

PROGRAMMABLE EXPLORATION OF SYNTHESIZABLE CHEMICAL SPACE

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 The constrained nature of synthesizable chemical space poses a significant chal-
012 lenge for sampling molecules that are both synthetically accessible and possess
013 desired properties. In this work, we present a programmable model for the dis-
014 covery of molecules within synthesizable space. The model can generate synthe-
015 sizeable molecules subject to complex logical queries of molecular properties. By
016 leveraging this querying capability, molecular optimization with respect to black-
017 box oracle functions can be performed through iterative refinement of the queries,
018 which achieves high optimization efficiency while preserving synthesizability.
019 We demonstrate the model’s high coverage of the synthesizable chemical space,
020 achieving a record-high 92% reconstruction rate on a chemical space projection
021 test set curated from the Enamine REAL database. We then evaluate its capabili-
022 ty for complex query-based molecular design through a series of multi-objective
023 molecular discovery benchmarks. Finally, we show that the query-based molecu-
024 lar optimization technique achieves substantially higher sampling efficiency than
025 both synthesis-based and synthesis-agnostic methods.

1 INTRODUCTION

029 Advances in generative models have led to the proliferation of new methods for molecular design,
030 offering higher sampling efficiency than enumerative virtual screening (Gómez-Bombarelli et al.,
031 2018; Gao et al., 2022). Predominantly, generative models represent molecules in the form of strings,
032 graphs, or 3D coordinates, which are agnostic of synthesizability. As a result, these models tend to
033 propose molecules that are difficult or even impossible to synthesize in practice (Gao & Coley,
034 2020). The lack of synthesizability guarantee has been a major bottleneck hindering experimental
035 validation and translation to biomedical applications.

036 Recently, methods that focus on generating synthetic pathways rather than unconstrained molecular
037 graphs have been developed to address the synthesizability issue. Among these, one notable category
038 is the “chemical space projection” approach which aims to find structurally similar molecules, or
039 analogs, within the synthesizable space for any molecular graph (Luo et al., 2024). In this paradigm,
040 an external generative model is first used to draft molecular graphs that satisfy specific properties
041 but are not necessarily synthesizable. Then, these molecular graphs are “projected” to synthesizable
042 analogs in form of *postfix notation of synthesis*, a linear and synthetic pathway-based molecular
043 representation. This two-stage process inevitably creates structural and functional inconsistencies
044 between the molecular graphs and the synthesizable analogs, resulting in compromised properties.
045 Therefore, it is crucial to develop models that operate directly within the synthesizable chemical
046 space to unify property and synthesizability.

047 Directly designing molecules in the synthesizable chemical space has been explored in recent works
048 (Gottipati et al., 2020; Swanson et al., 2024; Cretu et al., 2024), yet their performance remains
049 limited due to several unaddressed challenges. First, the action space of building block selection
050 is extremely large, the size of which often reaches hundreds of thousands or millions (Enamine,
051 2025). Existing methods generate synthetic pathways by explicitly selecting building blocks from
052 such large libraries, which is difficult to sufficiently explore chemical space during both training
053 and sampling. Second, the search space of synthetic pathways is sparse as not all combinations
of building blocks and reactions lead to valid syntheses. Lastly, the representation of synthetic
pathways is not informed of the structural features of the resulting product molecules. Models that

learn distributions over synthetic pathways are typically only aware of the combinatorial rules of reactions and building blocks. As a result, the structural features of the products, which are crucial determinants of molecular properties, are not captured, leading to a gap between pathway generation and property optimization. These issues limit the sampling efficiency of existing methods, making them even less practical for real-world applications that require expensive property evaluations or involve multiple property constraints.

Given the above challenges, we ask the following question: can we develop a generative model that (1) guarantees synthesizability, (2) generates molecules directly within the synthesizable chemical space to preserve molecular properties, (3) generates molecules subject to multiple property constraints, and (4) has high sampling efficiency for black-box oracle functions?

As a solution, we introduce **PrexSyn**¹, a generative framework for synthesizable molecular design. To ensure synthesizability, we use the postfix notation of synthesis (Luo et al., 2024). Unlike prior works that generate synthetic pathways according to molecular graphs, we design a transformer language model that directly generates postfix notations of synthesis conditioned on a variety of property prompts. To enable logical composition of properties (Du et al., 2020), *i.e.* multiple properties connected by logical operators (AND, NOT, OR), we develop a sampling algorithm that compiles logical queries into arithmetic combinations of probability distributions conditioned on each individual property prompt, allowing users to “program” generation objectives. Further, this querying capability also serves as an interface for optimizing molecules with respect to black-box oracle functions *in the query space* via iterative refinement of property queries based on oracle feedback. This new optimization paradigm avoids direct selection from the vast building block action space and bridges the gap between synthesis and property representations, enabling efficient exploration of the synthesizable chemical space.

Our model is trained on pairs of synthetic pathways and their corresponding molecular properties. However, the term “molecular property” encompasses a wide range of molecular characteristics, including structure, protein binding, biological activity, and so on — it is impossible to enumerate all such properties for model training. Therefore, in our work, only a set of efficiently-computable *structural properties* are used during training, including molecular fingerprints, scaffold structures, physicochemical descriptors, pharmacophoric features, and so on. This design choice is motivated by the structural-functional principle, which states that the structure of a molecule determines its function. Consequently, *functional properties* can be characterized through structural properties. By focusing on an essential set of structural properties, the model is adaptable to functional properties during inference.

We demonstrate the effectiveness of our approach through extensive experiments. First, our model achieves high coverage of the synthesizable chemical space, achieving a record-high 92% reconstruction rate on a chemical space projection test set curated from the Enamine REAL database. Second, it can generate synthesizable molecules that satisfy complex logical queries involving multiple properties. Third, it enables efficient molecular optimization with respect to black-box oracle functions, requiring fewer oracle calls to achieve comparable or even better performance than baseline methods.

2 METHOD

In this section, we first describe the model architecture of our method in Section 2.1. Then, we present the sampling algorithms for generating molecules satisfying complex property queries in Section 2.2 and for query-based molecular optimization with respect to black-box oracle functions in Section 2.3.

2.1 MODEL ARCHITECTURE

The model is a decoder-only transformer (Vaswani et al., 2017) which takes as input a prompt sequence of molecular properties and then autoregressively generates postfix notations of synthesis (Figure 1a). Formally, let $C = [c_1, \dots, c_M]$ be the embedding vectors of the property prompt, $s = [s_1, \dots, s_N]$ be the tokenized postfix notation sequence. The model learns the conditional

¹The name is derived from the title *Programmable Exploration of Synthesizable Chemical Space*.

108 distribution of s given the property prompt as:

$$110 \quad p(s|C) = \prod_{i=1}^N p(s_i|s_{<i}, C) \quad (1)$$

113 The transformer architecture allows for flexible handling of various molecular properties, which can
 114 take diverse forms, including categorical values, scalar values, vectors, and sequences. Categorical
 115 properties are embedded using standard embedding lookup tables. Scalar and vector properties are
 116 transformed into fixed-length embeddings using MLPs. For sequential properties, each element is
 117 first embedded as a scalar or categorical property, and the resulting sequence of vectors is then fed
 118 into the transformer model.

119 The postfix notation of synthesis is represented as a sequence of tokens, with each token associated
 120 with a learnable embedding vector, following the standard practice in transformer language models.
 121 Positional encodings are added to the token embeddings to indicate the order of the tokens.

122 To predict the next token, the model adopts a two-level approach. First, it predicts the class of the
 123 next token (*i.e.*, building block, reaction, [START], or [END]). If the predicted class is a building
 124 block or reaction token, a second-level classifier is used to predict the specific token within that
 125 class. This two-level classifier is similar to the routing mechanism in mixture-of-expert models
 126 (Eigen et al., 2013), as it avoids retrieving building blocks at every step, whose computational cost
 127 is not insignificant given the large library size. Formally, the conditional distribution of the next
 128 token is given by:

$$129 \quad p(s_i|s_{<i}, C) = \begin{cases} p(c(s_i) = \text{BB} | \dots) p(s_i | c(s_i) = \text{BB}, \dots) & c(s_i) = \text{BB} \\ 130 \quad p(c(s_i) = \text{RXN} | \dots) p(s_i | c(s_i) = \text{RXN}, \dots) & c(s_i) = \text{RXN} \\ 131 \quad p(s_i | \dots) & \text{otherwise} \end{cases} \quad (2)$$

133 where $c(s_i)$ denotes the class of the token s_i . Note that we use a classifier to select building blocks
 134 from the library, with each class corresponding to a specific building block. This differs from pre-
 135 vious models, which rely on molecular fingerprints to retrieve building blocks via deterministic
 136 nearest-neighbor search. Fingerprint-based selection is limited to structural similarity and is not
 137 adaptable to varying contexts. In contrast, the classifier-based approach allows dynamic selection of
 138 building blocks based on the context provided by property prompts through the learnable unembed-
 139 ding matrix. In addition, it naturally allows probabilistic sampling from the building block library,
 140 which is crucial for generating diverse synthetic pathways. While this leads to the introduction of
 141 a large number of distinct tokens (*i.e.*, hundreds of thousands), the scalability of the architecture
 142 allows each building block to be observed sufficiently during training.

143 To train the model, we randomly construct synthetic pathways by iteratively selecting and combining
 144 building blocks and reaction templates from the library. These pathways are then paired with the
 145 properties of their product molecules to form training data. The model is trained using standard
 146 cross-entropy loss to maximize the likelihood of the postfix notation sequence conditioned on their
 147 property prompts.

148 At inference time, to generate molecules conditioned on a single property prompt, we first embed
 149 the prompt and prepend the embedding vectors to the [START] token. Then, we autoregressively
 150 sample tokens until the [END] token is emitted. Finally, we use the synthesis stack simulator (Luo
 151 et al., 2024) to virtually execute the postfix notation of synthesis with RDKit (RDKit, 2010) and
 152 obtain the product molecular graph.

153 2.2 SAMPLING MOLECULES SUBJECT TO COMPLEX PROPERTY QUERIES

155 Multiple property conditions are often required in practical scenarios. For instance, one may aim to
 156 design molecules that both bind to a specific target and exhibit sufficient solubility, or to generate
 157 molecules that share similar pharmacophores to a known compound while having different scaffolds.

158 In this section, we formulate the composition rule of multiple property prompts (Figure 1b). We
 159 assume that the property prompts are mutually conditionally independent given the molecule, and
 160 that the underlying prior distribution over molecules is uniform. Under these assumptions, the joint
 161 conditional distribution can be expressed in a product-of-experts form, which provides the basis
 of our formulation (Hinton, 1999). While some structural properties are considered independent,

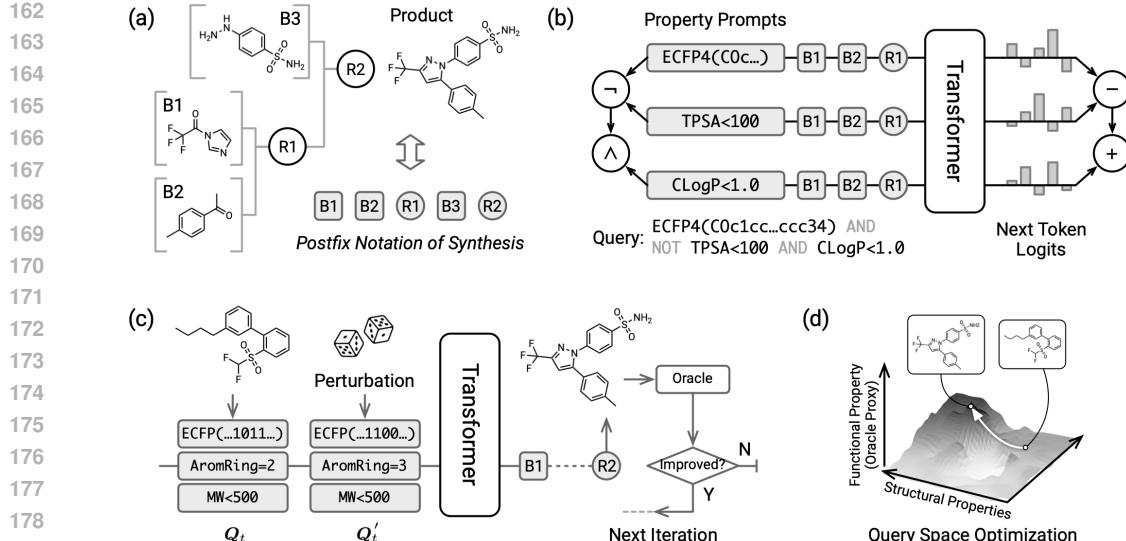


Figure 1: (a) Molecules are represented using postfix notation of synthesis. (b) The transformer predicts the next token conditioned on property prompts. For composite conditions, token probabilities from separate prompts are combined. (c) Query space optimization. At each step, molecular properties are computed and perturbed to recondition the model. Newly generated molecules are then evaluated by oracle functions, and those with improved properties replace previous ones. (d) The principle that functional properties can be characterized through structural properties underlies the model's ability to generalize to functional properties at inference time.

such as scaffold and decoration, this assumption is not strictly true, as many molecular properties are correlated, particularly those related to size such as molecular weight and number of rotatable bonds. Nevertheless, this assumption, as a simplification, allows us to derive a practical algorithm that we empirically demonstrate to be highly effective in later sections.

First, consider two different property prompts: C_1 and C_2 ; $p(s|C_1)$ and $p(s|C_2)$ are the distributions of postfix notations conditioned on each prompt respectively.

Conjunction (AND) The conditional distributions for molecules satisfying both conditions C_1 and C_2 is the product of the two distributions:

$$p(s|C_1 \wedge C_2) \propto p(s|C_1)^\alpha p(s|C_2)^\beta = \prod_{i=1}^N p(s_i|s_{<i}, C_1)^\alpha p(s_i|s_{<i}, C_2)^\beta \quad (\alpha, \beta > 0), \quad (3)$$

where α and β are hyperparameters that control the relative importance of each condition. At each sampling step, we first compute the conditional distributions of the next token given each property prompt, and then combine them using the above equation to get the final distribution for sampling. Specifically, the combined distribution is given by:

$$p(s_i|s_{<i}, C_1)^\alpha p(s_i|s_{<i}, C_2)^\beta = \text{softmax}(\alpha z_1 + \beta z_2), \quad (4)$$

where z_1 and z_2 are the logits of the next token predicted by the model given property prompts C_1 and C_2 respectively.

Negation (NOT) Similarly, the conditional distribution for molecules satisfying C_1 but not C_2 is given by:

$$p(s|C_1 \neg C_2) \propto \frac{p(s|C_1)^\alpha}{p(s|C_2)^\beta} = \prod_{i=1}^N \frac{p(s_i|s_{<i}, C_1)^\alpha}{p(s_i|s_{<i}, C_2)^\beta} \quad (\alpha, \beta > 0). \quad (5)$$

The combined distribution for each sampling step is given by:

$$p(s_i|s_{<i}, C_1 \neg C_2) \propto \frac{p(s_i|s_{<i}, C_1)^\alpha}{p(s_i|s_{<i}, C_2)^\beta} = \text{softmax}(\alpha z_1 - \beta z_2). \quad (6)$$

Note that the negation operation can be unified with the conjunction operation by allowing β in Equation 3 to take negative values, which provides a convenient formulation for implementation.

216 **Disjunction (OR)** Under the disjunction of two conditions C_1 and C_2 , the distribution of
 217 molecules satisfying either condition is given by:
 218

$$219 \quad p(\mathbf{s}|\mathbf{C}_1 \vee \mathbf{C}_2) \propto \alpha p(\mathbf{s}|\mathbf{C}_1) + \beta p(\mathbf{s}|\mathbf{C}_2) = \alpha \prod_{i=1}^N p(s_i|s_{<i}, \mathbf{C}_1) + \beta \prod_{i=1}^N p(s_i|s_{<i}, \mathbf{C}_2). \quad (7)$$

221 Unlike the previous two cases, this distribution cannot be factorized autoregressively. Therefore, we
 222 sample full sequences from each conditional distribution separately and then merge the samples to
 223 obtain the final set of molecules.
 224

225 **Complex Logical Queries** We define *query* (Q) as a logical expression over molecular properties
 226 composed using the logical operators AND, NOT, and OR. To enable sampling from complex logical
 227 queries involving multiple properties connected by logical operators, we first convert the query into
 228 disjunctive normal form (DNF) (Rosen, 2019), *i.e.* a series of ORs where each term only contains
 229 ANDs and NOTs. For each conjunctive term, we apply Equation 4 and 6 to get its composed
 230 distribution, from which samples are drawn. Finally, we merge the samples from all conjunctive
 231 terms to obtain the final set of molecules satisfying the complex logical query.
 232

233 In our implementation, supported properties include: (1) topological fingerprint ECFP4 (Rogers
 234 & Hahn, 2010); (2) pharmacophoric features (Gobbi & Poppinger, 1998); (3) scaffold structures
 235 (Bemis & Murcko, 1996); (4) substructures (fragments); (5) physicochemical descriptors including
 236 molecular weight, ClogP, TPSA, *etc.* As discussed earlier in Section 1, the choice of structural
 237 properties is motivated by the structural-functional principle, which states that a molecule’s structure
 238 determines its function. Functional properties such as protein binding and biological activity can
 239 be characterized through structural properties (Figure 1d); empirically, note that fingerprint-based
 240 and descriptor-based representations of structures achieve competitive performance in quantitative
 241 structure-property relationship modeling. Therefore, we expect and later show that the model is
 242 adaptable to functional properties at inference time. In the next section, we demonstrate how this
 243 querying capability can be used to sample molecules with respect to general properties defined
 244 through black-box oracles.
 245

246 2.3 MOLECULAR OPTIMIZATION IN QUERY SPACE

247 The querying capability provides an interface for optimizing molecules with respect to black-box
 248 oracle functions through iterative refinement of property queries guided by oracle feedback (Figure 1c).
 249

250 The optimization process begins with a seed query Q_0 , which is used to generate an initial set of
 251 candidate molecules. At each iteration, each candidate molecule \mathcal{M} is mapped to a property query
 252 Q_t . In general, the property query takes the form $Q = C_1^{(\text{opt})}(\mathcal{M}) \wedge C_2^{(\text{opt})}(\mathcal{M}) \wedge \dots C_1^{(\text{cstr})} \wedge \dots$,
 253 where $\{C_i^{(\text{opt})}(\mathcal{M})\}$ denotes optimizable conditions dependent on \mathcal{M} and $\{C_i^{(\text{cstr})}\}$ denotes fixed
 254 constraints. Next, noise is added to the optimizable term, resulting in a perturbed query $Q' = C_1'^{(\text{opt})} \wedge \dots C_1^{(\text{cstr})} \wedge \dots$. The perturbed query is then used to generate new candidate molecules,
 255 which are evaluated by the oracle. New candidates that achieve a better oracle score will replace the
 256 old candidates, leading to an improved set of molecules.
 257

258 2.4 EXPERIMENT SETUP

259 We used the reaction template set curated by Gao et al. (2024), which contains 115 reaction tem-
 260 plates. Following previous works (Luo et al., 2024; Gao et al., 2024; Lee et al., 2025), we used
 261 Enamine US in-stock building block set retrieved on October 1, 2023, which contains 223,244 build-
 262 ing blocks after RDKit preprocessing. More implementation details are provided in Appendix B.
 263 The code and data of this project will be available upon publication.
 264

265 3 RESULTS

266 3.1 CHEMICAL SPACE PROJECTION

267 We first evaluate our model on the chemical space projection task. This task involves finding syn-
 268 thezable analogs for given molecular graphs. Two benchmark datasets with different emphases
 269 (Luo et al., 2024; Gao et al., 2024) are used for evaluation: (1) **Enamine testset**: 1,000 molecules

270 Table 1: Chemical space projection results. PrexSyn achieves the highest accuracy and the highest efficiency.
271

272 Method	Enamine REAL		ChEMBL		273 Time/Target
	274 Recons.%	275 Similarity	276 Recons.%	277 Similarity	
SynNet (Gao et al., 2021)	11.0%	0.57	5.4%	0.43	-
SynthesisNet (Sun et al., 2024)	-	-	9.2%	0.53	-
ChemProjector (Luo et al., 2024)	46.0%	0.81	13.0%	0.60	5.15s \pm 4.58s
SynFormer (Gao et al., 2024)	66.0%	0.91	20.0%	0.67	3.45s \pm 3.60s
SynLlama (Sun et al., 2025)	69.1%	0.92	19.7%	0.68	16.21s \pm 9.43s
ReaSyn (Lee et al., 2025)	76.8%	0.95	22.9%	0.69	19.71s \pm 6.68s
278 PrexSyn (beam size=8)	279 89.8%	280 0.97	281 22.5%	282 0.71	283 0.18s\pm0.02s
PrexSyn (beam size=16)	92.0%	0.98	24.8%	0.73	0.35s \pm 0.03s
PrexSyn (beam size=32)	92.9%	0.98	27.3%	0.74	1.00s \pm 0.06s

282
283 curated from the Enamine REAL database, used to assess how well the model covers the synthesiz-
284 able chemical space. (2) **ChEMBL testset**: 1,000 molecules from ChEMBL (Gaulton et al., 2012),
285 which are not necessarily synthesizable with the Enamine building blocks and reactions, used to test
286 the model’s ability to find synthesizable analogs for arbitrary molecular graphs.

287 To run the projection task, we first compute the ECFP4 fingerprint of each molecule in the testset and
288 embed it into prompt vectors, which condition the model to generate postfix notations of synthesis.
289 Beam search with beam sizes of 8, 16 and 32 is used for generation. The molecule with the highest
290 fingerprint similarity to the input molecule is selected as the projection result in accordance with
291 the evaluation procedure of previous studies. All inference is conducted on a single NVIDIA 4090
292 GPU.

293 As shown in Table 1, our model significantly surpasses previous methods on both datasets in terms
294 of quality and efficiency. In particular, our model achieves a recording-breaking reconstruction rate
295 of 92.9% on the Enamine testset, along with a Tanimoto similarity score over Morgan fingerprints
296 of 0.98, whereas the previous best model only achieves a reconstruction rate of 69.1% and a simi-
297 larity score of 0.92. This result shows that our model nearly perfectly covers the synthesizable
298 chemical space defined by the Enamine building blocks and reactions, thereby establishing a strong
299 foundation for more complex chemical space exploration tasks. On the ChEMBL testset, our model
300 achieves a reconstruction rate of 27.3% and a similarity score of 0.74, setting a new state-of-the-art
301 performance, which demonstrates its strong capability to find similar analogs for molecules beyond
302 the defined chemical space. In addition to the improved performance, our model is substantially
303 more efficient than previous methods, taking an average of only 0.18 seconds per target with a beam
304 size of 8 and 1.00 seconds with a beam size of 32.

305 3.2 COMPLEX PROPERTY QUERYING

306 **Overview** We design six query tasks that reflect real-world drug discovery scenarios where
307 complex property constraints are involved, as summarized in Table 2. For each task, we generate 1,000
308 postfix notations and score the product molecules according to how well they satisfy the specified
309 query. We report the mean and standard deviation of both the average score and the diversity of the
310 top 5% and top 10% highest-scoring molecules across 5 independent runs. Diversity is quantified
311 as 1 minus the average pairwise Tanimoto similarity between Morgan fingerprints of the generated
312 molecules (Jin et al., 2020).

313 **Task 1** evaluates the generation of drug-like molecules that satisfy Lipinski’s Rule of Five (Lip-
314 inski, 2004; Chagas et al., 2018), expressed as a conjunction of multiple property constraints.
315 Molecules are scored between 0 and 1 according to the fraction of conditions satisfied. The gen-
316 erated set achieves an average score of 0.9549, with the top 5% and 10% of molecules achieving
317 perfect scores of 1.0000. These top samples also maintain high diversity (above 0.89), indicating
318 that the model produces a broad and varied set of Lipinski-compliant molecules.

319 **Tasks 2 and 3** are inspired by the GuacaMol benchmarks (Brown et al., 2019), which involve
320 finding analogs of existing drugs with modified physicochemical properties. Generated molecules
321 are evaluated using the corresponding GuacaMol scoring functions, ranging from 0 to 1, with higher
322 scores indicating better satisfaction of the desired properties. On the Cobimetinib optimization
323 benchmark (Task 2), our best molecule achieves a score of 0.9326, with the top 5% and 10% av-

Table 2: Composite property querying results.

#	Task Description	Query	Best Score		Average Score (↑)		Diversity (↑)	
			T5%	T10%	All	T5%	T10%	
1	Generate molecules that satisfy Lipinski’s Rule of 5.	MW<500 AND Donors<5 AND Acceptors<10 AND RotatableBonds<10 AND TPSA<140 AND CLogP<5.0	1.0000 ±.0000	1.0000 ±.0000	1.0000 ±.0000	0.9549 ±.0036	0.8902 ±.0011	0.8902 ±.0011
2	Find analogs of Cobimetinib that have 3 rotatable bonds and 3 aromatic rings. Crippen logP should not exceed 5.0	ECFP4("OC1(CN...") AND RotatableBonds=3 AND AromaticRings=3 AND CLogP<5.0	0.9326 ±.0040	0.8975 ±.0013	0.8848 ±.0017	0.7108 ±.0060	0.6017 ±.0113	0.6770 ±.0176
3	Reduce the lipophilicity of Osimertinib by increasing TPSA to above 100 and reducing logP to below 1.0	ECFP4("OCc1cc...") AND NOT TPSA<100 AND CLogP<1.0	0.9164 ±.0217	0.8314 ±.0081	0.8068 ±.0047	0.4971 ±.0085	0.7499 ±.0234	0.8024 ±.0061
4	Perform scaffold hopping for a CDK6 inhibitor. (PDB:2EUF, CCD:LQQ)	FeatureSim("LQQ") AND NOT ScaffoldSim("LQQ")	0.6597 ±.0213	0.5977 ±.0077	0.5843 ±.0059	0.5038 ±.0029	0.6658 ±.0548	0.6976 ±.0379
5	Perform scaffold hopping for a TGF β 1 inhibitor. (PDB:6B8Y, CCD:D0A)	FeatureSim("D0A") AND NOT ScaffoldSim("D0A")	0.6610 ±.0106	0.6164 ±.0018	0.6038 ±.0018	0.5149 ±.0025	0.8075 ±.0044	0.8121 ±.0069

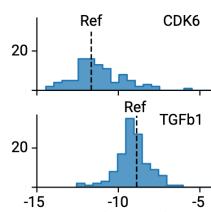


Figure 2: Scaffold hopping query results.

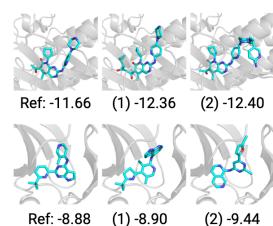
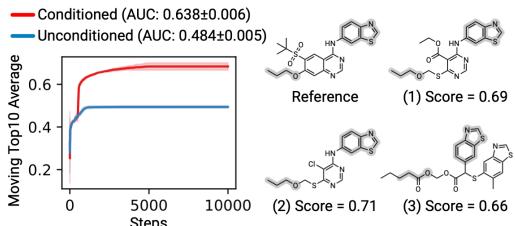


Figure 3: Scaffold hopping optimization results.

eraging 0.8975 and 0.8848, respectively. For comparison, a graph-based approach that explicitly optimizes the four conditions, rather than treating the scoring function as a black box, reported a top score of 0.93 (Verhellen, 2022). On the Osimertinib optimization benchmark (Task 3), our best molecule achieves a score of 0.9164, with the top 5% and 10% averaging 0.8314 and 0.8068, respectively. While the strongest baseline reported by Brown et al. (2019) achieved a slightly higher top score of 0.95, their method directly modifies molecular graphs without guaranteeing synthesizability. Note that this evaluation treats GuacaMol objectives as whitebox desiderata rather than blackbox oracles. Visualizations of the top molecules are provided in Table A1.

Tasks 4 and 5 focus on identifying molecules that preserve key pharmacophore features of a known drug while adopting a different scaffold, a widely used strategy in drug discovery known as scaffold hopping (Böhm et al., 2004; Schneider et al., 2006). Molecules are scored according to $\frac{1}{2}(\text{sim}_{\text{Gobbi}} + 1 - \text{sim}_{\text{Scaffold}})$, where $\text{sim}_{\text{Gobbi}}$ measures pharmacophore feature similarity using the Gobbi fingerprint (Gobbi & Poppinger, 1998), and $\text{sim}_{\text{Scaffold}}$ quantifies scaffold similarity based on the Murcko scaffold (Bemis & Murcko, 1996). On the CDK6 inhibitor scaffold hopping task (Task 4), the best molecule achieves a score of 0.6597, while the top 5% and 10% of molecules average 0.5977 and 0.5843, respectively. On the TGF β 1 inhibitor scaffold hopping task (Task 5), the best molecule achieves a score of 0.6610, with the top 5% and 10% averaging 0.6164 and 0.6038, respectively.

3.3 OPTIMIZATION IN QUERY SPACE

Composite Query-Based Optimization We design a scaffold hopping task to demonstrate the optimization capability with respect to composite queries. Given a reference molecule, the goal of this task is to generate molecules that (1) have the same key substructures, (2) have a different scaffold, and (3) share similar pharmacophore features. These goals are wrapped into a scoring function consisting of three terms as the objective.

At each optimization iteration, the optimizable term $C^{(\text{opt})}$ of the query is defined as the scaffold fingerprint and the constraint term is to require the two key substructures, *i.e.* $C^{(\text{cstr})} = \text{Substruct}(D_1) \wedge \text{Substruct}(D_2)$. The initialization query is Lipinski’s Rule of 5 to seed an initial set of random drug-like molecules. We also run a baseline that directly optimizes the fin-

378 Table 3: GuacaMol benchmark results measured by AUC-Top10 (Gao et al., 2022). PrexSyn achieves the
 379 highest sampling efficiency on 6 out of 8 targets while maintaining synthesizability.

Method	Syn.	Amlo.	Fexo.	Osim.	Peri.	Rano.	Sita.	Zale.	Cele.
REINVENT (Olivecrona et al., 2017)	✗	0.635	0.784	0.837	0.537	0.760	0.021	0.358	0.713
GraphGA (Jensen, 2019)	✗	0.651	0.785	0.829	0.533	0.745	0.524	0.458	0.682
MolGA (Tripp & Hernández-Lobato, 2023)	✗	0.688	0.825	0.844	0.547	0.804	0.582	0.519	0.567
DoG-Gen (Bradshaw et al., 2020)	✓	0.537	0.697	0.776	0.475	0.712	0.048	0.123	0.466
SynNet (Gao et al., 2021)	✓	0.567	0.764	0.797	0.559	0.743	0.026	0.341	0.443
SyntheMol (Swanson et al., 2024)	✓	0.004	0.703	0.823	0.013	0.767	0.000	0.000	0.527
SynthesisNet (Sun et al., 2024)	✓	0.608	0.791	0.810	0.524	0.741	0.313	0.528	0.582
SynFormer (Gao et al., 2024)	✓	0.696	0.786	0.816	0.530	0.751	0.338	0.478	0.559
ReaSyn (Lee et al., 2025)	✓	0.678	0.788	0.820	0.560	0.742	0.342	0.492	0.754
PrexSyn	✓	0.781 ±.023	0.837 ±.013	0.855 ±.007	0.714 ±.010	0.807 ±.009	0.471 ±.009	0.504 ±.030	0.801 ±.018

390
 391 gerprint of the full molecule without the decoration conditions. As shown in Figure 3, the composite
 392 query-based optimization (red curve) achieves higher efficiency than the condition-free baseline
 393 (blue curve). This result demonstrates the composite query’s ability to narrow down the search
 394 space in scenarios where partial information is available, leading to more efficient optimization.
 395 Illustrations of two different optimization landscapes are presented in Figure A1.

396
 397 **GuacaMol Benchmark** To quantify the general sampling efficiency of our model, we conduct
 398 evaluation on seven multiproperty objectives and one rediscovery task from the GuacaMol bench-
 399 mark suite (Brown et al., 2019). In this setting, these scoring functions are treated as black boxes,
 400 which means no information about their internal form is visible to the model — only the final scores
 401 are provided. We set the initialization query of the Q_0 to Lipinski’s Rule of 5 to generate drug-like
 402 molecules as starting candidates. The optimizable term $C^{(\text{opt})}$ is defined as the ECFP4 fingerprint
 403 and no constraint term is applied, $C^{(\text{cstr})} = \emptyset$. Genetic algorithm is used to optimize $C^{(\text{opt})}$.

404 We compare our method with both synthesis-agnostic and synthesis-based baselines. All methods
 405 are allowed a budget of 10,000 oracle calls, and AUC-Top10 scores are reported following previous
 406 studies (Gao et al., 2022). As shown in Table 3, our method achieves the highest average score across
 407 6 out of 8 tasks. Notably, on Amlodipine MPO and Perindopril MPO, our method significantly
 408 improves the best scores from 0.696 to 0.781 and from 0.559 to 0.714 respectively.

409 3.4 APPLICATIONS IN DOCKING-BASED MOLECULE DESIGN

410
sEH We evaluate our model on the task of generating ligands for soluble epoxide hydrolase (sEH).
 411 The oracle function is defined as the negative docking score predicted by a proxy models trained on
 412 molecules docked with AutoDock Vina against the sEH protein structure (Cretu et al., 2024; Bengio
 413 et al., 2021). Following Cretu et al. (2024), the predicted scores are normalized by a factor of 1/8.

414
 415 The setting of the baseline method SynFlowNet (Cretu et al., 2024) differs slightly from ours. Syn-
 416 FlowNet is trained to learn a distribution of molecules with high binding affinity, whereas we focus
 417 on directly optimizing binding affinity starting from random molecules. Once trained, SynFlowNet
 418 can generate molecules in a single forward pass but requires extensive training data and oracle calls
 419 (5000 steps, batch size 64, totaling ~300k samples). In contrast, our method requires multiple opti-
 420 mization iterations but does not rely on any training samples. While the two settings are not directly
 421 comparable, we can still view our method as a sampler with warm-up steps and compare the quality
 422 of generated molecules under a stricter oracle budget. Specifically, we allow our model 10,000 ora-
 423 cle calls, about 30 times fewer than SynFlowNet, and evaluate performance using either the final or
 424 the top 1,000 generated molecules.

425 According to Table 4, our method achieves a mean sEH score of 1.01 when selecting the top 1,000
 426 molecules, significantly outperforming SynFlowNet’s best-reported score of 0.94. Note that since
 427 the score is defined as the negative binding energy divided by 8, values above 1.0 are possible. In
 428 addition, our generated molecules achieve better drug-likeness, with a QED score of 0.80 compared
 429 to SynFlowNet’s 0.68, and an improved SA score of 2.23 versus SynFlowNet’s 2.67. While we
 430 include the SA score (Ertl & Schuffenhauer, 2009) in the comparison for completeness, we note that
 431 SA scores are less relevant in the context of synthesizable molecular design, as providing a synthetic
 432 pathway composed only of purchasable building blocks and reaction templates, which both methods
 433 do, is a much stronger evidence of synthesizability than the heuristic SA score.

Method	Syn.	sEH(\uparrow)	SA(\downarrow)	QED(\uparrow)
FragGFN	\times	0.77 \pm 0.01	6.28 \pm 0.02	0.30 \pm 0.01
FragGFN(SA)	\times	0.70 \pm 0.01	5.45 \pm 0.05	0.29 \pm 0.01
SyntheMol	\checkmark	0.64 \pm 0.01	3.08 \pm 0.01	0.63 \pm 0.01
SynFlowNet	\checkmark	0.92 \pm 0.01	2.92 \pm 0.01	0.59 \pm 0.02
SynFlowNet(SA)	\checkmark	0.94 \pm 0.01	2.67 \pm 0.03	0.68 \pm 0.01
SynFlowNet(QED)	\checkmark	0.86 \pm 0.03	4.02 \pm 0.26	0.74 \pm 0.04
PrexSyn(Last)	\checkmark	0.85 \pm 0.01	2.28 \pm 0.07	0.79 \pm 0.00
PrexSyn(Top)		1.01 \pm 0.00	2.23 \pm 0.04	0.80 \pm 0.01

Table 4: Comparison on sEH binding, SA score, and QED score. PrexSyn achieves the best overall performance while ensuring synthesizability.

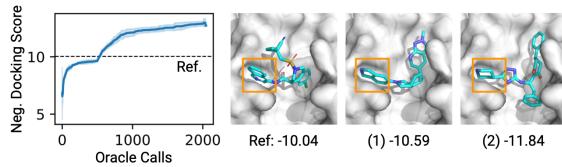


Figure 4: Left: Best-10 average negative docking score vs. oracle calls; dashed line marks the reference inhibitor. Right: Docked poses of the reference inhibitor and two generated molecules with improved scores.

Mpro2 We further evaluate our model on the task of generating ligand candidates for the SARS-CoV-2 main protease (Mpro2) using AutoDock-GPU (Santos-Martins et al., 2021) as the oracle function. For this task, we use the protein structure from PDB entry 7GAW, where an inhibitor discovered through the COVID Moonshot project (Boby et al., 2023) is co-crystallized with Mpro2. This inhibitor serves as the baseline molecule for evaluation. We set the initialization query to Lipinski’s Rule of 5 to generate drug-like molecules as starting candidates and perform genetic algorithm over the query space containing the ECFP4 fingerprint as the optimizable term. 2,000 oracle calls are budgeted. As shown in Figure 4, our method can generate molecules from scratch that achieve improved docking scores compared to the baseline inhibitor. Visualizations of the docking poses further reveal that the generated molecules share binding modes similar to the baseline inhibitor, including fitting into the highlighted subpocket.

4 RELATED WORK

Synthesizable molecular design methods can be roughly divided into two categories. The first directly searches the combinatorial space of synthetic pathways (Vinkers et al., 2003; Hartenfeller et al., 2012; Korovina et al., 2020; Gottipati et al., 2020; Horwood & Noutahi, 2020; Bradshaw et al., 2020; Gao et al., 2021; Swanson et al., 2024; Cretu et al., 2024; Seo et al., 2024; Koziarski et al., 2024). However, as discussed in Section 1, the action space is intractably large and valid pathways are sparse, leading to poor sampling efficiency. Common workarounds, such as prefiltering or ranking building blocks, often result in suboptimal solutions. The second category trains models to construct synthetic pathways from input molecular graphs (Luo et al., 2024; Gao et al., 2024; Sun et al., 2024; 2025; Lee et al., 2025). These models, however, cannot generate molecules conditioned on property specifications and remain limited in both chemical space coverage and efficiency. Beyond these two categories, other methods focus on specific problem classes, such as structure-based drug design (Jocys et al., 2024; Rekesh et al., 2025), or formulate the task differently, for instance, treating synthesizability as an optimization objective (Guo & Schwaller, 2024; 2025).

Another line of research relevant to this work is compositional generative models (Du et al., 2020; Du & Kaelbling, 2024), which generate images or texts by combining distributions over different concepts. This approach has also been applied to natural language generation (Liu et al., 2021).

5 CONCLUSION

We present PrexSyn, a generative framework for synthesizable molecular design that enables programmable generation of molecules satisfying complex property queries. Combined with the query space-based optimization algorithm, it efficiently samples molecules with respect to black-box oracle functions. Extensive experiments demonstrate PrexSyn’s high coverage of the synthesizable chemical space, its effectiveness in complex query-based design, and its strong sampling efficiency, highlighting its potential to further the practical impact of generative AI in molecular design.

REFERENCES

Guy W Bemis and Mark A Murcko. The properties of known drugs. 1. molecular frameworks. *Journal of medicinal chemistry*, 39(15):2887–2893, 1996.

486 Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
 487 network based generative models for non-iterative diverse candidate generation. *Advances in*
 488 *neural information processing systems*, 34:27381–27394, 2021.

489

490 Melissa L Boby, Daren Fearon, Matteo Ferla, Mihajlo Filep, Lizb   Koekemoer, Matthew C Robin-
 491 son, COVID Moonshot Consortium  , John D Chodera, Alpha A Lee, Nir London, et al. Open
 492 science discovery of potent noncovalent sars-cov-2 main protease inhibitors. *Science*, 382(6671):
 493 eabo7201, 2023.

494 Hans-Joachim B  hm, Alexander Flohr, and Martin Stahl. Scaffold hopping. *Drug discovery today:*
 495 *Technologies*, 1(3):217–224, 2004.

496

497 John Bradshaw, Brooks Paige, Matt J Kusner, Marwin Segler, and Jos   Miguel Hern  ndez-Lobato.
 498 Barking up the right tree: an approach to search over molecule synthesis dags. *Advances in neural*
 499 *information processing systems*, 33:6852–6866, 2020.

500

501 Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol: benchmarking
 502 models for de novo molecular design. *Journal of chemical information and modeling*, 59(3):
 503 1096–1108, 2019.

504

505 Caroline Manto Chagas, Sara Moss, and Laleh Alisaraie. Drug metabolites and their effects on
 506 the development of adverse reactions: Revisiting lipinski’s rule of five. *International journal of*
 507 *pharmaceutics*, 549(1-2):133–149, 2018.

508

509 Miruna Cretu, Charles Harris, Ilia Igashov, Arne Schneuing, Marwin Segler, Bruno Correia, Julien
 510 Roy, Emmanuel Bengio, and Pietro Li  . Synflownet: Design of diverse and novel molecules with
 511 synthesis constraints. *arXiv preprint arXiv:2405.01155*, 2024.

512

513 Diogo, Stefano Forli, Joani, Manu Llanos, Amy He, and Althea Hansel-Harris. forlilab/molscrub.
 514 <https://github.com/forlilab/molscrub>, jul 3 2025. URL <https://github.com/forlilab/molscrub>.

515

516 Yilun Du and Leslie Pack Kaelbling. Position: Compositional generative modeling: A single model
 517 is not all you need. In *Forty-first International Conference on Machine Learning*, 2024.

518

519 Yilun Du, Shuang Li, and Igor Mordatch. Compositional visual generation with energy based mod-
 520 els. *Advances in Neural Information Processing Systems*, 33:6637–6647, 2020.

521

522 David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored representations in a deep
 523 mixture of experts. *arXiv preprint arXiv:1312.4314*, 2013.

524

525 Enamine. Building Blocks Catalog - Enamine — enamine.net. <https://enamine.net/building-blocks/building-blocks-catalog>, 2025. [Accessed 30-08-2025].

526

527 Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like
 528 molecules based on molecular complexity and fragment contributions. *Journal of cheminfor-
 529 matics*, 1(1):8, 2009.

530

531 Wenhao Gao and Connor W Coley. The synthesizability of molecules proposed by generative mod-
 532 els. *Journal of chemical information and modeling*, 60(12):5714–5723, 2020.

533

534 Wenhao Gao, Roc   Mercado, and Connor W Coley. Amortized tree generation for bottom-up
 535 synthesis planning and synthesizable molecular design. *arXiv preprint arXiv:2110.06389*, 2021.

536

537 Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor Coley. Sample efficiency matters: a benchmark
 538 for practical molecular optimization. *Advances in neural information processing systems*, 35:
 539 21342–21357, 2022.

540

541 Wenhao Gao, Shitong Luo, and Connor W Coley. Generative artificial intelligence for navigating
 542 synthesizable chemical space. *arXiv preprint arXiv:2410.03494*, 2024.

543

544 Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
 545 Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, et al. Chemb: a large-scale
 546 bioactivity database for drug discovery. *Nucleic acids research*, 40(D1):D1100–D1107, 2012.

540 Alberto Gobbi and Dieter Poppinger. Genetic optimization of combinatorial libraries. *Biotechnology*
 541 and *bioengineering*, 61(1):47–54, 1998.

542

543 Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
 544 Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
 545 Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven contin-
 546 uous representation of molecules. *ACS central science*, 4(2):268–276, 2018.

547

548 Sai Krishna Gottipati, Boris Sattarov, Sufeng Niu, Yashaswi Pathak, Haoran Wei, Shengchao Liu,
 549 Simon Blackburn, Karam Thomas, Connor Coley, Jian Tang, et al. Learning to navigate the
 550 synthetically accessible chemical space using reinforcement learning. In *International conference*
 551 on *machine learning*, pp. 3668–3679. PMLR, 2020.

552

553 Jeff Guo and Philippe Schwaller. Saturn: Sample-efficient generative molecular design using mem-
 554 ory manipulation. *arXiv preprint arXiv:2405.17066*, 2024.

555

556 Jeff Guo and Philippe Schwaller. Directly optimizing for synthesizability in generative molecular
 557 design using retrosynthesis models. *Chemical Science*, 16(16):6943–6956, 2025.

558

559 Markus Hartenfeller, Heiko Zettl, Miriam Walter, Matthias Rupp, Felix Reisen, Ewgenij Proschak,
 560 Sascha Weggen, Holger Stark, and Gisbert Schneider. Dogs: reaction-driven de novo design of
 561 bioactive compounds. *PLoS computational biology*, 8(2):e1002380, 2012.

562

563 Geoffrey Hinton. Products of experts. In *Proceedings of the Ninth International Conference on Arti-
 564 ficial Neural Networks*, pp. 1–6, 1999. URL <https://www.cs.toronto.edu/~hinton/absps/icann-99.pdf>.

565

566 Julien Horwood and Emmanuel Noutahi. Molecular design in synthetically accessible chemical
 567 space via deep reinforcement learning. *ACS omega*, 5(51):32984–32994, 2020.

568

569 Jan H Jensen. A graph-based genetic algorithm and generative model/monte carlo tree search for
 570 the exploration of chemical space. *Chemical science*, 10(12):3567–3572, 2019.

571

572 Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Multi-objective molecule generation using
 573 interpretable substructures. In *International conference on machine learning*, pp. 4849–4859.
 574 PMLR, 2020.

575

576 Zygmantas Jocys, Zhanxing Zhu, Henriette MG Willems, and Katayoun Farrahi. Synthformer:
 577 Equivariant pharmacophore-based generation of synthesizable molecules for ligand-based drug
 578 design. *arXiv preprint arXiv:2410.02718*, 2024.

579

580 Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabas Poczos, Jeff
 581 Schneider, and Eric Xing. Chembo: Bayesian optimization of small organic molecules with syn-
 582 thezable recommendations. In *International Conference on Artificial Intelligence and Statistics*,
 583 pp. 3393–3403. PMLR, 2020.

584

585 Michał Koziarski, Andrei Rekesh, Dmytro Shevchuk, Almer van der Sloot, Piotr Gaiński, Yoshua
 586 Bengio, Chenghao Liu, Mike Tyers, and Robert Batey. Rgfn: Synthesizable molecular generation
 587 using gflownets. *Advances in Neural Information Processing Systems*, 37:46908–46955, 2024.

588

589 Seul Lee, Karsten Kreis, Srimukh Prasad Veccham, Meng Liu, Danny Reidenbach, Saeed Paliwal,
 590 Weili Nie, and Arash Vahdat. Rethinking molecule synthesizability with chain-of-reaction. *arXiv*
 591 *preprint arXiv: 2509.16084*, 2025.

592

593 Christopher A Lipinski. Lead-and drug-like compounds: the rule-of-five revolution. *Drug discovery*
 594 *today: Technologies*, 1(4):337–341, 2004.

595

596 Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A Smith,
 597 and Yejin Choi. Dexperts: Decoding-time controlled text generation with experts and anti-experts.
 598 *arXiv preprint arXiv:2105.03023*, 2021.

599

600 Shitong Luo, Wenhao Gao, Zuofan Wu, Jian Peng, Connor W Coley, and Jianzhu Ma. Projecting
 601 molecules into synthesizable chemical spaces. In *International Conference on Machine Learning*,
 602 pp. 33289–33304. PMLR, 2024.

594 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine*
 595 *learning research*, 9(Nov):2579–2605, 2008.

596

597 Diogo Santos Martins, Yiran He, Jerome Eberhardt, Parnika Sharma, Niccolò Bruciaferri, Matthew
 598 Holcomb, Manuel A Llanos, Althea Hansel-Harris, Allison Pearl Barkdull, Andreas Frank
 599 Tillack, et al. Meeko: molecule parameterization and software interoperability for docking and
 600 beyond. *ChemRxiv*, 2025.

601 Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
 602 design through deep reinforcement learning. *Journal of cheminformatics*, 9(1):48, 2017.

603

604 RDKit. RDKit: Open-source cheminformatics. <http://www.rdkit.org>, 2010.

605 Andrei Rekesh, Miruna Cretu, Dmytro Shevchuk, Vignesh Ram Somnath, Pietro Liò, Robert A
 606 Batey, Mike Tyers, Michał Koziarski, and Cheng-Hao Liu. Syncogen: Synthesizable 3d molecule
 607 generation via joint reaction and coordinate modeling. *arXiv preprint arXiv:2507.11818*, 2025.

608

609 David Rogers and Mathew Hahn. Extended-connectivity fingerprints. *Journal of chemical informa-*
 610 *tion and modeling*, 50(5):742–754, 2010.

611 Kenneth H. Rosen. *Discrete Mathematics and Its Applications*. McGraw-Hill Education, 8th edition,
 612 2019. ISBN 978-1-259-67651-2. “Chapter 12.2 Representing Boolean Functions”.

613

614 Diogo Santos-Martins, Leonardo Solis-Vasquez, Andreas F Tillack, Michel F Sanner, Andreas
 615 Koch, and Stefano Forli. Accelerating autodock4 with gpus and gradient-based local search.
Journal of Chemical Theory and Computation, 17(2):1060–1073, 2021. doi: 10.1021/acs.jctc.
 616 0c01006.

617

618 Gisbert Schneider, Petra Schneider, and Steffen Renner. Scaffold-hopping: how far can you jump?
QSAR & Combinatorial Science, 25(12):1162–1171, 2006.

619

620 Seonghwan Seo, Minsu Kim, Tony Shen, Martin Ester, Jinkyoo Park, Sungsoo Ahn, and Woo Youn
 621 Kim. Generative flows on synthetic pathway for drug design. *arXiv preprint arXiv:2410.04542*,
 622 2024.

623

624 Kunyang Sun, Dorian Bagni, Joseph M Cavanagh, Yingze Wang, Jacob M Sawyer, Andrew Grit-
 625 sevskiy, Oufan Zhang, and Teresa Head-Gordon. Synllama: Generating synthesizable molecules
 626 and their analogs with large language models. *arXiv preprint arXiv:2503.12602*, 2025.

627

628 Michael Sun, Alston Lo, Minghao Guo, Jie Chen, Connor Coley, and Wojciech Matusik. Procedural
 629 synthesis of synthesizable molecules. *arXiv preprint arXiv:2409.05873*, 2024.

630

631 Kyle Swanson, Gary Liu, Denise B Catacutan, Autumn Arnold, James Zou, and Jonathan M Stokes.
 632 Generative ai for designing and validating easily synthesizable and structurally novel antibiotics.
Nature machine intelligence, 6(3):338–353, 2024.

633

634 Austin Tripp and José Miguel Hernández-Lobato. Genetic algorithms are strong baselines for
 635 molecule generation. *arXiv preprint arXiv:2310.09267*, 2023.

636

637 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 638 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
639 tion processing systems, 30, 2017.

640

641 Jonas Verhellen. Graph-based molecular pareto optimisation. *Chemical Science*, 13(25):7526–7535,
 642 2022.

643

644 H Maarten Vinkers, Marc R de Jonge, Frederik FD Daeyaert, Jan Heeres, Lucien MH Koymans,
 645 Joop H van Lenthe, Paul J Lewi, Henk Timmerman, Koen Van Aken, and Paul AJ Janssen. Synop-
 646 sis: synthesize and optimize system in silico. *Journal of medicinal chemistry*, 46(13):2765–2773,
 647 2003.

648

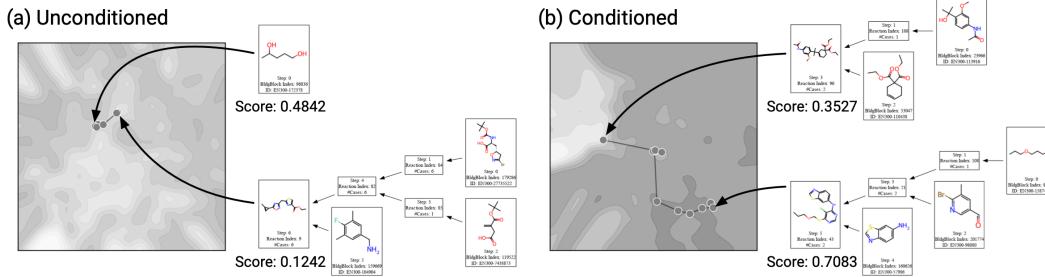
649 J Michael Word, Simon C Lovell, Jane S Richardson, and David C Richardson. Asparagine and
 650 glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. *Journal*
651 of molecular biology, 285(4):1735–1747, 1999.

648 A ADDITIONAL RESULTS
649650 A.1 COMPLEX PROPERTY QUERYING
651652 Table A1: Examples of generated synthesizable molecules in the complex property query setting.
653

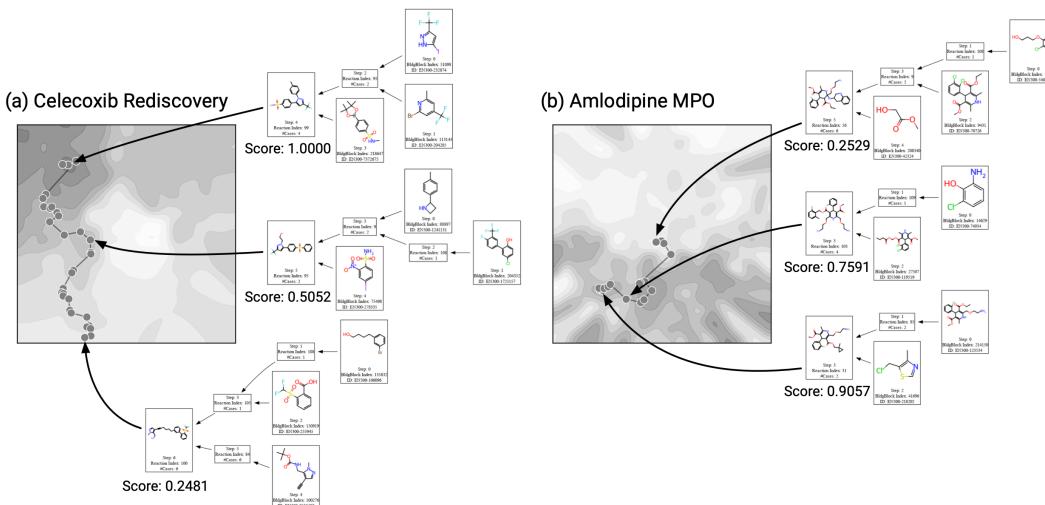
654 Task	655 Oracle	656 Pathway and Product
657 Cobimetinib	658 0.9398	
661 Cobimetinib	662 0.9321	
664 Cobimetinib	665 0.9278	
667 Osimertinib	668 0.9562	
670 Osimertinib	671 0.9358	
673 Osimertinib	674 0.9314	

702 A.2 MOLECULAR OPTIMIZATION
703

704 We present below visualizations of the optimization landscapes for the scaffold hopping task with
705 and without composite query conditioning (Figure A1), as well as for the Celecoxib Rediscovery and
706 Amlodipine MPO tasks (Figure A2). The 2D projections are generated using the tSNE algorithm
707 (Maaten & Hinton, 2008) applied to the ECFP4 fingerprints of the sampled molecules.



720 Figure A1: Scaffold hopping optimization landscapes with and without composite query conditioning. **(a)** The
721 unconditioned optimization explores a rugged landscape, where high-scoring molecules are sparse and difficult
722 to locate. The resulting candidates often fail to satisfy the desired decoration constraints. **(b)** The conditioned
723 optimization incorporates a composite query decoration substructures as constraints, leading to a smoother
724 optimization landscape and thus higher-scoring molecules.



744 Figure A2: Optimization landscapes of the Celecoxib Residcovery and Amlodipine MPO objectives from the
745 GuacaMol benchmark suite (Brown et al., 2019).

748 B IMPLEMENTATION DETAILS
749750 B.1 PARAMETERS
751

752 The transformer architecture used in our experiments consists of 12 layers, with a model dimension
753 of 1024, a feedforward dimension of 2048, and 8 attention heads. We employ the Adam optimizer
754 with a learning rate of 3×10^{-4} , a cosine annealing learning rate scheduler, and a batch size of 2048.
755 The model is trained for 48 hours on two NVIDIA H100 GPUs, which corresponds to approximately
640,000 iterations.

756 B.2 DATA PIPELINE
757

758 We randomly construct synthetic pathways on the fly during training, following the approach of
759 ChemProjector (Luo et al., 2024). For each product molecule, property values are computed. In
760 previous works, the data pipeline generated only linear pathways. To increase both the training data
761 diversity and the model capacity, we extend the pathway generation algorithm to produce branched
762 pathways by pre-applying unimolecular reactions to building blocks and storing the intermediates
763 as secondary building blocks, which are then used for pathway generation during training.

764 B.3 PRETRAINED PROPERTIES
765766 Table A3: Pretrained molecular properties used in our experiments.
767

Name	Description
product_ecfp4_fingerprint	ECFP4 fingerprint of the product molecule
product_fcfp4_fingerprint	Gobbi pharmacophore-based FCFP4 fingerprint of the product molecule.
product_fragment_fingerprints	ECFP4 fingerprints of BRICS fragments of the product molecule.
product_scaffold_fingerprint	ECFP4 fingerprint of the Murcko scaffold of the product molecule.
product_rdkit_properties	43 RDKit-calculated molecular descriptors of the product molecule, including average molecular weight (amw), topological polar surface area (TPSA), Crippen logP, number of rotatable bonds, and more.
product_rdkit_property_upper_bounds	Upper bounds of the 43 RDKit-calculated molecular descriptors. This is used for range queries (e.g. MW<500).

787 B.4 QUERY COEFFICIENTS
788

789 During property composition, the importance of each property can be controlled by tuning its query
790 coefficient (Equations 3 and 5). By default, we set all coefficients to 1. In the Cobimetinib and
791 Osimertinib optimization tasks (Tasks 2 and 3 in Table 2), we instead set the coefficient of the
792 similarity to the reference molecule (ECFP4 (. . .)) to 0.75. This encourages the model to explore
793 diverse molecules while still maintaining a certain degree of similarity to the reference. When the
794 coefficient is set to 1, the model tends to repeatedly generate molecules that are highly similar or
795 even identical to the reference molecule.

796 B.5 OPTIMIZATION ALGORITHM
797

798 Our proposed query space optimization technique is algorithm-agnostic and can be integrated with
799 any optimization method. In our experiments, we use the genetic algorithm which has been widely
800 used in prior works (Jensen, 2019; Tripp & Hernández-Lobato, 2023). Unlike GraphGA that defines
801 evolutionary operations directly on molecular graphs, our method operates only on numerical values,
802 making it more efficient and easier to implement. To cross over two sets of query values, we sample
803 from a two-component isotropic Gaussian mixture model fitted to the parent query vectors. For
804 discrete values (e.g., binary fingerprints), the sampled result is rounded to the nearest integer. For all
805 benchmark tasks, we run optimization until the oracle budget is exhausted. The population size is
806 set to 500, and at each iteration, 50 parents are sampled to generate 50 offspring through crossover
807 and mutation, with a mutation rate of 0.1.

808 B.6 DOCKING PROTOCOL
809

810 We follow the protocol below for molecular docking using AutoDock GPU (Santos-Martins et al.,
811 2021):

810 • Define the docking grid box centered on the reference ligand, with a box length of 20 Å.
811 • Prepare the protein structure by removing waters, cofactors, and ligands, then add hydro-
812 gens using REDUCE (Word et al., 1999).
813 • Use `mk_prepare_receptor.py` (Martins et al., 2025) to convert the prepared protein
814 structure to an AutoGrid file.
815 • Protonate and generate 3D conformers of the ligand using Molscrub (Diogo et al., 2025).
816 • Convert the ligand structure to PDBQT format with `mk_prepare_ligand.py` (Martins
817 et al., 2025).
818 • Perform docking with AutoDock GPU.
819 • Analyze docking results and select the cluster with the lowest mean binding energy as the
820 final result, using the cluster centroid as the representative binding pose.
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863