∆2
t q

J
` pCG,λ ` CT,λq2∆2

t

¯

˙

.

Combined bound By combining the above results we finally obtain

ErepB2Φ̄pztq
Jvk, D

imp
w pλqJyq2s |wtpλq, ys

ď 12∥y∥2
`

σλpkq ` κ2
˘

ˆ

σ1
2

J
` rCT,λ ` CG,λMT,λs2∆2

t ` C2
G,λM

2
T,λ

σ1 ` 3σ2p2∆2
t ` a2λq

J

˙

` 6∥y∥2∥DΦ,2pwpλq, λq∥2sup
ˆ

σλpkq ` κ4
´

C2
G,λ

σ1 ` 3σ2p2∆2
t ` a2λq

J
` pCG,λ ` CT,λq2∆2

t

¯

˙

,

where we used the expression for bλp∆2
t q and κ “ p1 ´ qq´1. Taking the expectation Er¨ |wtpλqs and recalling the

hypothesis on ∥y∥2 and ∆2
t in Assumption 5.4(i)(iii), the statement follows.

Before reporting the proof for the linear system rate, we rewrite for reader’s convenience the following result from (Grazzi
et al., 2021), which establishes a convergence rate for stochastic fixed-point iterations with a decreasing step size.

Lemma D.2. (Grazzi et al., 2021, Theorem 4.2) Let Ψ: Rd Ñ Rd be a q-contraction (0 ď q ă 1), ξ a random variable
with values in Ξ and Ψ̂ : Rd ˆ Ξ Ñ Rd be such that for every v P Rd

ErΨ̂pv, ξqs “ Ψpvq and VarrΨ̂pv, ξqs ď σ̂1 ` σ̂2∥Ψpvq ´ v∥2,

for some σ̂1, σ̂2 ą 0. Let ηi “ β{pγ ` iq, with β ą 1{p1 ´ q2q and γ ě βp1 ` σ̂2q. Let pξiqiPN be a sequence of i.i.d copies
of ξ and let pviqiPN be such that v0 “ 0 and for i “ 0, 1, . . .

vi`1 “ vi ` ηipΨ̂pvi, ξiq ´ viq.

Then for every i P N

Er∥vi ´ v̄∥2s ď
1

γ ` i
max

!

γ∥v̄∥2, β2σ̂1

βp1 ´ q2q ´ 1

)

,

where v̄ is the (unique) fixed point of Ψ.
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Algorithm 3 Stochastic fixed point iterations

1: Input: k P N, u1, u2, y P Rd, ξp2q “ pξ
p2q

i q1ďiďk.
2: Ψ̂ : pv, xq ÞÑ B1T̂ pu1, λ, xqJB1Gpu2, λqJv ` y
3: v0 “ 0
4: for i “ 1 to k do
5: vi Ð p1 ´ ηiqvi´1 ` ηiΨ̂pvi´1, ξ

p2q

i q

6: end for
7: Return vk

We now present the rate for the algorithm used to solve the linear system in Algorithm 1. Consider the procedure in
Algorithm 3

Note that vk in Algorithm 1 is exactly the output of Algorithm 3 with u1 “ wtpλq, u2 “ T̄tpλq. Moreover, we obtain the
following convergence rate which is completely independent from the inputs u1 and u2.

Lemma D.3 (Linear system rate). Under Assumption 5.1 and 5.2, let σ̂2 “ 2σ1
1p1 ´ qq´2, σ̂1 “ σ̂2∥y∥2, and consider the

stochastic fixed point iterations in Algorithm 3 with ηi “ β{pγ ` iq, with β ą 1{
`

1 ´ q2
˘

and γ ě β p1 ` σ̂2q. For any
u2, u1, y P Rd let the solution of the linear system be

v̄ :“ pI ´ B1T pu1, λqJB1Gpu2, λqJq´1y.

Then we have

Er∥vk ´ v̄∥2s ď
∥y∥2

γ ` k
max

"

γ

p1 ´ qq2
,

β2σ̂2

β p1 ´ q2q ´ 1

*

. (29)

In particular, if we set β “ 2{p1 ´ q2q, γ “ 2p1 ` σ̂2q{p1 ´ q2q, we obtain

Er∥vk ´ v̄∥2s ď
1

k
¨
2∥y∥2p1 ` 4σ1

1q

p1 ´ qq5
.

Proof. Let
Ψpvq :“ ErΨ̂pv, ξqs “ B1T pu1, λqJB1Gpu2, λqJv ` y.

Since ∥B1T pu1, λqJB1Gpu2, λqJ∥ ď q, Ψ is a q-contraction with fixed point v̄. It is immediate to see that

VarrΨ̂pv, ξqs ď VarrB1T̂ξpu1, λqs∥v∥2.

Moreover, we have

∥v∥ ď ∥v ´ Ψpvq∥ ` ∥Ψpvq ´ Ψp0q∥ ` ∥Ψp0q∥ ď ∥v ´ Ψpvq∥ ` q∥v∥ ` ∥y∥

and hence
p1 ´ qq∥v∥ ď ∥v ´ Ψpvq∥ ` ∥y∥, (30)

which, recalling Assumption 5.2 on the variance of T 1
1, ultimately yields

VarrΨ̂pv, ξqs ď
2

p1 ´ qq2
VarrB1T̂ξpu1, λqs

`

∥v ´ Ψpvq∥2 ` ∥y∥2
˘

ď
2σ1

1

p1 ´ qq2
∥Ψpvq ´ v∥2 `

2σ1
1∥y∥2

p1 ´ qq2
.

Therefore, the first part of the statement follows from Lemma D.2 and from ∥v̄∥ ď ∥y∥p1 ´ qq´1 (a consequence of (30)).
The last part follows by (29), the equations

γ “
2

1 ´ q2

´

1 `
2σ1

1

p1 ´ qq2

¯

ď
2p1 ` 2σ1

1q

p1 ´ q2qp1 ´ qq2
and β2σ̂2 “

8σ1
1

p1 ´ qq2p1 ´ q2q2

and the fact that p1 ´ q2q´1 ď p1 ´ qq´1 when q ă 1.

Proof of Theorem 5.6. By applying Lemma D.3 with u1 “ wtpλq and u2 “ T̄ pwtpλq, λq we obtain that Assumption 5.4(ii)
(the rate on the mean square error of vk) is satisfied with σλpkq “ Opκ5k´1q. The statement follows by applying
Theorem 5.5 and substituting the rates ρλptq and σλpkq.
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E. Bilevel Optimization
In this section we consider Problem (22) and we make the following assumption.

Assumption E.1. The map E satisfies Assumption 3.1(i) with constant LE and corresponding conservative derivative DE .

Note that similarly to Φ, since E satisfies Assumption E.1, a direct application of Lemma 2.5 to the map E yields

Lemma E.2. Under Assumption E.1, for every λ P Λ, there exist RE,λ ą 0 such that for every u P Rd

epDEpu, λq, DEpwpλq, λqq ď CE,λ∥u ´ wpλq∥,

where CE,λ :“ LE ` ME,λ{RE,λ, with ME,λ :“ maxiPt1,...,mu minjPIEpwpλq,λq∥E1
ipwpλq, λq ´ E1

jpwpλq, λq∥.

E.1. Deterministic Case

Theorem E.3. Let Assumption 3.1 and E.1 hold. Then for every λ P Λ and every t, k P N we have that for BAID-FP we get

epDk
ftpλq, Dfix

f pλqq “ Opκe´k{κ ` κ2∆tq

while if wtpλq “ Φpwt´1pλq, λq, for BITD we get

epDftpλq, Dfix
f pλqq “ Opκte´κ{tq.

Proof. For simplicity, let A “ DEpwpλq, λq, At “ DEpwtpλq, λq and recall that

Dftpλq “ AtpDwt
pλqq, Dfix

f pλq “ ApDfix
w pλqq.

Using the properties of excess in Lemma B.1 we obtain, for BITD:

epDftpλq, Dfix
f pλqq ď epAtpDwtpλqq,AtpD

fix
w pλqqq ` epAtpD

fix
w pλqq,ApDfix

w pλqqq

ď ∥DE,1pwtpλq, λq∥sup epDwtpλq, Dfix
w pλqq

`
`

1 ` ∥Dfix
w pλq∥sup

˘

epDEpwtpλq, λq, DEpwpλq, λqq

ď p∥DE,1pwpλq, λq∥sup ` CE,λ∆tq epDwt
pλq, Dfix

w pλqq

`

´∥DΦ,2pwpλq, λq∥sup
1 ´ q

` 1
¯

CE,λ∆t

ď p∥DE,1pwpλq, λq∥sup ` CE,λ∆0q ˆ Opκte´t{κq
looooomooooon

p˚q

`

´∥DΦ,2pwpλq, λq∥sup
1 ´ q

` 1
¯

CE,λ∆0e
´t{κ,

where we used ∆t ď ∆0e
´t{κ ă ∆0, the ITD bound in Theorem 4.1 and Lemma E.2. A very similar proof can be done for

AID-FP by changing the p˚q term to Opκe´k{κ ` κ2e´t{κq.

E.2. Stochastic Case

We consider the special case of Problem (22) with

Epw, λq “ ErÊζpw, λqs, Φpw, λq “ GpErT̂ξpw, λqs, λq.

In addition to Assumption E.4, as for the smooth case in (Grazzi et al., 2023), we consider the following assumption on E

Assumption E.4. For any λ P Λ there exists BE,λ ě 0 such that

@w P Rd : ∥DE,1pw, λq∥sup ď BE,λ.
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The assumption above is verified e.g., for the logistic and for the cross-entropy loss. Moreover, the assumptions on Ê are the
following.

Assumption E.5. ζ is a random variable with values in Z and for every z P Z

(i) Êz : Rd ˆ OΛ Ñ Rd, ErÊζpu, λqs “ Epu, λq.

(ii) Êz is path differentiable with conservative derivative DÊ and E1
z is a selection of DÊ such that Ê1

zpu, λq “

rB1Êzpu, λq, B2Êζpu, λqs and there exist σE,1, σE,2 ě 0 such that for every u P Rd and λ P Λ

E
“

E1
ζpu, λq

‰

“ E1pu, λq P DEpu, λq, VarrB1Êζpu, λqs ď σE,1, VarrB2Êζpu, λqs ď σE,2.

Theorem E.6. Let Assumption 5.1, 5.2, E.1, E.4, E.5 hold and let κ “ p1´ qq´1. Also, suppose that Er∥wtpλq ´wpλq∥s ď

ρλptq, for every t P N. Then the output ∇̂fpλqJ of NSID-Bilevel (Algorithm 2) where NSID uses step sizes ηi “ Θpi´1q

satisfies

Erep∇̂fpλqJ, Dimp
f pλqq2s “ O

ˆ

κ5

k
` κ4

ˆ

1

J2
` ρλptq

˙

`
κ2

J1

˙

.

Furthermore, if ρλptq “ Opκαt´1q (α ą 0), then

Erep∇̂fpλqJ, Dimp
f pλqq2s “ O

`

κ2J´1
1 ` κ5pk´1 ` J´1

2 ` καt´1q
˘

.

Therefore, by setting e.g., t “ k “ J1 “ J2 we have

Erep∇̂fpλqJ, Dimp
f pλqq2s “ Opκ5`αt´1q

which has the same dependency on t as stochastic gradient descent on strongly convex and Lipschitz smooth objectives
(Bottou et al., 2018).

Proof. For simplicity, let zt “ pwtpλq, λq, z “ pwpλq, λq, A “ DEpwpλq, λq, Bt “ tĒ1pztqu. We also recall that

Dimp
f pλq :“ ApDimp

w pλqq, ∇̂fpλqJ “ rpztq
J ` B2Ēpztq,

with rpztq which is an estimator of Dimp
w pλqJB1Ēpztq. Then, using the properties in Lemma B.1 and noting that

BtpD
imp
w pλqq “ B1ĒpztqD

imp
w pλq ` B2Ēpztq, we have

ep∇̂fpλqJ, Dimp
f pλqq

ď ep∇̂fpλqJ,BtpD
imp
w pλqq ` epBtpD

imp
w pλqq,ApDimp

w pλqqq

ď eprpztq, D
imp
w pλqJ B1Ēpztqq ` p1 ` ∥Dimp

w pλq∥supq epĒ1pztq, DEpzqq

ď eprpztq, D
imp
w pλqJ B1Ēpztqq ` p1 ` ∥Dimp

w pλq∥supqp∥Ē1pztq ´ E1pztq∥ ` epE1pztq, DEpzqqq

ď eprpztq, D
imp
w pλqJ B1Ēpztqq ` p1 ` ∥Dimp

w pλq∥supqp∥Ē1pztq ´ E1pztq∥ ` CE,λ∆tq

Moreover, let Ẽ “ Er ¨ |wtpλqs, we have that

Ẽr∥Ē1pztq ´ E1pztq∥2s “ Ẽr∥B1Ēpztq ´ B1Epztq∥2s ` Ẽr∥B2Ēpztq ´ B2Epztq∥2s

ď
VarrB1Êζpztq |wtpλqs ` VarrB2Êζpztq |wtpλqs

J1
ď

σE,1 ` σE,2

J1
.

Hence

Ẽr ep∇̂fpλqJ, Dimp
f pλqq2s

ď 3

ˆ

Ẽreprpztq, D
imp
w pλqJ B1Ēpztqq2s ` p1 ` ∥Dimp

w pλq∥supq2
´

C2
E,λ∆

2
t `

σE,1 ` σE,2

J1

¯

˙

. (31)
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We also note that ∥Dimp
w pλq∥sup ď ∥DΦ,2pwpλq, λq∥sup{p1 ´ qq and that

Ẽ
“

∥B1Ēpztq∥2
‰

ď 2Ẽ
“

∥B1Ēpztq ´ B1Epztq∥2
‰

` 2∥DE,1pztq∥2sup ď
2σE,1

J1
` 2BE,λ. (32)

Therefore, taking the total expectation in (31) and applying Theorem 5.5 with y “ B1Ēpztq we get

Erep∇̂fpλqJ, Dimp
f pλqq2s

ď O

ˆ

σλpkq ` κ4

ˆ

2σE,1

J1
` 2BE,λ

˙ˆ

1

J2
` ρλptq

˙˙

` 3p1 ` κ∥DΦ,2pwpλq, λq∥supq2
´

C2
E,λ∆

2
t `

σE,1 ` σE,2

J1

¯

˘

“ O

ˆ

σλpkq ` κ4

ˆ

1

J2
` ρλptq

˙

`
κ2

J1

˙

.

The first part of the statement follows by noting that for NSID we have σλpkq “ Opκ5{kq, where κ “ 1{p1 ´ qq. The
second and last result are immediate.

F. Experimental Details
We give more information on the numerical experiments in Section 7.

F.1. Computing the approximation Error.

Let c P Rm, be the output of an algorithm approximating the jacobian vector product Dfix
w pλqJy. We call approximation

error the quantity
epc,Dfix

w pλqJyq.

Since Dfix
w pλqJy is set valued and each element is not available in closed form, we instead approximate an upper bound to

this quantity using AID-FP for enough iterations k, which as we mention in Section 4, generates a subsequence linearly
converging to an element of Dfix

w pλqJy. Also, as a starting point to AID-FP we use wtpλq “ Φpwt´1pλq, λq, with sufficiently
large t and starting from w0pλq “ 0, so to be sufficiently close to the fixed point solution wpλq, also not available in closed
form.

F.2. Constructing the fixed-point map.

In all the experiments, we consider composite minimization problems in the form

min
u

fλpuq ` gλpuq.

To convert it to fixed point we set a step size ηλ ą 0 and set

Φpu, λq “ GpT pu, λq, λq,

with
Gpu, λq “ Proxηλgλpuq T pw, λq “ u ´ ηλ∇fλpuq

In particular, since in our case gλ is always the an elastic net regularization, Prox is the soft-thresholding and we set

ηλ “
2

cpL ` µq ` 2λ2
,

where λ2 is the L2 regularization parameter and L, µ are the largest and smallest eigenvalues of n´1XJX , where
X is the design matrix of the training set (which contains the corrupted points in the case of data poisoning). We
set c “ 1 for the elastic net experiments with synthetic data, while we set c “ 0.1 for the poisoning experiments.
The choice c “ 1 yields the optimal theoretical value for the step-size when using the square loss, while we used a
difference choice for data poisoning (using the cross-entropy loss) since we found the optimal theoretical value for the
step-size too conservative. To set the stochastic step-size schedules we also set the (estimated) contraction constant as
q “ maxt|1 ´ ηλpcL ` λ2q|, |1 ´ ηλpcµ ` λ2q|u.
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F.3. Details for the AID and ITD Experiments

We construct the synthetic dataset by sampling each element of the matrix X P Rnˆd and the vector w from a normal
distribution. Subsequently, we set the non-informative features of w to zero and we compute the vector y as y “ Xw ` ϵ,
where ϵi is Gaussian noise with mean 0.1 and unit variance. For this experiment we set n “ 100 and p “ 100 of which 30
are informative. We use 200 hold-out examples for the validation set.

F.4. Details for the Stochastic Experiments

We start by noting that for each point in the plots for the stochastic experiments in Figure 2 wtpλq is fixed as the last iterate
of deterministic iterative soft-thresholding, so that the focus lies entirely on the computation of the derivative.

For elastic net, we enhance the setup used for the deterministic methods by sampling the population covariance matrix
randomly for the informative features. To do so, we first sample a matrix A1 from a standard normal, then we normalize all
eigenvalues by diving all of them by their maximum obtaining A2, finally we use the normalized AJ

2 A2 as the covariance
matrix of a Gaussian distribution for the informative features. This introduces correlations among the features, thereby
increasing the complexity of the problem. We also increase the number of training points from 100 to 10K and the number
of validation points from 200 to 20K.

For the data poisoning setup we use the MNIST dataset. We split the MNIST original train set into 30K example for
training and 30K examples for validation. Additionally, we perform a random split of the training set into X P Rnˆd and
X̃ P Rn1

ˆp, with p “ 784 representing the number of features for MNIST images. Notably, n1 “ 9K denotes the number
of corrupted examples. It is essential to highlight that Γ P Rn1

ˆp and n1p is approximately 7 million, posing a significant
challenge for derivative estimation using zero-order methods. We set the regularization parameters λ “ p0.02, 0.1q since
with this setup, the final uncorrputed linear model achieves a validation accuracy of around 80% with around 90% of
components set to zero.

We note that NSID and SID require to choose the step sizes pηiq, which we found to be difficult, since the theoretical values
are often conservative estimates for this problem. We try two policies: constant and decreasing (as Θp1{iq) step sizes,
indicated with “const” and “dec” after the method name respectively. Note that only when the step sizes are decreasing
NSID is guaranteed to converge. To simplify the setup, we always have the same η0 for both constant and decreasing
step-size policies. Moreover, we set the step size of SID equal to that of NSID, when they use the same step sizes policy.
More speifically, we set ηi “ a1{pa2 ` iq for (N)SID dec and η “ a1{a2 for (N)SID const, where a1 “ b1β and a2 “ b2β,
where beta is set to the theoretical value suggested in Lemma D.3 (2{p1 ´ q2q). We tuned a1, a2 manually for each setting.
In particular we set a1 “ 0.5, a2 “ 2 for the synthetic Elastic net experiment and a1 “ 2, a2 “ 0.01 for Data poisoning.
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