
HiGen: Hierarchical Graph Generative Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Most real-world graphs exhibit a hierarchical structure, which is often overlooked1

by existing graph generation methods. To address this limitation, we propose a2

novel graph generative network that captures the hierarchical nature of graphs3

and successively generates the graph sub-structures in a coarse-to-fine fashion. At4

each level of hierarchy, this model generates communities in parallel, followed by5

the prediction of cross-edges between communities using a separate model. This6

modular approach results in a highly scalable graph generative network. More-7

over, we model the output distribution of edges in the hierarchical graph with8

a multinomial distribution and derive a recursive factorization for this distribu-9

tion, enabling us to generate sub-graphs with integer-valued edge weights in an10

autoregressive approach. Empirical studies demonstrate that the proposed gen-11

erative model can effectively capture both local and global properties of graphs12

and achieves state-of-the-art performance in terms of graph quality on various13

benchmarks.14

1 Introduction15

Graphs play a fundamental role in representing relationships and are widely applicable in various16

domains. The task of generating graphs from data holds immense value for diverse applications but17

also poses significant challenges (Dai et al., 2020). Some of the applications include: the exploration18

of novel molecular and chemical structures (Jin et al., 2020), document generation (Blei et al., 2003),19

circuit design (Mirhoseini et al., 2021), the analysis and synthesis of realistic data networks, as well20

as the synthesis of scene graphs in computer (Manolis Savva et al., 2019; Ramakrishnan et al., 2021).21

In all the aforementioned domains, a common observation is the presence of locally heterogeneous22

edge distributions in the graph representing the system, leading to the formation of clusters or23

communities and hierarchical structures. These clusters represent groups of nodes characterized by24

a high density of edges within the group and a comparatively lower density of edges connecting25

the group with the rest of the graph. In a hierarchical structure that arise from graph clustering, the26

communities in the lower levels capture the local structures and relationships within the graph. These27

communities provide insights into the fine-grained interactions among nodes. On the other hand, the28

higher levels of the hierarchy reflect the broader interactions between communities and characterize29

global properties of the graph. Therefore, in order to generate realistic graphs, it is essential for graph30

generation models to learn this multi-scale structure, and be able to capture the cross-level relations.31

While hierarchical multi-resolution generative models were developed for specific data types such as32

voice (Oord et al., 2016), image (Reed et al., 2017; Karami et al., 2019) and molecular motifs Jin33

et al. (2020), these methods rely on domain-specific priors that are not applicable to general graphs34

with unordered nature. To the best of our knowledge, there exists no data-driven generative models35

specifically designed for generic graphs that can effectively incorporate hierarchical structure.36

Graph generative models have been extensively studied in the literature. Classical methods based on37

random graph theory, such as those proposed in Erdos & Rényi (1960) and Barabási & Albert (1999),38
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can only capture a limited set of hand-engineered graph statistics. Leskovec et al. (2010) leveraged39

the Kronecker product of matrices but the resulting generative model is very limited in modeling40

the underlying graph distributions. With recent advances in graph neural networks, a variety of41

deep neural network models have been introduced that are based on variational autoencoders (VAE)42

(Kingma & Welling, 2013) or generative adversarial networks (GAN) (Goodfellow et al., 2020).43

Some examples of such models include (De Cao & Kipf, 2018; Simonovsky & Komodakis, 2018;44

Kipf & Welling, 2016; Ma et al., 2018; Liu et al., 2019; Bojchevski et al., 2018; Yang et al., 2019)45

The major challenge in VAE based models is that they rely on heuristics to solve a graph matching46

problem for aligning the VAE’s input and sampled output, limiting them to small graphs. On the other47

hand, GAN-based methods circumvent the need for graph matching by using a permutation invariant48

discriminator. However, they can still suffer from convergence issues and have difficulty capturing49

complex dependencies in graph structures for moderate to large graphs Li et al. (2018); Martinkus50

et al. (2022). To address these limitations, (Martinkus et al., 2022) recently proposed using spectral51

conditioning to enhance the expressivity of GAN models in capturing global graph properties.52

On the other hand, autoregressive models approach graph generation as a sequential decision-making53

process. Following this paradigm, Li et al. (2018) proposed generative model based on GNN but it54

has high complexity of O(mn2). In a distinct approach, GraphRNN (You et al., 2018) modeled graph55

generation with a two-stage RNN architecture for generating new nodes and their links, respectively.56

However, traversing all elements of the adjacency matrix in a predefined order results in O(n2)57

time complexity making it non-scalable to large graphs. In contrast, GRAN (Liao et al., 2019)58

employs a graph attention network and generates the adjacency matrix row by row, resulting in a59

O(n) complexity sequential generation process. To improve the scalability of generative models,60

Dai et al. (2020) proposed an algorithm for sparse graphs that decreases the training complexity61

to O(log n), but at the expense of increasing the generation time complexity to O((n+m) log n).62

Despite their improvement in capturing complex statistics of the graphs, autoregressive models highly63

rely on an appropriate node ordering and do not take into account the community structures of the64

graphs. Additionally, due to their recursive nature, they are not fully parallelizable.65

A new family of diffusion model for graphs has emerged recently. Continuous denoising diffusion66

was developed by Jo et al. (2022), which adds Gaussian noise to the graph adjacency matrix and67

node features during the diffusion process. However, since continuous noise destroys the sparsity68

and structural properties of the graph, discrete denoising diffusion models have been developed as69

a solution in (Haefeli et al., 2022; Vignac et al., 2022). These models progressively edit graphs by70

adding or removing edges in the diffusion process, and then denoising graph neural networks are71

trained to reverse the diffusion process. While the denoising diffusion models can offer promising72

results, their main drawback is the requirement of a long chain of reverse diffusion, which can result73

in relatively slow sampling.74

In his work, we introduce HiGen, a Hierarchical Graph Generative Network to address the limitations75

of existing generative models by incorporating community structures and cross-level interactions.76

This approach involves generating graphs in a coarse-to-fine manner, where graph generation at each77

level is conditioned on a higher level (lower resolution) graph. The generation of communities at lower78

levels is performed in parallel, followed by the prediction of cross-edges between communities using a79

separate model. This parallelized approach enables high scalability. To capture hierarchical relations,80

our model allows each node at a given level to depend not only on its neighbouring nodes but also on81

its corresponding super-node at the higher level. Furthermore, we address the generation of integer-82

valued edge weights of the hierarchical structure by modeling the output distribution of edges using83

a multinomial distribution. We show that multinomial distribution can be factorized successively,84

enabling the autoregressive generation of each community. This property makes the proposed85

architecture well-suited for generating graphs with integer-valued edge weights. Furthermore, by86

breaking down the graph generation process into the generation of multiple small partitions that are87

conditionally independent of each other, HiGen reduces its sensitivity to a predefined initial ordering88

of nodes.89

2 Background90

A graph G = (V, E) is a collection of nodes (vertices) V and edges E with corresponding sizes91

n = |V| and m = |E| and an adjacency matrix A⇡ for the node ordering ⇡. The node set can92

be partitioned into c communities (a.k.a. cluster or modules) using a graph partitioning function93
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Figure 1: (a) A sample hierarchical graph with 2 levels is shown. Communities are shown in different colors
and the weight of a node and the weight of an edge in a higher level, represent the sum of the edges in the
corresponding community and bipartite, respectively. Node size and edge width indicate their weights. (b) The
matrix shows corresponding adjacency of the graph G2 matrix where each of its sub-graphs corresponds to a
block in the adjacency matrix, communities are shown in different colors and bipartites are colored in gray. (c)
Decomposition of multinomial distribution as a recursive stick-breaking process where at each iteration, first a
fraction of the remaining weights wm is allocated to the m-th row (the m-th node in the sub-graph) and then
this fraction vm is distributed among that row of lower triangular adjacency matrix, Â. (d) Parallel generation
of communities. (e) Parallel prediction of bipartites. Shadowed lines are the augmented edges representing
candidate edges at each step.

F : V ! {1, ..., c}, where each cluster of nodes forms a sub-graph denoted by Ci = (V(Ci), E(Ci))94

with adjacency matrix Ai. The cross-links between neighboring communities form a bipartite95

graph, denoted by Bij = (V(Ci), V(Cj), E(Bij)) with adjacency matrix Aij . Each community96

is aggregated to a super-node and each bipartite corresponds to a super-edge linking neighboring97

communities, which induces a coarser graph at the higher (a.k.a. parent) level. Herein, the levels are98

indexed by superscripts. Formally, each community at level l, Cl
i , is mapped to a node at the higher99

level graph, also called its parent node, vl�1
i := Pa(Cl

i) and each bipartite at level l is represented by100

an edge in the higher level, also called its parent edge, el�1
i = Pa(Bl

ij) = (vl�1
i , vl�1

j ). The weights101

of the self edges and the weights of the cross-edges in the parent level are determined by the sum of the102

weights of the edges within their corresponding community and bipartite, respectively. Therefore, the103

edges in the induced graphs at the higher levels have integer-valued weights: wl�1
ii =

P
e2E(Cl

i)
we104

and wl�1
ij =

P
e2E(Bl

ij)
we, moreover sum of all edge weights remains constant in all levels so105

w0 :=
P

e2E(Gl) we = |E|, 8 l 2 [0, ..., L].106

This clustering process continues recursively in a bottom-up approach until a single node graph G0 is107

obtained, producing a hierarchical graph, defined by the set of graphs in all levels of abstractions,108

HG := {G0, ....,GL�1,GL}. This forms a dendrogram tree with G0 being the root and GL being the109

final graph that is generated at the leaf level. An HG is visualized in figure 1a. The hierarchical tree110
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structure enables modeling of both local and long-range interactions among nodes, as well as control111

over the flow of information between them, across multiple levels of abstraction. This is a key aspect112

of our proposed generative model.113

3 Hierarchical Graph Generation114

In graph generative networks, the objective is to learn a generative model, p(G) given a set of training115

graphs. This work aims to establish a hierarchical multi-resolution framework for generating graphs in116

a coarse-to-fine fashion. In this framework, we assume that the graphs do not have node attributes, so117

the generative model only needs to characterize the graph topology. Given a particular node ordering118

⇡, and a hierarchical graph HG := {G0, ....,GL�1,GL}, produced by recursively applying a graph119

partitioning function, F , we can factorize the generative model using the chain rule of probability as:120

p(G = GL,⇡) = p({GL,GL�1, ...,G0},⇡) = p(GL,⇡ | {GL�1, ...,G0}) ... p(G1,⇡ | G0) p(G0)

=
LY

l=0

p(Gl,⇡ | Gl�1)⇥ p(G0) (1)

In other words, the generative process involves specifying the probability of the graph at each level121

conditioned on its parent level graph in the hierarchy. This process is iterated recursively until the122

lowest level, or leaf level, is reached. Here, the distribution of the root p(G0) = p(w0 = w0) can be123

simply estimated using the empirical distribution of the number of edges |E| of graphs in the training124

set.125

Based on the partitioned structure within each level of HG, the conditional generative probability126

p(Gl | Gl�1) can be decomposed into the probability of its communities and bipartite graphs as:127

p(Gl | Gl�1) = p({Cl
i 8i 2 V(Gl�1)} [ {Bl

ij 8(i, j) 2 E(Gl�1)} | Gl�1)

u
Y

i 2 V(Gl�1)

p(Cl
i | Gl�1)⇥

Y

(i,j)2 E(Gl�1)

p(Bl
ij | Gl�1) (2)

The approximation in this decomposition becomes an equivalence when each community Cl
i or128

bipartite graph Bl
ij is assumed to be independent of all other components in its level conditioned on129

the parent graph Gl�1. .1 Since the integer-valued weights of the edges in each level can be modeled130

by a multinomial distribution, we can leverage the properties of multinomial distribution to prove the131

conditional independence of the components.132

Theorem 3.1. Let the random vector w := [we]e 2 E(Gl) denote the set of weights of all edges of Gl133

such that their sum is w0 = 1T w. The joint probability of w can be described by a multinomial134

distribution: w ⇠ Mu(w | w0,✓l). By observing that the sum of edge weights within each community135

Cl
i and bipartite graph Bl

ij are determined by the weights of their parent edges in the higher level,136

wl�1
ii and wl�1

ij respectively, we can establish that these components are conditionally independent137

and each of them follow a multinomial distribution:138

p(Gl | Gl�1) ⇠
Y

i 2 V(Gl�1)

Mu([we]e 2 Cl
i
| wl�1

ii ,✓l
ii)⇥

Y

(i,j)2 E(Gl�1)

Mu([we]e 2 Bl
ij
| wl�1

ij ,✓l
ij)

(3)
where {✓l

ij [e] 2 [0, 1], s.t. 1T✓l
ij = 1 | 8 (i, j) 2 E(Gl�1)} are the multinomial model parameters.139

Proof. The detailed proof can be found in Appendix A.1.140

Therefore, given the parent graph at a higher level, the generation of graph at its subsequent level141

can be reduced to generation of its partition and bipartite sub-graphs. As illustrated in figure, this142

decomposition enables parallel generation of the communities in each level which can be followed by143

predicting all bipartite sub-graphs in that level at one pass. Each of these sub-graphs corresponds144

to a block in the adjacency matrix, as visualized in figure 1b, so the proposed hierarchical model145

generates adjacency matrix in a blocks-wise fashion and constructs the final graph topology.146

1Indeed, this assumption implies that the cross dependency between communities are primarily encoded by
their parent abstract graph which is reasonable where the nodes’ dependencies are mostly local and are within
community rather than being global.
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3.1 Community Generation147

Based on the equation (3), the edge weights within each community can be jointly modeled using148

a multinomial distribution. Our objective is to model the generative probability of communities in149

each level as an autoregressive process. To accomplish this, we need to factorize the multinomial150

distribution accordingly. Toward this goal, we present two different approaches in the following.151

Lemma 3.2. A random counting vector w 2 ZE
+ with a multinomial distribution can be recursively152

decomposed into a sequence of binomial distributions as follows:153

Mu(w1, ...,wE | w, [✓1, ..., ✓E ]) =
EY

e=1

Bi(we | w �
X

i<e
wi, ✓̂e), (4)

where: ✓̂e =
✓e

1�
P

i<e ✓i

This decomposition is known as a stick-breaking process, where ✓̂e is the fraction of the remaining154

probabilities we take away every time and allocate to the e-th component (Linderman et al., 2015).155

This lemma enable us to model the generation of a community as an edge-by-edge autoregressive156

process, similar to existing algorithms such as GraphRNN (You et al., 2018) or DeepGMG (Li et al.,157

2018) with O(|VC |2) generation steps. However, inspired by GRAN (Liao et al., 2019), a community158

can be generated more efficiently by generating one node at a time. This requires decomposing the159

generative probability of edges in a group-wise form, where the candidate edges between the t-th160

node and the already generated graph are grouped together. In other words, this model completes the161

lower triangle adjacency matrix one row at a time conditioned on the already generated sub-graph and162

the parent-level graph. The following theorem formally derives this decomposition for multinomial163

distributions.164

Theorem 3.3. For a random counting vector w 2 ZE
+ with a multinomial distribution Mu(w | w,✓),165

let’s split it into M disjoint groups w = [u1, ...,uM ] where um 2 ZEm
+ ,

PM
m=1 Em = E, and166

also split the probability vector accordingly as ✓ = [✓1, ...,✓M ]. Additionally, let’s define sum of all167

variables in the m-th group by a random count variable vm :=
PEm

e=1 um,e. Then, the multinomial168

distribution can be factorized as a chain of binomial and multinomial distributions:169

Mu(w = [u1, ...,uM ]| w,✓ = [✓1, ...,✓M ]) =
MY

m=1

Bi(vm | w �
X

i<m

vi, ⌘vm) Mu(um | vm,�m),

where: ⌘vm =
1T ✓m

1�
P

i<m 1T ✓i
, �m =

✓m
1T ✓m

. (5)

Here, the probability of binomial, ⌘vm , is the fraction of the remaining probability mass that is170

allocated to vm, i.e. the sum of all weights in the m-th group. The vector parameter �m is the171

normalized multinomial probabilities of all count variables in the m-th group. Intuitively, this172

decomposition of multinomial distribution can be viewed as a recursive stick-breaking process where173

at each step, first a binomial distribution is used to determine how much probability mass to allocate174

to the current group, and a multinomial distribution is used to distribute that probability mass175

among the variables in the group. The resulting distribution is equivalent to the original multinomial176

distribution.177

Proof. Refer to appendix A.2 for the proof.178

Let Ĉl
i,t denote an already generated sub-graph, at the t-th step, augmented with the set of candidate179

edges, from the new node, vt(Cl
i), to its preceding node denoted by Êt(Ĉl

i,t) := {(t, j) | j < t}.180

We collect the weights of these edges in the random vector ut := [we]e 2 Êt(Ĉl
i,t)

(that is the t-th181

row of the lower triangle of adjacency matrix Âl
i), where the sum of the candidate edge weights is182

vt. Based on theorem 3.3, the probability of ut can be characterized by the product of a binomial183

and a multinomial distribution. This process is illustrated in figure 1c. We further increase the184
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expressiveness of the generative network by extending this probability to a mixture model with K185

mixtures:186

p(ut) =
KX

k=1

�l
kBi(vt|wl�1

ii �
X

i<t

vi, ⌘lt,k)Mu(ut |vt,�
l
t,k) (6)

�l
t,k = softmax

⇣
MLPl

✓

� h
�hÊt(Ĉl

i,t)
|| hPa(Cl

i)

i �⌘
[k, :] (7)

⌘lt,k = sigmoid
⇣
MLPl

⌘

� h
pool(hĈl

i,t
) || hPa(Cl

i)

i �⌘
[k]

�l = softmax
⇣
MLPl

�

� h
pool(hĈl

i,t
) || hPa(Cl

i)

i �⌘

Where �hÊt(Ĉl
i,t)

is a |Êt(Ĉl
i,t)| ⇥ dh dimensional matrix, consisting of the set of edge features187

{�h(t,s) := ht � hs | 8 (t, s) 2 Êt(Ĉl
i,t)} , hĈl

i,t
is a t ⇥ dh matrix of node features in the188

augmented community graph. The mixture weights are denoted by �l. Here, the node features are189

learned by GNN models and the graph level representation is obtained by the addpool() aggregation190

function. In order to produce K ⇥ |Et(Cl
i)| dimensional matrix of multinomial probabilities, the191

MLPl
✓() network acts at the edge level, while MLPl

⌘v() and MLPl
�() act at the graph level to produce192

the binomial probabilities and K dimensional arrays for K mixture models, respectively. All of these193

MLP networks are built by two hidden layers with ReLU() activation functions.194

During the generation process of each community Cl
i , the node features of its parent node hPa(Cl

i)
195

are used as the context. This context is concatenated to the node and edge feature matrices using the196

operation
⇥
x || y

⇤
, which concatenates vector y to each row of matrix x. The purpose of this context197

is to enrich the node and edge features by capturing long-range interactions and encoding the global198

structure of the graph, which is important for generating local components.199

3.2 Bipartite Generation200

Once all the communities in level l are generated, the edges of all bipartite graphs at that level can201

be predicted simultaneously. An augmented graph Ĝl composed of all the communities, {Cl
i 8i 2202

V(Gl�1)}, and the candidate edges of all bipartites, {Bl
ij 8(i, j) 2 E(Gl�1)}, is used as the input203

of a GNN to obtain node and edge features. We similarly extend the multinomial distribution of a204

bipartite, (12), using a mixture model to express its generative probability:205

p(w := Ê(Bl
ij)) =

KX

k=1

�l
kMu(w | wl�1

ij ,✓l
ij,k)

✓l
ij,k = softmax

⇣
MLPl

✓(
h
�hÊ(Bl

ij)
|| �hPa(Bl

ij)

i
)
⌘
[k, :] (8)

�l = softmax
⇣
MLPl

�

� h
pool(�hÊ(Bl

ij)
) || �hPa(Bl

ij)

i �⌘

where the random vector w := [we]e 2 Ê(Bl
ij)

is the set of weights of all candidate edges in bipartite206

Bl
ij and �hPa(Bl

ij)
are the parent edge features of the bipartite graph.207

Node Feature Encoding: To encode node features, we extend GraphGPS proposed by Rampášek208

et al. (2022). GraphGPS combines local message-passing with global attention mechanism and uses209

positional and structural encoding for nodes and edges to construct a more expressive and a scalable210

graph transformer (GT) (Dwivedi & Bresson, 2020). To apply GraphGPS on augmented graphs,211

we use distinct initial edge features to distinguish augmented (candidate) edges from real edges.212

Furthermore, for bipartite generation, the attention scores in the Transformers of the augmented graph213

Ĝl are masked to restrict attention only to connected communities. The details of model architecture214

are provided in appendix B.215
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4 Related Work216

In order to deal with hierarchical structures in molecular graphs, a generative process was proposed217

by Jin et al. (2020) which recursively selects motifs, the basic building blocks, from a set and218

predicts their attachment to the emerging molecule. However, this method requires prior domain-219

specific knowledge and relies on molecule-specific graph motifs. Additionally, the graphs are220

only abstracted into two levels, and component generation cannot be performed in parallel. In221

(Kuznetsov & Polykovskiy, 2021), a hierarchical normalizing flow model for molecular graphs was222

introduced, where new molecules are generated from a single node by recursively dividing each223

node into two. However, the merging and splitting of pairs of nodes in this model is based on the224

node’s neighborhood, and do not consider the diverse community structure of graphs, therefore the225

hierarchical generation of this model is inherently limited.226

5 Experiments227

In our empirical studies, we compare the proposed hierarchical graph generative network against228

state-of-the-art autoregressive models: GRAN and GraphRNN models, diffusion models: DiGress229

(Vignac et al., 2022) and GDSS (Jo et al., 2022) and a GAN-based model: SPECTRE (Martinkus230

et al., 2022), on a range of synthetics and real datasets of various sizes.231

Datasets: We used 4 different benchmark graph datasets: (1) the synthetic Stochastic Block Model232

(SBM) dataset consisting of 200 graphs with 2-5 communities each with 20-40 nodes, used in a233

previous work (Martinkus et al., 2022); (2) the Protein including 918 protein graphs, each has 100 to234

500 nodes representing amino acids that are linked if they are closer than 6 Angstroms (Dobson &235

Doig, 2003), (3) the Enzyme that has 587 protein graphs of 10-125 nodes, representing protein tertiary236

structures of the enzymes from the BRENDA database (Schomburg et al., 2004) and (4) the Ego237

dataset containing 757 3-hop ego networks with 50-300 nodes extracted from the CiteSeer dataset,238

where nodes represent documents and edges represent citation relationships (Sen et al., 2008).239

Graph Partitioning Different algorithms approach the problem of graph partitioning (clustering)240

using various clustering quality functions. Two commonly used families of such metrics are modu-241

larity and cut-based metrics (Tsitsulin et al., 2020). Although optimizing modularity metric is an242

NP-hard problem, it is well-studied in the literature and several graph partitioning algorithm based on243

this metric have been proposed. For example, the Louvain algorithm (Blondel et al., 2008) starts with244

each node as its community and then repeatedly merges communities based on the highest increase245

in modularity until no further improvement can be made. This heuristic algorithm is computationally246

efficient and scalable to large graphs for community detection. Moreover, a spectral relaxation of247

modularity metrics has been proposed in Newman (2006a,b) which results in an analytically solution248

for graph partitioning. Additionally, an unsupervised GNN-based pooling method inspired by this249

spectral relaxation was proposed for partitioning graphs with node attributes (Tsitsulin et al., 2020).250

As the modularity metric is based on the graph structure, it is well-suited for our problem. Therefore,251

we employed the Louvain algorithm to hierarchically cluster the graph datasets in our experiments252

and then spliced out the intermediate levels to achieve HGs with uniform depth of L = 2.253

Model Architecture In the experiments, the GNN models consist of 8 layers of GraphGPS layers254

(Rampášek et al., 2022). The input node feature of GNNs is augmented with positional and structural255

encoding, where the first 8 eigenvectors corresponding to the smallest non-zero eigenvalues of the256

Laplacian and diagonal of the random-walk matrix up to 8-steps are used. Each level has its own257

GNN and output models. The details of the model architecture are presented in Appendix B and C.258

We conducted experiments using the proposed hierarchical graph generative network (HiGen) model259

with two variants for the output distribution of the leaf edges: 1) HiGen: the probability of the260

community edges’ weights at the leaf level are modeled by mixture of Bernoulli, using sigmoid()261

activation in equation 7, since the leaf levels in our experiments have binary edges weights, while262

higher levels use mixture of multinomials. 2)HiGen-m: the model uses a mixture of multinomial263

distributions (6) to describe the output distribution for all levels. In this case, we observed that264

modeling the probability parameters of edge weights of the leaf level, denoted as �t,k in (7), by a multi-265

hot activation function, defined as �(z)i := sigmoid(zi)/PK
j=1 sigmoid(zj) where � : RK ! (K � 1)-266

simplex, provided slightly better performance than the standard softmax() function. However, for267
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Table 1: Comparison of generation metrics on benchmark datasets.
The baseline results for SBM and Protein graphs are obtained from
(Martinkus et al., 2022; Vignac et al., 2022), and the results for enzyme
graphs (except for GRAN, which we implemented) are obtained from
(Jo et al., 2022), while we implemented them for Ego. "-": not applica-
ble due to resource issue or not reported in the reference papers.

Stochastic block model Protein

Model Deg. # Clus. # Orbit# Spec. # Deg. # Clus. # Orbit# Spec. #

Training set 0.0008 0.0332 0.0255 0.0063 0.0003 0.0068 0.0032 0.0009
GraphRNN 0.0055 0.0584 0.0785 0.0065 0.0040 0.1475 0.5851 0.0152
GRAN 0.0113 0.0553 0.0540 0.0054 0.0479 0.1234 0.3458 0.0125
SPECTRE 0.0015 0.0521 0.0412 0.0056 0.0056 0.0843 0.0267 0.0052
DiGress 0.0013 0.0498 0.0433 - - - - -
HiGen-m 0.0017 0.0503 0.0604 0.0068 0.0041 0.109 0.0472 0.0061
HiGen 0.0019 0.0498 0.0352 0.0046 0.0012 0.0435 0.0234 0.0025

Enzyme Ego

Model Deg. # Clus. # Orbit # Deg. # Clus. # Orbit # Spec. #

Training set 0.0011 0.0025 3.7e-4 2.2e-4 0.010 0.012 1.4e-3
GraphRNN 0.017 0.062 0.046 0.024 0.34 0.14 0.089
GRAN 0.054 0.087 0.033 0.032 0.17 0.026 0.046
GDSS 0.026 0.061 0.009 - - - -
HiGen-m 0.027 0.157 1.2e-3 0.011 0.063 0.021 0.013
HiGen 0.012 0.038 7.2e-4 1.9e-3 0.049 0.029 0.004

(a) (b)

(c) (d)

Figure 2: Samples from HiGen. a) SBM,
b) Protein, c) Enzyme and d) Ego. Com-
munities are distinguished with different
colors and both levels are depicted.

both HiGen and HiGen-m, the probabilities of the integer-valued edges at the higher levels are still268

modeled by the standard softmax() function.2269

For training, HiGen models used the Adam optimizer Kingma & Ba (2014) with a learning rate of270

5e-4 and its default settings of �1 = 0.9, �2 = 0.999 and ✏=1e-8.271

Metrics To evaluate the graph generative models, we adopt the approach proposed in (Liu et al.,272

2019; Liao et al., 2019), which compares the distributions of four different graph statistics between273

the ground truth and generated graphs: (1) degree distributions, (2) clustering coefficient distributions,274

(3) the number of occurrences of all orbits with four nodes, and (4) the spectra of the graphs by275

computing the eigenvalues of the normalized graph Laplacian. The first three metrics capture local276

graph statistics, while the spectra represents global structure. The maximum mean discrepancy277

(MMD) score over these statistics are used as the metrics. While Liu et al. (2019) computed MMD278

scores using the computationally expensive Gaussian earth mover’s distance (EMD) kernel, Liao279

et al. (2019) proposed using the total variation (TV) distance as an alternative measure. TV distance280

is much faster and still consistent with the Gaussian EMD kernel. Most recently, O’Bray et al. (2021)281

suggested using other efficient kernels such as an RBF kernel, or a Laplacian kernel, or a linear282

kernel. Additionally, Thompson et al. (2022) proposed new evaluation metrics for comparing graph283

sets using a random-GNN approach where GNNs are employed to extract meaningful graph features.284

However, in this work, we follow the experimental setup and evaluation metrics of (Liao et al., 2019),285

except for the enzyme dataset where we use a Gaussian EMD kernel to be consistent with the results286

reported in (Jo et al., 2022). GNN-based performance metrics of HiGen model are also reported in287

appendix D.2.288

2As the leaf levels have binary edge weights while the sum of their weights is determined by their parent
edge, a possible extension to this work could be using the cardinality potential model (Hajimirsadeghi et al.,
2015), which is derived to model the distribution over the set of binary random variables, to model the edge
weight at the leaf level.
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The performance metrics of the proposed HiGen models are reported in Table 1, with generated graph289

samples presented in Figure 2. The results demonstrate that HiGen effectively captures graph statistics290

and achieves state-of-the-art on all the benchmarks graphs across various generation metrics. This291

improvement in both local and global properties of the generated graphs highlights the effectiveness292

of the hierarchical graph generation approach, which models communities and cross-community293

interactions separately. The visual comparisons of graph samples generated by the HiGen models,294

as well as the experimental evaluation of different node ordering and partitioning functions, are295

presented in Appendix D.2.296

6 Discussion297

The GRAN model can generate graphs one block of nodes at a time in an autoregressive fashion where298

the block size is fixed and nodes are assigned to blocks based on an ordering. However, the model’s299

performance deteriorates as the block size increases, since adjacent nodes in an ordering may not be300

relevant and may belong to different clusters. Additionally, intra-block connections are not modeled301

separately. In contrast, our proposed method generates blocks of nodes within each community that302

have strong relationships and then predicts the cross-links between communities using a separate303

model. As a result, this approach enables the model to capture both local relationships between304

nodes within a community and global relationships across communities, resulting in improved305

expressiveness of the graph generative model.306

The proposed hierarchical model allows for highly parallelizable training and generation. Specifically,307

let nc be the size of the largest graph cluster, then, it only requires O(nc log n) sequential steps to308

generate a graph of size n.309

Node ordering sensitivity The predefined ordering of dimensions can be crucial for training310

autoregressive (AR) models Vinyals et al. (2015), and this sensitivity to node orderings is particularly311

pronounced in autoregressive graph generative model Liao et al. (2019); Chen et al. (2021). However,312

in the proposed approach, the graph generation process is divided into the generation of multiple313

small partitions, performed sequentially across the levels, rather than generating the entire graph314

by a single AR model. Therefore, given an ordering for the parent level, the graph generation315

depends only on the permutation of the nodes within the graph communities rather than the node316

ordering of the entire graph. In other words, the proposed method is invariant to a large portion of317

possible node permutations, and therefore the set of distinctive adjacency matrices is much smaller318

in HiGen. For example, the node ordering ⇡1 = [v1, v2, v3, v4] with clusters VG1 = {v1, v2} and319

VG2 = {v3, v4} has a similar hierarchical graph as ⇡2 = [v1, v3, v2, v4], since the node ordering320

within the communities is preserved at all levels. Formally, let {Cl
i 8i 2 VGl�1} be the set of321

communities at level l produced by a deterministic partitioning function, where nl
i = |V(Cl

i)| denotes322

the size of each partition. The upper bound on the number of distinct node orderings in an HG323

generated by the proposed process is then reduced to
QL

l=1

Q
i n

l
i!. 3324

7 Conclusion325

The proposed HiGen framework generates graphs in a hierarchical and block-wise manner, leveraging326

the inherent hierarchical structure present in real-world graphs. By decomposing the generation327

process into separate and parallel generation of communities and bipartite sub-graphs, it combines the328

benefits of one-shot and AR graph generative models. Experimental results on benchmark datasets329

demonstrate that HiGen achieves state-of-the-art performance across various generation metrics. The330

hierarchical and block-wise generation strategy of HiGen enables scaling up graph generative models331

to large and complex graphs, opening up opportunities to extend it to newer generative paradigms332

such as diffusion models.333

3It is worth noting that all node permutations do not result in distinctive adjacency matrices due to the
automorphism property of graphs Liao et al. (2019); Chen et al. (2021). Therefore, the number of node
permutations provides an upper bound rather than an exact count.
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