
Tree in Tree: from Decision Trees to Decision Graphs

Bingzhao Zhu
EPFL

Lausanne, Switzerland
Cornell University
Ithaca, NY, USA

bz323@cornell.edu

Mahsa Shoaran
EPFL

Lausanne, Switzerland
mahsa.shoaran@epfl.ch

Abstract

Decision trees have been widely used as classifiers in many machine learning
applications thanks to their lightweight and interpretable decision process. This
paper introduces Tree in Tree decision graph (TnT), a framework that extends the
conventional decision tree to a more generic and powerful directed acyclic graph.
TnT constructs decision graphs by recursively growing decision trees inside the
internal or leaf nodes instead of greedy training. The time complexity of TnT is
linear to the number of nodes in the graph, and it can construct decision graphs
on large datasets. Compared to decision trees, we show that TnT achieves better
classification performance with reduced model size, both as a stand-alone classifier
and as a base estimator in bagging/AdaBoost ensembles. Our proposed model is a
novel, more efficient, and accurate alternative to the widely-used decision trees.

1 Introduction

Decision trees (DTs) and tree ensembles are widely used in practice, particularly for applications
that require few parameters [1–5], fast inference [6–8], and good interpretability [9, 10]. In a DT, the
internal and leaf nodes are organized in a binary structure, with internal nodes defining the routing
function and leaf nodes predicting the class label. Although DTs are easy to train by recursively
splitting leaf nodes, the tree structure can be suboptimal for the following reasons: (1) DTs can grow
exponentially large as the depth of the tree increases. Yet, the root-leaf path can be short even for
large DTs, limiting the predictive power. (2) In a DT, the nodes are not shared across different paths,
reducing the efficiency of the model.

Decision trees are similar to neural networks (NNs) in that both models are composed of basic units.
A possible way to enhance the performance of DTs or NNs is to replace the basic units with more
powerful models. For instance, “Network in Network” builds micro NNs with complex structures
within local receptive fields to achieve state-of-the-art performances on image recognition tasks [11].
As for DTs, previous work replaced the axis-aligned splits with logistic regression or linear support
vector machines to construct oblique trees [1, 3, 6, 12–14]. The work in [5] further incorporates
convolution operations into DTs for improved performance on image recognition tasks, while [1]
replaces the leaf predictors with linear regression to improve the regression performance. Unlike the
greedy training algorithms used for axis-aligned trees (e.g., Classification and Regression Trees or
CART [15]), oblique trees are generally trained by gradient-based [3, 13, 14] or alternating [1, 6]
optimization algorithms.

Inspired by the concepts of Network in Network [11] and oblique trees [6, 12], we propose a novel
model, Tree in Tree (TnT), to recursively replace the internal and leaf nodes with micro decision
trees. In contrast to a conventional tree structure, the nodes in a TnT form a Directed Acyclic Graph
(DAG) to address the aforementioned limitations and construct a more efficient model. Unlike
previous oblique trees that were optimized on a predefined tree structure [1, 5], TnT can learn graph

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

connections from scratch. The major contributions of this work are as follows: (1) We extend decision
trees to decision graphs and propose a scalable algorithm to construct large decision graphs. (2) We
show that the proposed algorithm outperforms existing decision trees/graphs, either as a stand-alone
classifier or base estimator in an ensemble, under the same model complexity constraints. (3) Rather
than relying on a predefined graph/tree structure, the proposed algorithm is capable of learning
graph connections from scratch (i.e., starting from a single leaf node) and offers a fully interpretable
decision process. We provide a Python implementation of the proposed TnT decision graph at
https://github.com/BingzhaoZhu/TnTDecisionGraph.

2 Related work

Algorithm 1: Naive decision graph (NDG) [16]
1 G← initialize graph with a leaf node;
2 for i← 1 to N do
3 for each leaf node (li) ∈ G do
4 Find the maximum gain (gi) if we split li ;
5 for each pair of leaf nodes (li, lj) ∈ G do
6 Record gain (gi,j) if we merge li and lj ;
7 Split/merge nodes to maximize gain;
8 Note: The split operation has a model complexity penalty (C) for

creating an internal node.

Decision graph (DG) is a generalization
of the conventional decision tree algo-
rithm, extending the tree structure to a
directed acyclic graph [16, 17]. Despite
similarity in using a sequential inference
scheme, training and optimizing DGs is
more challenging due to the large search
space for the graph structure. The work
in [16] and [18] proposed a greedy algo-
rithm to train DGs by tentatively joining
pairs of leaf nodes at each training step
(NDG, Algorithm 1). [19] constructed
the DG as a Markov decision process, where base estimators were cascaded in the form of a data-
dependent AdaBoost ensemble. [20] combined multiple binary classifiers to construct a DAG for
efficient multi-class classification. While [19] and [20] constructed DAGs with specific settings (e.g.,
Adaboost [19] and multi-class classification [20]), these methods do not provide a general extension
of decision trees. [21] improved NDG by jointly optimizing split nodes and their connections to
next-layer nodes. However, simultaneously learning the split and branching structure has no exact
solution and relies on search-based algorithms to reach local minimum. Alternatively, in this work, we
revisit the concept of decision graphs by exploiting recent advances in non-greedy tree optimization
algorithms [6, 12, 14, 22]. Our proposed Tree in Tree algorithm can construct DGs as a more accurate
and efficient alternative to the widely-used decision trees, both as stand-alone classifiers and as weak
learners in the ensembles.

Conventional decision tree learning algorithms such as CART [15] and its variations follow a greedy
top-down growing scheme. Recent work has focused on optimizing the structure of the tree [22–24].
However, constructing an optimal binary DT is NP-hard [25] and optimal trees are not scalable
to large datasets with many samples and features [22–24]. Recent studies have further developed
scalable algorithms for non-greedy decision tree optimization, with no guarantee on tree optimality
[1, 3, 6, 12–14]. Such scalable approaches can be categorized into two groups: tree alternating
optimization (TAO) [1, 6] and gradient-based optimization [3, 12–14].

TAO decomposes the tree optimization problem into a set of reduced problems imposed at the node
levels. The work in [6] applied the alternating optimization to both axis-aligned trees and sparse
oblique trees. Later, [1] extended TAO to regression tasks and ensemble methods. Unlike TAO,
gradient-based optimization requires a differentiable objective function, which can be obtained by
different methods. For example, [12] derived a convex-concave upper bound of the empirical loss.
[13] and [3] considered a soft (i.e., probabilistic) split at the internal nodes and formulated a global
objective function. The activation function for soft splits was refined in [14] to enable conditional
inference and parameter update. Both TAO and gradient-based optimization operate on a predefined
tree structure and optimize the parameters of the internal nodes.

The proposed Tree in Tree algorithm aims to optimize the graph/tree structure by growing micro
decision trees inside current nodes. Compared to the greedy top-down tree induction [15], Tree
in Tree solves a reduced optimization problem at each node, which is enabled via non-greedy tree
alternating optimization techniques [6]. Compared to NDG, TnT employs a non-greedy process to
construct decision graphs, which leads to an improved classification performance (discussed in later
sections). Compared to axis-aligned decision trees (e.g., TAO [1, 6], CART [15]), TnT extends the

2

https://github.com/BingzhaoZhu/TnTDecisionGraph

tree structure to a more accurate and compact directed acyclic graph, in which nodes are shared
across multiple paths.

3 Methods

In this work, we consider a classification task with input and output spaces denoted by X ⊂ RD
and Y = {1, ...,K}, respectively. Similar to conventional decision trees, a decision graph classifier
G consists of internal nodes and leaf nodes. Each internal node is assigned a binary split function
s(·; θ) : X → [left_child, right_child] parametrized by θ, which defines the routing function of a
graph. For axis-aligned splits, θ indicates a feature index and a threshold. The terminal nodes (with
no children) are named leaf nodes and indicate the class labels.

3.1 Decision graph
As an extension to the tree structure, decision graphs organize the nodes into a more generic directed
acyclic graph. In this work, we limit our discussion to axis-aligned binary DTs/DGs in which
each internal node compares a feature value to a threshold to select one of the two child nodes.
Similar to the sequential inference process in DTs, the test samples in a DG start from the root and
successively select a path at the internal nodes until a leaf node is reached. The main differences
between binary DTs and DGs are the following: (1) In DTs, each child node has one parent node.
However, DGs allow multiple parent nodes to share the same child node. Therefore, DG can combine
the nodes with similar behaviors (e.g., similar split functions) to reduce model complexity. (2) In
binary DTs, the number of leaf nodes is always greater than the internal nodes by one. In DGs,
however, #Leaves ≤ #Internals+ 1, since multiple internal nodes can share the same leaf node.
Furthermore, there exists a unique path to reach each leaf node in a tree structure, which does not
hold within DGs. (3) The model complexity of a DT is often quantified by the number of internal or
leaf nodes. However, we can post-process a DG by merging the leaf nodes with the same class label.
As a result, DGs have a minimum leaf node count equal to the number of classes. Therefore, we use
the number of splits (i.e., internal nodes) to quantify the model complexity of a DG.

3.2 Tree in Tree

Figure 1: (a) The growing phase of TnT. The micro
decision tree (in dashed box) replaces an internal
node (dashed circle). Compared to a single node, the
substitute micro tree can provide a more powerful
split function. (b) The merging phase of TnT. We
merge the fitted micro tree into the current structure
to create a directed acyclic graph.

We propose a novel algorithm named Tree in
Tree as a scalable method to construct large
decision graphs. Conventional DT training
algorithms (e.g., CART) are greedy and re-
cursively split the leaf nodes to grow a deep
structure, without optimizing the previously
learned split functions. The key difference
between the proposed TnT model and con-
ventional approaches lies in the optimiza-
tion of the internal nodes. TnT fits new deci-
sion trees in place of the internal/leaf nodes
and employs such micro DTs to construct
a directed acyclic graph. Overall, the pro-
posed TnT model is a novel extension to the
conventional decision trees and generates
accurate predictions by routing samples through a directed acyclic graph.

Figure 1 shows the high-level procedure for training a decision graph with the proposed TnT algorithm.
Assuming a starting decision graph (e.g., a decision tree or a single leaf node), our goal is to grow a
larger model with improved predictive power. In the growing phase of TnT (Fig. 1(a)), we replace a
node (dashed circle) with a micro decision tree with multiple splits to enable more accurate decision
boundaries. In the merging phase (Fig. 1(b)), the micro decision tree is merged into the starting
model to construct a TnT decision graph, in which a child node (node 2) may have multiple parent
nodes (node 4 and 5).

Growing the graph from internal nodes We consider the training of a decision graph as an
optimization problem with the aim of minimizing the loss function on the training data:

min
∑

x,y∈X,Y
L (y,G(x; Θ)). (1)

3

TnT grows the decision graph G(·; Θ) from an arbitrary internal node ni ∈ G with the split function
s(·; θi). θi denotes the trainable parameters of ni including a feature index and a threshold for
axis-aligned splits. The overall goal is to replace ni with a decision tree ti and minimize the loss
function as indicated in (1). All other nodes remain unchanged as we train ti.

Let us consider a subset of samples (xsubset ∈ Xsubset, ysubset ∈ Ysubset) that is sensitive to the
split function s(·; θi), as defined by the following expression:

Gni→left(xsubset; Θ\θi) 6= Gni→right(xsubset; Θ\θi), (2)

where Θ\θi denotes the parameters of all nodes in G excluding ni. Growing the graph from ni does
not change Θ\θi since all other nodes are fixed as we solve the reduced optimization problem at
ni. Gni→left sends the samples to the left child at ni (i.e., s(·; θi)→ left_child) while Gni→right
routes the samples to the right child at ni. With Θ\θi being fixed, the output of decision graph only
depends on θi (i.e., s(·; θi))

G(x; Θ) =

{
Gni→left(x; Θ\θi) if s(x; θi)→ left_child
Gni→right(x; Θ\θi) if s(x; θi)→ right_child.

(3)

Since L(y,Gni→left(x; Θ\θi)) 6= L(y,Gni→right(x; Θ\θi)) only if the inequality (2) holds, we
can solve the reduced optimization problem at node ni based on the subset (Xsubset,Ysubset) instead
of using the entire training set:

min
θi

∑
x∈Xsubset
y∈Ysubset

L(y,G(x; Θ)). (4)

Having Equation (3), the optimization problem (4) has a closed-form solution as follows:

t∗i (x) :=

{
left_child if L(y,Gni→left(x; Θ\θi)) < L(y,Gni→right(x; Θ\θi))
right_child if L(y,Gni→right(x; Θ\θi)) < L(y,Gni→left(x; Θ\θi)).

(5)

Equation (5) defines the optimal split function at the internal node ni which is used to fit the micro
decision tree ti. With other nodes being fixed, we show that the overall loss function of G can be
minimized by pursuing the optimal spilt function at an arbitrary internal node ni. Rather than using a
simple axis-aligned split, the proposed TnT algorithm learns a complexity-constrained decision tree
to better approximate the optimal split function (Equation (5)).

Growing the graph from leaf nodes Growing from the leaf nodes is a standard practice in greedy
training algorithms, where we recursively split the leaf nodes to achieve a deeper tree with a better fit
on the training data [15]. In TnT, we replace the leaf predictors with decision trees. Let G(·; Θ) be a
decision graph and nl ∈ G an arbitrary leaf node with a constant class label l(·; θl) = c. Our goal is
to minimize the overall loss function L (Y, G(X; Θ)) by replacing the leaf predictor l(·; θl) with a
micro decision tree tl(x).

Consider the subset of samples (Xsubset,Ysubset) that visit the leaf node nl. Minimization of the loss
function (1) can be expressed as

min
θl

∑
x∈Xsubset
y∈Ysubset

L (y, tl(x)), (6)

where the minimum is simply achieved at t∗l (x) := y for x, y ∈ Xsubset,Ysubset (i.e., the ideal leaf
predictor). We build a decision tree to approximate the ideal leaf predictor.

3.3 Learning procedure
Unlike the learning procedures in [1, 6] which require a predefined tree structure, our proposed TnT
algorithm grows a decision graph from a single leaf node. The training of TnT decision graphs is
an iterative process that follows a grow-merge-grow- · · · -merge alternation. Algorithm 2 shows the
pseudocode to train a TnT decision graph. Lines 9-14 find the subset of data samples Xsubset,Ysubset
that is sensitive to the internal split functions or leaf predictors at each node, and grow micro decision
trees. In the internal nodes, Ysubset represents binary labels for the left or right child (i.e., not the
label of the training set). Line 17 grows micro decision trees according to the growing phase of the
TnT. Line 18 merges the trees into the graph structure. In Algorithm 2, N1 is the number of merging
phases that micro trees are merged into the graph. N2 is the number of rounds to grow and optimize
micro trees, similar to the number of iterations in the tree alternating optimization algorithm [1, 6].

4

Regularization Regularization is critical to limit model complexity and prevent overfitting of a
decision tree and it is similarly required for TnT decision graphs. In the growing phase of a TnT
(either from internal or leaf nodes), the subsets of samples Xsubset,Ysubset at different nodes may
have various sizes. Therefore, we need a robust regularization technique to operate across all nodes
of the TnT and to train the micro decision trees without overfitting on small subsets. In this work,
we propose to use the sample-weighted cost complexity pruning approach [26, 27]. We prune micro
decision trees by minimizing R(ti) + Ci|ti|, where R(ti) is the misclassification measurement and
|ti| denotes the tree complexity. We calculate R(ti) using Gini impurity and measure |ti| by counting
the number of splits [15]. Ci is the sample-weighted regularization coefficient calculated by

Ci = C
#X

#Xsubset,i
, (7)

where #Xsubset,i is the sample count of subset at node ni. C is a hyperparameter of the TnT and is
used to control the pruning strength and tune the model complexity (# splits). For a smaller subset,
we need to apply a stronger cost complexity pruning to prevent overfitting.

Figure 2: Comparison of DT and TnT decision graph on synthetic data; (a) A toy classification task
with desired axis-aligned boundaries. x1, x2 and t1 − t4 denote two features and four thresholds,
respectively. Different markers represent binary class labels. (b) A decision tree requires at least six
splits to classify the data. (c) A TnT decision graph only requires four binary splits on the same task.

Fine-tune and post pruning The TnT decision graphs are compatible with Tree Alternating
Optimization (TAO [6]), previously proposed to optimize decision trees. We used TAO to fine-tune
the TnT decision graphs, which led to slight improvements in classification accuracy. The pseudocode
for TnT fine-tune algorithm is provided in the supplementary materials. A post pruning process is
further applied to TnT decision graphs to remove the dead nodes. A node is pruned if no training

Algorithm 2: Tree in Tree (TnT)
Data: Training set X ,Y
Result: TnT decision graph G fitted on the training set

1 {infer(n,X) denotes the forward inference of data X starting from node n};
2 {Nodes are visited in the breadth-first order};
3 G← initialize graph with a leaf node;
4 for i1 ← 1 to N1 do
5 for i2 ← 1 to N2 do
6 for each node (ni) ∈ G do
7 Samples that visit ni: Xi,Yi ⊂ X ,Y;
8 if ni is an internal node then
9 Yi,left ← infer(ni.left_child,Xi);

10 Yi,right ← infer(ni.right_child,Xi);
11 index_left← (Yi = Yi,left and Yi 6= Yi,right) ;
12 index_right← (Yi = Yi,right and Yi 6= Yi,left) ;
13 Xsubset,Ysubset ← copy samples from Xi,Yi at (index_left or index_right);
14 Ysubset[index_left]← 0, Ysubset[index_right]← 1;
15 else if ni is a leaf node then
16 Xsubset ← Xi, Ysubset ← Yi;
17 Grow a micro tree ti on subset Xsubset,Ysubset in place of ni;
18 Merge ti into the current decision graph G for all nodes (ni ∈ G)

5

samples travel through that node. Post pruning can result in a more compact decision graph and
reduce the number of splits without affecting the training accuracy.

Time complexity Compared to decision trees, decision graphs offer an enriched model structure,
which increases the complexity of learning the graph structure. Previous work constructed decision
graphs by tentatively merging two leaf nodes at each training step, with a time complexity of O(N2

l),
where Nl is the number of leaf nodes [16]. Since the proposed TnT algorithm generates new splits by
growing micro decision trees inside the nodes, the dataset is initially sorted in O(mklog(m)) for m
samples and k features. The time complexity for creating a new split depends on the dataset (i.e.,
O(mk)) and not on the size of the graph. As the graph grows larger, the TnT algorithm optimizes each
node for N1 ∗N2 times in the worst case (Algorithm 2). Since N1 and N2 are hyperparameters that
were fixed in this work (N1 = 2, N2 = 5, the choice of N1 and N2 will be discussed in the following
section), TnT exhibits a linear time complexity to the number of nodes, O(nmk +mklog(m)) with
n being the number of nodes. Testing our Python implementation on an Intel i7-9700 CPU, it took
325.3 seconds to build a TnT of 1k splits on the MNIST dataset (60k samples, 784 features, 10
classes).

Synthetic data We first construct a synthetic classification dataset to show the potential benefits
of TnT over conventional decision tree algorithms (e.g., CART). Figure. 2(a) visualizes the two-
dimensional data distribution with one class on the corners and the other class elsewhere. To achieve
optimal decision boundaries, a conventional decision tree requires six splits (Fig. 2(b)), whereas
TnT only requires four splits to generate the same decision boundaries (Fig. 2(c)). By sharing nodes
among different decision paths in a graph, TnT enables a more compact model with fewer splits
compared to a conventional DT.

4 Experiments: TnT as a stand-alone classifier

We test the TnT decision graph as a stand-alone classifier and benchmark it against several state-of-
the-art decision tree/graph algorithms with axis-aligned splits, including classification and regression
trees (CART [15]), tree alternating optimization (TAO [6]), and the naive decision graph (NDG
[16]). We did not include decision jungles [21] in our comparison since no implementation was
provided by the authors. We also implemented the TnT algorithm in two different settings: with or
without fine-tuning. We observed that the proposed TnT algorithm consistently achieves a superior
performance under similar complexity constraints on multiple datasets.

Figure 3: (a) The number of splits as a function of the root-leaf path length. The standard deviation
across different samples is shown by shaded areas. (b) The number of splits vs. regularization
coefficient C. (c, d) Test performance using different hyperparameter settings on the MNIST dataset.
The default setting (N1 = 2, N2 = 5) is plotted in both figures for comparison.

In the worst-case scenario, the number of nodes increases exponentially with the depth of a tree, which
prevents DTs from growing very deep. However, this limitation does not apply to TnT decision graphs.
Figure 3(a) illustrates the average length of the root-leaf path as a function of model complexity for
TnT and CART. With 1000 splits, the average decision depth of the best-first CART is 12.3, whereas
the TnT decision graph has a mean depth of 27.3. In the best-first decision tree induction, we add the
best split in each step to maximize the objective [28]. Therefore, TnT can achieve a much “deeper”
model without significantly increasing the number of splits. The regularization coefficient C is used to
control the complexity of decision graphs in TnT. The number of splits decreases as we increase the
pruning strength C (Fig. 3(b)). Figures 3(c, d) compare the effect of different hyperparameter settings
(N1, N2). We note that the proposed TnT decision graph is a superset of decision trees and that TnT
can reduce to a DT learning algorithm under certain conditions. With N1 = 1, Algorithm 2 replaces

6

Figure 4: Model comparison in terms of train and test accuracy on multiple classification tasks.
The following axis-aligned decision trees/graphs are included: TnT (this work): We implement
the proposed TnT decision graph at various complexity levels. Hyperparameters are fixed at N1 =
2, N2 = 5 on all tasks. TnT (fine-tuned): The alternating optimization algorithm is used to fine-tune
the TnT. TAO: The tree alternating optimization algorithm is applied to axis-aligned decision trees
[29]. CART: Classification and regression trees trained in a best-first manner to assess the optimal
tree structure under certain complexity constraint [15, 28]. NDG: The naive decision graph trained
with Algorithm 1 [16]. The complexity penalty is fixed at C = 3e− 4 on all tasks. Dataset statistics
are indicated on top of each figure with the following format (# Train/Test samples * # Features,
Classes).

a single leaf node with a decision tree, which is equivalent to training a CART with cost complexity
pruning. In general, higher values of N1 and N2 can lead to a better classification performance. In the
following experiments, we set the hyperparameters as N1 = 2, N2 = 5. A marginal improvement in
classification performance can be obtained by increasing N1 and N2, at the cost of increased training
time.

Figure 4 compares the proposed TnT decision graphs with axis-aligned decision trees/graphs previ-
ously reported. We include the following datasets: MNIST, Connect-4, Letter, Optical reconstruction,
Pendigits, Protein, SenseIT, and USPS from the UCI machine learning repository [30] and LIBSVM
Dataset [31] under Creative Commons Attribution-Share Alike 3.0 license. The statistics of datasets
including the number of train/test instances, number of attributes, and number of classes are shown in
Fig. 4. If a separate test set is not available for some tasks, we randomly partition 33% of the entire
data as test set. For all models, we repeat the training procedure five times with different random
seeds. The mean classification accuracy is plotted in Fig. 4 with shaded area indicating the standard
deviation across trials. The proposed Tree in Tree (TnT) algorithm outperforms axis-aligned decision
trees such as TAO [6, 29] and CART [15], as well as NDG which is also based on axis-aligned
decision graphs [16]. We also present the results for TnT(fine-tuned), which employs alternating
optimization to fine-tune the TnT and slightly improve the classification performance.

7

Table 1: Comparison of TnT and CART at optimal split count (#S, determined by cross-validation).
Mean test accuracy (±standard deviation) are calculated on 5 independent trials.

model MNIST Connect-4 Letter Optical recognition

accuracy #S accuracy #S accuracy #S accuracy #S

TnT 90.87±0.31 600 78.85±0.46 864 86.62±0.02 1.2k 86.32±0.24 174
CART 88.59±0.14 1.1k 77.23±0.01 931 86.26±0.15 1.3k 85.56±0.46 193

model Pendigits Protein SenseIT USPS

accuracy #S accuracy #S accuracy #S accuracy #S

TnT 92.61±0.53 125 57.26 69 80.48±0.42 198 88.76±1.36 31
CART 91.74±0.13 166 55.30 76 79.40 345 87.35±0.15 109

The node-sharing mechanism in TnT effectively regularizes the growth of the graph and can increase
test performance compared to greedy training of trees (e.g., CART). To show the reduction of variance
in TnT decision graphs, we removed the complexity constraints on both models and selected the
hyperparameters that achieve the highest cross-validation accuracy on the training set. Table 1
compares the proposed TnT method with greedy training of trees. Overall, TnT achieves a better test
accuracy with reduced model complexity compared to CART.

Visualization Similar to decision trees, TnT decision graphs enjoy a fully interpretable and visual-
izable decision process. Figures 5(a-c) visualize the TnT decision graphs with 20, 129, and 1046
splits, respectively. We use different node colors to indicate the dominant class labels. A node will
have a dominant class if most samples at that node belong to the same class. We show the nodes
in blue if class labels are mixed (i.e., no class label contributes to greater than 50% of the samples
visiting that node). As the graph grows larger, TnT performs better on the MNIST dataset, achieving
improved classification accuracy on both training and testing sets.

Figure 5: Visualization of TnT decision graphs at various complexity levels. (a) TnT with 20 internal
nodes and 16 leaf nodes (train/test accuracy: 70.41%/71.75% on MNIST classification task). (b)
129 internals and 75 leaves (train/test accuracy: 85.54%/85.49%). (c) 1046 internals and 630 leaves
(train/test accuracy: 96.04%/90.56%). Different node colors represent dominant class labels (more
than 50% of samples belong to the same class). Nodes are shown in blue if no dominant class is
found.

5 Experiments: TnT in the ensemble

Decision trees are widely used as base estimators in ensemble methods such as bagging and boosting.
Random Forests apply a bagging technique to decision trees to reduce variance [32], in which each
base estimator is trained using a randomly drawn subset of data with replacement [33]. As opposed
to bagging, boosting is used as a bias reduction technique where base estimators are incrementally
added to the ensemble to correct the previously misclassified samples. Popular implementations of
the boosting methods include AdaBoost [34] and gradient boosting [35, 36]. Both AdaBoost and
bagging use classifiers as base estimators, whereas the gradient boosting methods require regressors
[35, 36]. Although we argue that the proposed TnT algorithm can be applied to regression tasks with
a slight modification in the objectives, it is beyond the scope of this paper to demonstrate TnTs as
regressors.

Here, we use the TnT decision graphs as base estimators in the bagging (TnT-bagging) and AdaBoost
(TnT-AdaBoost) ensembles. Our goal is to replace decision trees with the proposed TnT classifiers in

8

ensemble methods and compare the performance under various model complexity constraints. The
ensemble methods are implemented using the scikit-learn library in Python (under the 3-Clause BSD
license) [37]. We change the ensemble complexity by tuning the number of base estimators (#E) and
the total number of splits (i.e., internal nodes, #S). For Random Forest with 100 trees, we remove
the limit on #S. Thus, the trees are allowed to grow as large as possible to better fit on training data.
Note that TnT has additional hyperparameters such as N1 and N2. We set the hyperparameters as
N1 = 2, N2 = 5 throughout the experiments so that the TnT and tree ensembles share a similar
hyperparameter exploration space.

Table 2: Comparison of TnT-based ensembles with conventional random forest and AdaBoost. Mean
train and test accuracy (± standard deviation) are calculated across 5 independent trials. We tune the
ensemble size (#E, the number of base estimators) and split count (#S) to change the complexity of
the ensemble. Dataset statistics are given in the format: Dataset name (# Train/Test samples * #
Features, # Classes). Six additional datasets are included in the supplementary materials.

model #E #S train test #E #S train test

TnT-bagging

M
N

IS
T

(6
0k

/1
0k

*7
84

,1
0)

5 4.8k 97.46±0.16 93.65±0.24

C
on

ne
ct

-4
(4

5.
3k

/2
2.

3k
*1

26
,3

)

5 4.6k 84.42±0.19 80.61±0.18
Random Forest 5 4.8k 96.55±0.36 92.31±0.57 5 4.6k 83.60±0.12 79.21±0.19

TnT-AdaBoost 5 640 90.26 88.38 5 450 77.75±0.16 77.39±0.19
AdaBoost 5 640 89.75 88.61 5 450 77.28 76.74

TnT-bagging 10 9.6k 98.28±0.06 94.92±0.20 10 9.2k 85.11±0.05 81.44±0.14
Random Forest 10 9.6k 97.44±0.18 93.64±0.38 10 9.2k 84.21±0.12 79.85±0.20

TnT-AdaBoost 10 1.4k 95.09±0.09 92.36±0.13 10 940 80.10±0.23 78.94±0.29
AdaBoost 10 1.4k 94.28 91.49 10 940 79.69 78.37

TnT-bagging 20 19.2k 98.64±0.06 95.57±0.14 20 18.3k 85.66±0.12 81.93±0.13
Random Forest 20 19.2k 97.90±0.12 94.36±0.19 20 18.3k 84.57±0.08 80.39±0.09

TnT-AdaBoost 20 2.9k 98.03±0.11 94.49±0.21 20 1.8k 82.46±0.41 80.53±0.50
AdaBoost 20 2.9k 97.70 94.04 20 1.8k 82.77 81.14
TnT-bagging 100 111k 99.09±0.03 96.11±0.09 100 143k 88.44±0.07 82.84±0.02
Random Forest 100 292k 100 95.72±0.17 100 718k 100 82.33±0.10

Table 2 compares the performance of TnT ensembles with that of decision tree ensembles on two
datasets. A complete comparison table on eight datasets is included in the supplementary materials.
Since the bagging method can effectively reduce variance, we use large models (i.e., TnTs/decision
trees with many splits) as the base estimator. On the contrary, TnTs/decision trees with few splits
are used in the AdaBoost ensemble, given that boosting can decrease the bias error. According to
Table 1, TnT-bagging is almost strictly better than Random Forest under the same model complexity
constraints, indicating that TnT decision graphs outperform decision trees as base estimators. TnT-
AdaBoost also outperforms AdaBoost in most cases, showing the advantage of TnT over decision
trees. However, we observe a few exceptions in the TnT-AdaBoost vs. AdaBoost comparison, as
weak learners with high bias (e.g., decision stumps) are also suitable for boosting ensembles. Overall,
the TnT ensembles (TnT-bagging, TnT-AdaBoost) achieve a higher classification accuracy compared
to decision trees when used in similar ensemble methods (Random Forest, AdaBoost).

6 Discussions

Broader impact Recently, the machine learning community has seen different variations of deci-
sion trees [1, 3, 5, 6, 12–14]. In this paper, we present the TnT decision graph as a more accurate and
efficient alternative to the conventional axis-aligned decision tree. However, the core idea of TnT
(i.e., growing micro trees inside nodes) is generic and compatible with many existing algorithms.
For example, linear-combination (oblique) splits can be easily incorporated into the proposed TnT
framework. Specifically, we can grow oblique decision trees inside the nodes to construct an oblique
TnT decision graph (Line 17 of Algorithm 2). In addition to oblique TnTs, the proposed TnT
framework is also compatible with regression tasks. As suggested in [1], we may grow decision
tree regressors (rather than DT classifiers) inside the leaf nodes to construct TnT regressors, which
remains as our future work. Overall, our results show the benefits of extending the tree structure to
directed acyclic graphs, which may inspire other novel tree-structured models in the future.

9

Limitations The proposed TnT decision graph is scalable to large datasets and has a linear time
complexity to the number of nodes in the graph. However, the training of TnT is considerably
slower than CART. The current TnT algorithm is implemented in Python. It takes about 5 minutes to
construct a TnT decision graph with ∼1k splits on the MNIST classification task (train/test accuracy:
95.9%/90.4%). Training a CART with the same number of splits requires 12.6 seconds (train/test
accuracy: 93.6%/88.3%). TnT has a natural disadvantage in terms of training time since each
node is optimized multiple times (in this work N1 ∗ N2 = 10), similar to other non-greedy tree
optimization algorithms (e.g., 1-4 minutes for TAO [6]). The Python implementation may also
contribute to the slow training, and we expect that the training time would significantly improve with
an implementation in C. The longer training time prevents us from constructing large TnT-Adaboost
ensembles that follow a sequential training process, where the training time increases linearly to the
number of base estimators. We also observe that TnT decision graphs have longer decision paths
compared to CART (Figure 3(a)), which may raise a concern on increased inference time. Since TnT
uses a pruning factor (C) to control the model complexity, we can not precisely control the number
of nodes as in CART. In the experiments, we searched over a range of C values to meet the model
complexity constraints.

Parallel implementation Algorithm 2 presents a sequential algorithm to construct TnT decision
graphs by visiting the nodes in the breadth-first order. However, it is also possible to concurrently
grow micro decision trees inside multiple nodes, which could lead to a parallel implementation of TnT.
Specifically, only those nodes in the graph that are non-descendant of each other can be optimized
in parallel. Parallel optimization is not applicable to the nodes on the same decision path, since the
parent node optimization may alter the samples visiting the child node. The parallel optimization of
non-descendant nodes follows the separability condition of TAO [1, 6]. The separability condition
also holds for the proposed TnT decision graph, enabling a parallel implementation.

7 Conclusion

In this paper, we propose the Tree in Tree decision graph as an effective alternative to the widely used
decision trees. Starting from a single leaf node, the TnT algorithm recursively grows decision trees
to construct decision graphs, extending the tree structure to a more generic directed acyclic graph.
We show that the TnT decision graph outperforms the axis-aligned decision trees on a number of
benchmark datasets. We also incorporate TnT decision graphs into popular ensemble methods such
as bagging and AdaBoost, and show that in practice, the ensembles could also benefit from using
TnTs as base estimators. Our results suggest the use of decision graphs rather than conventional
decision trees to achieve superior classification performance, which may potentially inspire other
novel tree-structured models in the future.

Acknowledgments and Disclosure of Funding

We thank Dr Masoud Farivar from Google for his valuable feedback and comments on this manuscript.
This work was partially supported by a Google faculty research award in machine learning.

References
[1] Arman Zharmagambetov and Miguel Carreira-Perpinan. Smaller, more accurate regression forests using

tree alternating optimization. In International Conference on Machine Learning, pages 11398–11408.
PMLR, 2020.

[2] Ashish Kumar, Saurabh Goyal, and Manik Varma. Resource-efficient machine learning in 2 kb ram for the
internet of things. In International Conference on Machine Learning, pages 1935–1944. PMLR, 2017.

[3] Bingzhao Zhu, Masoud Farivar, and Mahsa Shoaran. Resot: Resource-efficient oblique trees for neural
signal classification. IEEE Transactions on Biomedical Circuits and Systems, 14(4):692–704, 2020.

[4] Mahsa Shoaran, Benyamin Allahgholizadeh Haghi, Milad Taghavi, Masoud Farivar, and Azita Emami-
Neyestanak. Energy-efficient classification for resource-constrained biomedical applications. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 8(4):693–707, 2018.

10

[5] Ryutaro Tanno, Kai Arulkumaran, Daniel Alexander, Antonio Criminisi, and Aditya Nori. Adaptive neural
trees. In International Conference on Machine Learning, pages 6166–6175. PMLR, 2019.

[6] Miguel A Carreira-Perpinán and Pooya Tavallali. Alternating optimization of decision trees, with applica-
tion to learning sparse oblique trees. Advances in Neural Information Processing Systems, 31:1211–1221,
2018.

[7] Charles Mathy, Nate Derbinsky, José Bento, Jonathan Rosenthal, and Jonathan Yedidia. The boundary
forest algorithm for online supervised and unsupervised learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 29, 2015.

[8] Bingzhao Zhu, Uisub Shin, and Mahsa Shoaran. Closed-loop neural prostheses with on-chip intelligence:
A review and a low-latency machine learning model for brain state detection. IEEE Transactions on
Biomedical Circuits and Systems, 2021.

[9] Andrew Silva, Matthew Gombolay, Taylor Killian, Ivan Jimenez, and Sung-Hyun Son. Optimization
methods for interpretable differentiable decision trees applied to reinforcement learning. In International
Conference on Artificial Intelligence and Statistics, pages 1855–1865. PMLR, 2020.

[10] Scott Lundberg and Su-In Lee. A unified approach to interpreting model predictions. arXiv preprint
arXiv:1705.07874, 2017.

[11] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400, 2013.

[12] Mohammad Norouzi, Maxwell D Collins, Matthew Johnson, David J Fleet, and Pushmeet Kohli. Efficient
non-greedy optimization of decision trees. arXiv preprint arXiv:1511.04056, 2015.

[13] Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulo. Deep neural decision
forests. In Proceedings of the IEEE international conference on computer vision, pages 1467–1475, 2015.

[14] Hussein Hazimeh, Natalia Ponomareva, Petros Mol, Zhenyu Tan, and Rahul Mazumder. The tree ensemble
layer: Differentiability meets conditional computation. In International Conference on Machine Learning,
pages 4138–4148. PMLR, 2020.

[15] Dan Steinberg and Phillip Colla. Cart: classification and regression trees. The top ten algorithms in data
mining, 9:179, 2009.

[16] Jonathan Oliver. Decision graphs: an extension of decision trees. Citeseer, 1992.

[17] Hiroki Sudo, Koji Nuida, and Kana Shimizu. An efficient private evaluation of a decision graph. In
International Conference on Information Security and Cryptology, pages 143–160. Springer, 2018.

[18] Djamel Abdelkader Zighed. Induction Graphs for Data Mining, pages 419–430. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2007.

[19] Djalel Benbouzid, Róbert Busa-Fekete, and Balázs Kégl. Fast classification using sparse decision dags.
arXiv preprint arXiv:1206.6387, 2012.

[20] John C Platt, Nello Cristianini, John Shawe-Taylor, et al. Large margin dags for multiclass classification.
In nips, volume 12, pages 547–553, 1999.

[21] Jamie Shotton, Toby Sharp, Pushmeet Kohli, Sebastian Nowozin, John Winn, and Antonio Criminisi.
Decision jungles: Compact and rich models for classification. In NIPS’13 Proceedings of the 26th
International Conference on Neural Information Processing Systems, pages 234–242, 2013.

[22] Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo Seltzer. Generalized and scalable optimal
sparse decision trees. In International Conference on Machine Learning, pages 6150–6160. PMLR, 2020.

[23] Haoran Zhu, Pavankumar Murali, Dzung T Phan, Lam M Nguyen, and Jayant R Kalagnanam. A scalable
mip-based method for learning optimal multivariate decision trees. arXiv preprint arXiv:2011.03375, 2020.

[24] Xiyang Hu, Cynthia Rudin, and Margo Seltzer. Optimal sparse decision trees. Advances in Neural
Information Processing Systems (NeurIPS), 2019.

[25] Hyafil Laurent and Ronald L Rivest. Constructing optimal binary decision trees is np-complete. Information
processing letters, 5(1):15–17, 1976.

[26] Jeffrey P Bradford, Clayton Kunz, Ron Kohavi, Cliff Brunk, and Carla E Brodley. Pruning decision trees
with misclassification costs. In European Conference on Machine Learning, pages 131–136. Springer,
1998.

11

[27] B Ravi Kiran and Jean Serra. Cost-complexity pruning of random forests. In International Symposium on
Mathematical Morphology and Its Applications to Signal and Image Processing, pages 222–232. Springer,
2017.

[28] Haijian Shi. Best-first decision tree learning. PhD thesis, The University of Waikato, 2007.

[29] Arman Zharmagambetov, Suryabhan Singh Hada, Miguel Á Carreira-Perpiñán, and Magzhan Gabidolla.
An experimental comparison of old and new decision tree algorithms. arXiv preprint arXiv:1911.03054,
2019.

[30] Uc irvine machine learning repository. http://archive.ics.uci.edu/ml/index.php. Accessed: 2021-05-02.

[31] Libsvm data. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html. Accessed: 2021-05-
02.

[32] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[33] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[34] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

[35] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd
acm sigkdd international conference on knowledge discovery and data mining, pages 785–794, 2016.

[36] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing
systems, 30:3146–3154, 2017.

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

12

http://archive.ics.uci.edu/ml/index.php
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html

	Introduction
	Related work
	Methods
	Decision graph
	Tree in Tree
	Learning procedure

	Experiments: TnT as a stand-alone classifier
	Experiments: TnT in the ensemble
	Discussions
	Conclusion

