
AUTM Flow: Atomic Unrestricted Time Machine
for Monotonic Normalizing Flows

Difeng Cai1 Yuliang Ji1 Huan He2 Qiang Ye3 Yuanzhe Xi1

1Department of Mathematics, Emory University, Atlanta, GA, USA
2Department of Computer Science, Emory University, Atlanta, GA, USA

3Department of Mathematics, University of Kentucky, Lexington, KY, USA

Abstract

Nonlinear monotone transformations are used ex-
tensively in normalizing flows to construct in-
vertible triangular mappings from simple distribu-
tions to complex ones. In existing literature, mono-
tonicity is usually enforced by restricting function
classes or model parameters and the inverse trans-
formation is often approximated by root-finding
algorithms as a closed-form inverse is unavailable.
In this paper, we introduce a new integral-based ap-
proach termed: Atomic Unrestricted Time Machine
(AUTM), equipped with unrestricted integrands
and easy-to-compute explicit inverse. AUTM of-
fers a versatile and efficient way to the design of
normalizing flows with explicit inverse and unre-
stricted function classes or parameters. Theoreti-
cally, we present a constructive proof that AUTM
is universal: all monotonic normalizing flows can
be viewed as limits of AUTM flows. We provide a
concrete example to show how to approximate any
given monotonic normalizing flow using AUTM
flows with guaranteed convergence. The result im-
plies that AUTM can be used to transform an ex-
isting flow into a new one equipped with explicit
inverse and unrestricted parameters. The perfor-
mance of the new approach is evaluated on high di-
mensional density estimation, variational inference
and image generation. Experiments demonstrate
superior speed and memory efficiency of AUTM.

1 INTRODUCTION

Generative models aim to learn a latent distribution from
given samples and then generate new data from the learned
distribution. There are several kinds of generative models,
including generative adversarial networks (GANs) [Goodfel-
low et al., 2014], variational autoencoders (VAE) [Kingma

and Welling, 2013], and normalizing flows [Rezende and
Mohamed, 2015], etc. Unlike GANs and VAE, normalizing
flows offer a tractable and efficient way for exact density
estimation and sampling. Applications of normalizing flows
include image generation [Kingma and Dhariwal, 2018, Ho
et al., 2019], noise modelling [Abdelrahman Abdelhamed,
2019], and reinforcement learning [Mazoure et al., 2019],
et al.

Two challenges in normalizing flows are the computation of
Jacobian determinant and the inverse transformation. Dif-
ferent architectures have been proposed to address those
issues. Neural ODE [Chen et al., 2018] and Free-form Jaco-
bian of Reversible Dynamics (FFJORD) [Grathwohl et al.,
2019] pioneered the way of modeling the transformation as
a dynamical system. The inverse can be easily computed
by reversing the dynamics in time, but Jacobian determi-
nant is hard to compute and the use of neural network to
model the dynamics often leads to high computational cost.
To simplify the Jacobian computation, most flows employ
monotone triangular mappings so that the Jacobian is tri-
angular. Two such architectures are autoregressive flows
and coupling flows. Examples of monotone mappings used
in those flows include 1) Special function classes such as
affine function [Dinh et al., 2014, 2017, Kingma and Dhari-
wal, 2018]), rational function [Ziegler and Rush, 2019],
logistic mixture [Ho et al., 2019], splines [Durkan et al.,
2019a,b]; 2) Neural networks [Huang et al., 2018, De Cao
et al., 2020]; and 3) Integral of positive functions [Jaini
et al., 2019, Wehenkel and Louppe, 2019].

To ensure monotonicity, methods using “special function
classes" such as splines or sigmoid function σ (see Table
1) have to impose constraints on model parameters, which
often impede the expressive power of the transformation as
well as the efficiency of training. For example, during opti-
mization, updates like θ = θ − γ∇θL can potentially make
the parameter θ fall out of the prescribed range and mod-
ifications are needed to guarantee the monotonicity under
the new update. Integral-based methods rely on the simple
fact that the function q(x) = c +

∫ x
0
g(x)dx is always in-
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creasing as long as the integrand g is globally positive. For
example, g is modeled as positive polynomials in sum-of-
squares (SOS) polynomial flow by [Jaini et al., 2019] and as
positive neural networks in unconstrained monotonic neural
networks (UMNN) by [Wehenkel and Louppe, 2019]. Due
to the flexibility offered by an integral form, these methods
allow unrestricted model parameters as compared to other
methods. It was shown in [Wehenkel and Louppe, 2019]
that the method requires fewer parameters than straightfor-
ward neural network-based methods in [Huang et al., 2018,
De Cao et al., 2020] and can scale to high dimensional
datasets. However, unlike Neural ODE and FFJORD, these
integral-based monotone mappings do not possess an ex-
plicit inverse formula and one has to resort to root-finding
algorithms to compute the inverse transformation. This leads
to increased computational cost because in each iteration
of root-finding, one has to compute an integral of a com-
plicated function. As discussed in [Wehenkel and Louppe,
2019], a judicious choice of quadrature rule is needed.

Contributions In this paper, we propose a new integral-
based monotone triangular flow with proven universal ap-
proximation property for monotonic flows. The major con-
tributions include the following.

• Unrestricted model classes and parameters. The
proposed integral-based transformation is strictly in-
creasing with no constraint on the integrand except
being Lipschitz continuous.

• Explicit inverse. The inverse formula is explicitly
given and compatible with fast root-finding methods
for numerical inversion.

• Universality. The proposed model is universal in the
sense that any monotonic normalizing flow is a limit
of the proposed flows.

2 BACKGROUND

Normalizing flows are a class of generative models that aim
to find a bijective mapping f such that f−1 “normalizes"
the complex distribution into a tractable base distribution
(Gaussian, for example). Once the “normalizing" mapping is
found, generating new data points boils down to simply sam-
pling from the base distribution and applying the forward
transformation f to the samples. This makes normalizing
flows a popular choice in density estimation, variational
inference, image generation, etc.

Let Y ∈ RD be a random variable with a possibly compli-
cated probability density function pY (y) and X ∈ RD be
a random variable with a well-studied probability density
function pX(x). Assume that there is an invertible (vector-
valued) function f : RD → RD that transforms the “base"
variable X to Y , i.e. Y = f(X). Then according to the

change of variables formula, the probability density func-
tions pY and pX satisfy

pY (y) = pX(x)
∣∣det Jf−1(y)

∣∣ = pX(x) |det Jf (x)|−1 ,
(1)

where Jf (x) denotes the Jacobian of f evaluated at x.

The success of normalizing flows hinges on many factors,
including 1: the expressive power of the class of bijective
transformations; 2: the efficiency in computing the transfor-
mation and its inverse; 3: the efficiency in computing the
Jacobian determinant.

A popular architectural design to address those points is
to employ an invertible triangular transformation, whose
Jacobian is triangular and inversion can be computed in an
entrywise fashion. Two representative triangular normal-
izing flows are autoregressive flows and coupling flows.
Throughout the paper, we use x1:k to denote the vector
(x1, . . . , xk).

2.1 AUTOREGRESSIVE FLOWS

Autoregressive flows choose f : RD → RD to be an autore-
gressive mapping:

f(x;θ) = (q1(x1; θ1), q2(x2; θ2(x1)), . . . ,

qk(xk; θk(x1:k−1)), . . . , qD(xD; θD(x1:D−1))),
(2)

where x = (x1, . . . , xD) and each qk, termed transformer,
is a bijection parametrized by the so-called conditioner
θk(x1:k−1). The Jacobian of f is a lower triangular ma-
trix. To guarantee the invertibility of f , qk is chosen to be
a monotone function of xk. Since qk is usually a nonlinear
neural network, an analytic inverse is not available and the
inverse is computed by root-finding algorithms.

2.2 COUPLING FLOWS

Coupling flows first partition the input vector x =
(x1, . . . , xD) into two parts x1:d and xd+1:D and then apply
the following transformation:

y1:d = x1:d, yd+1:D = q(xd+1:D; θ(x1:d)), (3)

where the parameter θ(x1:d) is an arbitrary function of x1:d
and the scalar coupling function q is applied entrywisely, i.e.,
q(xd+1:D) = (q(xd+1), . . . , q(xD)). The transformation in
(3) from x to y is called a coupling layer. In normalizing
flows, multiple coupling layers are composed to obtain a
more complex transformation with the role of the two map-
pings in (3) swapped in alternating layers. The Jacobian of
(3) is a lower triangular matrix with a 2-by-2 block struc-
ture corresponding to the partition of x. In [Dinh et al.,
2017], the coupling function q is chosen as an affine func-
tion: q(z) = z · exp(α(x1:d))+β(x1:d), where α and β are
arbitrary functions, and the resulting flow is termed affine
coupling flow.



Table 1: Comparison of different normalizing flow architectures. E.I. stands for explicit inverse, U.P. for unrestricted
parameters, U.F. for unrestricted function representations.

Method monotone map E.I U.P. U.F.
Real NVP [Dinh et al., 2017] affine function yes yes no

Glow [Kingma and Dhariwal, 2018] affine function yes yes no

Flow++ [Ho et al., 2019] ασ−1
(

r∑
i=1

ciσ
(
x−ai
bi

))
+ β no no no

NSF [Durkan et al., 2019b] rational-quadratic spline yes no no

SOS [Jaini et al., 2019]
∫ x
0

L∑
i=1

pi(x)
2dx+ c no yes no

UMNN [Wehenkel and Louppe, 2019]
∫ x
0
f(x)dx+ β (f > 0) no yes no

AUTM (new) x+
∫ 1

0
g(v(t), t)dt yes yes yes

3 ATOMIC UNRESTRICTED TIME
MACHINE (AUTM) FLOWS

Lots of efforts have been made in recent years to con-
struct a coupling function or transformer q(x) that is strictly
monotone (thus invertible) as well as expressive enough.
As shown in Table 1, sophisticated machinery is used to
improve the expressive power and meanwhile ensure the
monotonicity (invertibility) of q, which usually requires
restricting the form of q or the model parameters, e.g. in
[Ziegler and Rush, 2019, Ho et al., 2019, Durkan et al.,
2019a,b]. Moreover, since q is a complicated nonlinear func-
tion, an analytic format of q−1 is generally not available
and thus numerical root-finding algorithms are often used
to compute the inverse transformation. It is natural to ask
whether there exists a family of universal monotone func-
tions with analytic inverses and unrestricted model parame-
ters or representations?

We propose a new approach to construct a monotone q(x)
based on integration with respect to a free latent variable.
The introduction of the latent variable enables the use of
unconstrained transformations and renders exceptional flex-
ibility for manipulating the transformation and its inverse.
The resulting coupling flows and autoregressive flows can
be inverted easily using the inverse formula and the Jacobian
is triangular.

We define q : R→ R through a latent function v(t) by

q : x→ y = v(1), v(t) = x+

∫ t

0

g(v(t), t)dt. (4)

where g(v, t) is uniformly Lipschitz continuous in v and
continuous in t (0 ≤ t ≤ 1). Equivalently, v(t) satisfies
v′(t) = g(v(t), t) and v(0) = x. So the transformation
from x to y can be viewed as an evolution of the latent
dynamic v(t). Note that the integral in (4) is with respect to
t instead of x and the integrand does not have to be positive.

Moreover, we can easily find the inverse transform as

q−1 : y → x = v(0), v(t) = y +

∫ t

1

g(v(t), t)dt. (5)

An explicit inverse formula brings significant computational
speedups as compared to existing integral-based methods
that rely on numerical root-finding algorithms. Compared
with other coupling functions/transformers, there is no as-
sumption on g other than Lipschitz continuity. We will show
later in Section 4 that the transformation in (4) is strictly
increasing and is general enough to approximate any given
continuously increasing map.

AUTM We term the mapping q in (4) an “Atomic Unre-
stricted Time Machine (AUTM)". “Atomic" means that (i)
q is always univariate and scalar-valued; (ii) g(v, t) can
be as simple as an affine function in v and does not have
to be a deep neural network to achieve good performance;
(iii) the computation of the transformation as well as Lips-
chitz constant is lightweight; (iv) the model can be easily
incorporated into existing normalizing flow architectures.
In fact, we will see later in Section 4 that any monotonic
normalizing flow is a limit of AUTM flows. “Unrestricted"
means that there is no constraint on parameters or function
forms in the model. “Time Machine" refers to the fact that
the model is automatically invertible and the computation
of inverse is essentially a reverse of integral limits. Thanks
to the “atomic" property, AUTM can be easily incorporated
into triangular flow architectures such as coupling flows and
autoregressive flows.

AUTM coupling flows Given a D dimensional input x =
(x1, . . . , xD) and d < D, the AUTM coupling layer f :
RD → RD is defined as follows.

y1:d = x1:d, yd+1:D = q(xd+1:D; θ(x1:d)), (6)

where q is the AUTM map defined in (4). Let f∗ denote
the AUTM coupling layer with q applied to x1:d instead of



xd+1:D, i.e.

y1:d = q(x1:d; θ(xd+1:D)), yd+1:D = xd+1:D. (7)

The AUTM coupling flow is defined by stacking f and f∗
in a multi-layer fashion as shown in Figure 1(left). Since the
inverse q−1 is given in (4), the inverse transformation f−1

or f−1∗ is readily available.

AUTM autoregressive flows An autoregressive flow is
composed of autoregressive mappings, similar to coupling
layers in coupling flows. The AUTM autoregressive map-
ping on RD is defined as

f(x; θ) =(q1(x1; θ1), . . . , qD(xD; θD(x1:D−1))), (8)

where each qk(xk; θk(x1:k−1)) is an AUTM map with un-
restricted conditioner θk(x1:k−1). See Figure 1(right) for
an illustration. The inverse mapping f−1 can be computed
rapidly by first computing q−11 (which gives x1) and then
q−12 , q−13 , . . . , q−1D , where each q−1k is explicitly given by
(5). The Jacobian of f in (8) is lower triangular.

Jacobian determinant and log-density The Jacobian of
AUTM flow is lower triangular. It will be shown in Theorem
1 that the derivative of the mapping q(x) is given by q′(x) =
exp

(∫ 1

0
∂g
∂v (v(t), t)dt

)
. Thus one can immediately derive

the Jacobian determinant of AUTM flow. If coupling layer
is used, the Jacobian determinant is

exp

(∫ 1

0

D∑
k=d+1

∂g

∂v
(vk(t), t; θ(x1:d))dt

)
If autoregressive layer is used, the Jacobian determinant is

exp

(∫ 1

0

D∑
k=1

∂g

∂v
(vk(t), t; θ(x1:k−1))dt

)
.

From the above formulas and (1), the change of log-density
of an AUTM flow follows immediately. If coupling layer is
used, then

log pY (y) = log pX(x)−
∫ 1

0

D∑
k=d+1

∂g

∂v
(vk(t), t; θ(x1:d))dt.

If autoregressive layer is used, then

log pY (y) = log pX(x)−
∫ 1

0

D∑
k=1

∂g

∂v
(vk(t), t; θ(x1:k−1))dt.

4 MONOTONICITY AND
UNIVERSALITY OF AUTM FLOWS

In this section, we present several key results on AUTM
flows, including monotonicity and universality. The proofs
can be found in Appendix A. The derivative of q(x) in (4)
is explicitly available.

Theorem 1 (Derivative). Let q(x) be defined in (4). Then

q′(x) = exp
(∫ 1

0
∂g
∂v (v(t), t)dt

)
.

Theorem 2 (Monotonicity). The mapping q(x) defined in
(4) is invertible and strictly increasing.

The expressive power of AUTM is summarized in the fol-
lowing theorems, which state that one can approximate
any monotone continuous transformation with a family of
AUTM transformations.

Theorem 3 (AUTM as a universal monotone mapping). Let
C be the space of continuous functions on R with compact-
open topology and let M ⊂ C be the cone of (strictly)
increasing continuous functions. Then the set of AUTM bi-
jections

Q = {q(x) in (4) : v(0) = x ∈ R}

is dense inM.

Theorem 4 (AUTM as a universal flow). For any coupling
or autoregressive flow F = F1◦F2◦· · ·◦Fp from RD to RD,
where each Fk is a triangular monotone transformation,
there exists a family of AUTM flows {Ts}s>0 = {Ts,1 ◦
Ts,2◦· · ·◦Ts,p}s>0 such that Ts converges to F pointwisely
and compactly as s→ 0. In fact, there exists a family such
that the convergence rate is O(e−

1
s ) as s→ 0.

Theorem 3 and Theorem 4 imply that all coupling flows and
autoregressive flows can be approximated arbitrarily well
by AUTM flows. In the following, we present an explicit
construction of such a family of AUTM flows that converge
to an arbitrarily given monotonic normalizing flow. The
convergence result provides a link between the proposed
AUTM flows and existing monotonic normalizing flows and
illustrates the representation power of AUTM. Notice that
every AUTM flow has explicit inverse, so the universality
result in this section shows that we can approximate any
monotonic flow by a flow with explicit inverse.

Universal AUTM flows. Let φ(x) be an arbitrary increas-
ing continuous function on R. Define a family of AUTM
bijections parametrized by s > 0 as follows:

qs(x) = x+

∫ 1

0

φ(vs(te
− 1

s ))− vs(te−
1
s )dt, (9)

where vs(t) = x +
∫ t
0
φ(vs(ze

− 1
s )) − vs(ze−

1
s )dz. Then

it can be shown that (see Appendix A - Proof of Theorem
3): qs|K converges to φ|K uniformly on any compact set
K ⊂ R as s → 0 and the convergence rate is O(e−

1
s ).

Based on qs, one can construct a family of AUTM coupling
flows or autoregressive flows that converge to the given flow
based on φ.

In fact, the family of AUTM flows in (9) is just one par-
ticular family of universal AUTM flows with more general



Figure 1: Left to right: AUTM coupling flow (2 layers), AUTM map, AUTM autoregressive flow (1 layer).

integrands. This is formalized in the theorem below regard-
ing universal AUTM flows that generalize (9). The proof is
given in Appendix A.

Theorem 5. For s > 0, let κs ∈ C([0, 1]) be a positive
function such that

∫ 1

0

κs(t)dt = 1 and
∫ e−

1
s

0

κs(t)dt→ 0 as s→ 0. (10)

Given any increasing continuous function φ(x), we de-
fine qs as follows qs(x) = x +

∫ 1

0
gs(vs, t)dt, where

gs(v, t) = κs(t)[φ(v(te
− 1

s )) − v(te−
1
s )] and vs(t) =

x+
∫ t
0
gs(vs, z)dz. Then as s→ 0, qs|K converges to φ|K

uniformly for any compact set K ⊂ R.

Remark 1. The proof of Theorem 3 in Appendix A indicates
that it may be sufficient to choose g(v, t) as a function
that is explicit in v only. In fact, it is shown in the proof
that, after a scaling of the time variable, the equation for
the approximant vs is autonomous. Thus we expect good
approximation power if g(v, t) = dv

dt is explicit in v only.

5 RELATED WORK

Integral-based methods: SOS and UMNN. Existing
integral-based methods like [Jaini et al., 2019, Wehenkel and
Louppe, 2019] require the integrand to be positive and the
inverse transformation is not analytically available. When
computing the inverse transformation, AUTM only requires
evaluating one integral while above methods require evalu-
ating k different integrals for k iterations in the root-finding
algorithm. Moreover, [Wehenkel and Louppe, 2019] models
the integrand as a positive neural network while AUTM
allows using general function classes with better computa-
tional efficiency than neural networks.

Neural ODE and FFJORD. Neural ODE [Chen et al.,
2018] and Free-form Jacobian of Reversible Dynamics
(FFJORD) [Grathwohl et al., 2019] use a dynamical system
to model the transformation, in which a multivariate neu-
ral network is used to model the vector-valued dynamics.
The use of the integral representation in AUTM to enable
the analytic inverse transformation is inspired by Neural
ODE and FFJORD. AUTM differs from FFJORD in three
aspects. Firstly, FFJORD is not computationally-efficient
because it relies on the the neural network to model the
dynamics and the Jacobian is a fully dense matrix whose
log-determinant can not be computed easily. AUTM, simi-
lar to other integral-based flows, employs (1) a coupling or
autoregressive structure so that the Jacobian is a triangular
matrix and the log-density is explicitly given; (2) decou-
pled entrywise transformations in each layer. The integrand
g in AUTM is specified by the user and can be as sim-
ple as polynomials while still achieve competitive results.
Secondly, it is rigorously proved that AUTM admits uni-
versal approximation property, while it is unclear weather
FFJORD admits universality. Thirdly, AUTM is a mono-
tonic flow while no monotonicity result for FFJORD can be
found. Overall, AUTM benefits from the triangular Jacobian
and decoupled transformations with simple integrands and
is thus much more computationally efficient than FFJORD.
It is also possible to incorporate hierarchical structures in
Cai et al. [2018], Erlandson et al. [2020] to further improve
the efficiency of AUTM, which will be pursued in a later
date.

Other models. Affine coupling flows [Dinh et al., 2014,
2017] use an affine coupling function so that the inverse is
trivial to compute. Recent developments consist in using
nonlinear monotone functions to improve the expressive-
ness of affine coupling functions. To guarantee invertibil-
ity, unlike integral-based models, many architectures e.g.
[Ziegler and Rush, 2019, Durkan et al., 2019b, Huang et al.,



2018, De Cao et al., 2020] restrict model parameters, which
limit the expressive power of the model and the training
efficiency. Moreover, computation of the inverse transforma-
tion usually requires numerical root-finding methods since a
tractable analytic inverse is often not available. The AUTM
framework circumvents those issues by using an integral
representation with respect to a latent variable. The inverse
is explicit, regardless of the choice of model classes or
parameters. This enables the rigorous justification of the
universality of AUTM flows.

6 EXPERIMENT

In this section, we present experiments to evaluate our
model. In Section 6.1, we perform density estimation on
five tabular datasets and compare with other methods. In
Section 6.2, we train our model on the CIFAR10 and Im-
ageNet32 datasets for image generation. Experiments are
conducted on either Nvidia 3080 GPU or Nvidia V100 GPU.
All experimental details are provided in Appendix B.

For image datasets, we model g(v, t) in (4) as a quadratic
polynomial in v. For density estimation, we consider three
different choices of g(v, t) in (4): g(v, t) = av + b + cv2,
g(v, t) = av+ b+ cv3 and g(v, t) = av+ b+ cσ(v), where
σ denotes the sigmoid function (g is chosen to be explicit
only in v due to Remark 1). Note that this is different from
many existing methods that rely on deep neural networks
to model the core function in the model, such as UMNN
[Wehenkel and Louppe, 2019] for the positive integrand,
NAF [Huang et al., 2018] and BNAF [De Cao et al., 2020]
for the autoregressive mapping, neural ODEs [Chen et al.,
2018] and FFJORD [Grathwohl et al., 2019] for the entire
dynamical system. We show in the following that, compared
to the state-of-the-art models, our proposed AUTM model
achieves excellent performance with simple choices of g.
More importantly, for high-dimensional image datasets like
ImageNet32, AUTM model requires significantly less model
parameters compared to other models.

6.1 DENSITY ESTIMATION

Data sets and baselines. We first evaluate our method on
four datasets from the UCI machine-learning repository
[Dheeru and Taniskidou, 2017]: POWER, GAS. HEPMASS,
MINIBOONE, and also the BSDS300 dataset, which are all
preprocessed by [Papamakarios et al., 2017]. We compare
our method to several existing normalizing flow models,
including Real NVP [Dinh et al., 2017], Glow [Kingma
and Dhariwal, 2018], RQ-NSF [Durkan et al., 2019b]), CP-
FLOW [Huang et al., 2021], FFJORD [Grathwohl et al.,
2019], UMNN [Wehenkel and Louppe, 2019] and autore-
gressive models such as MAF [Papamakarios et al., 2017],
MADE [Germain et al., 2015] and BNAF [De Cao et al.,
2020].

Model configuration and training. We use 10 (or 5)
masked AUTM layers and set the hidden dimensions 40
times (or 10 times) the dimension of the input. We apply a
random permutation of the elements of each output vector,
as the masked linear coupling layer, so that a different set
of elements is considered at each layer, which is a widely
used technique [De Cao et al., 2020], [Dinh et al., 2017],
[Papamakarios et al., 2017]. We use Adam as the optimizer
and select hyperparameters after an extensive grid search.

Results. We report average negative log-likelihood esti-
mates on the test sets in Table 2. It can be observed that
AUTM consistently outperforms Real NVP, Glow, MADE,
MAF, CP-Flow. On MINIBONDE dataset, our models per-
form better than all other models except BNAF. On POWER,
HEPMASS, BSDS300 dataset, one of the AUTM models
performs best among all baseline models. On GAS dataset,
our results are competitive at either top 2 or top 3 spot with
a tiny gap from the best.

6.2 EXPERIMENT ON IMAGE DATASET

Data sets and baselines. We then evaluate our method on
the CIFAR10 [Krizhevsky, 2009] and ImageNet32 [Oord
et al., 2016] datasets. Unlike density estimation tasks, image
datasets are large-scale and high-dimensional. As a result,
there are only a limited number of models available for
image tasks. We calculate bits per dim and compare with
other normalizing flow models including Real NVP [Dinh
et al., 2017], Glow [Kingma and Dhariwal, 2018], Flow++
[Ho et al., 2019], NSF [Durkan et al., 2019b]. The results of
bits per dim for each model are given in Table 3. We also
show sampled images by using AUTM in Figure 2.

Model configuration and training. We use 14 AUTM cou-
pling layers with 8 residual blocks for each layer (cf. [Kaim-
ing et al., 2016]) in our model. Each residual block has three
convolution layers with 128 channels. Our method is trained
for 2500 epochs with batch size 64 for CIFAR10, and 50
epochs with batch size 64 for ImageNet32 dataset.

Results. From Table 3, we can find our method outperforms
all baselines with the exception of Flow++ [Ho et al., 2019]
on CIFAR10 dataset, which uses a variational dequantiza-
tion technique. In addition, Table 3 shows AUTM is not
sensitive to the size of the dataset when we transfer from
CIFAR10 to ImageNet32. Comparing the number of param-
eters used for each method, we find that AUTM yields the
best performance with much fewer parameters compared
to other models for ImageNet32. In particular, the num-
ber of model parameters of Flow++ increases dramatically
as we move from CIFAR10 to ImageNet32 while affine
models like Real NVP and Glow only have a moderate
increase in the number of parameters. This is reasonable
since Flow++ is the only nonlinear model other than AUTM.
It demonstrates that AUTM, as a nonlinear model, yields



Table 2: Average test negative log-likelihood (in nats) of tabular datasets (lower is better). Numbers in the parenthesis are
standard deviations. Average/standard deviation is computed by 3 runs. The best performance for each dataset is highlighted
in boldface.

Model POWER GAS HEPMASS MINIBOONE BSDS300

Real NVP[Dinh et al., 2017] -0.17(0.01) -8.33(0.14) 18.71(0.02) 13.55(0.49) -153.28(1.78)

Glow[Kingma and Dhariwal, 2018] -0.17(0.01) -8.15(0.40) 18.92(0.08) 11.35(0.07) -155.07(0.03)

FFJORD[Grathwohl et al., 2019] -0.46(0.01) -8.59(0.12) 14.92(0.08) 10.43(0.04) -157.40(0.19)

UMNN[Wehenkel and Louppe, 2019] -0.63(0.01) -10.89(0.70) 13.99(0.21) 9.67(0.13) -157.98(0.01)
MADE[Germain et al., 2015] 3.08(0.03) -3.56(0.04) 20.98(0.02) 15.59(0.50) -148.85(0.28)

MAF[Papamakarios et al., 2017] -0.24(0.01) -10.08(0.02) 17.70(0.02) 11.75(0.44) -155.69(0.28)

CP-Flow[Huang et al., 2021] -0.52(0.01) -10.36(0.03) 16.93(0.08) 10.58(0.07) -154.99(0.08)

BNAF[De Cao et al., 2020] -0.61(0.01) -12.06(0.09) 14.71(0.38) 8.95(0.07) -157.36(0.03)

RQ-NSF (C)[Durkan et al., 2019b] -0.64(0.01) -13.09(0.02) 14.75(0.03) 9.67(0.47) -157.54(0.28)

AUTM: g(v, t) = av + b+ cv2 -0.63(0.03) -12.24(0.04) 14.62(0.30) 9.16(0.18) -157.45(0.05)

AUTM: g(v, t) = av + b+ cv3 -0.64(0.01) -12.37(0.06) 14.76(0.25) 9.33(0.10) -157.54(0.10)

AUTM: g(v, t) = av + b+ cσ(v) -0.61(0.02) -12.03(0.06) 14.94(0.33) 9.29(0.20) -157.28(0.14)

better efficiency and robustness in terms of parameter use.

Table 3: Results of BPD (bits per dim) on CIFAR10 and
ImageNet32 datasets. Results in brackets indicate the model
using variational dequantization.

CIFAR10 CIFAR10 ImageNet32 ImageNet32
Model BPD parameters BPD parameters

Real NVP 3.49 44.0M 4.28 66.1M
Glow 3.35 44.7M 4.09 67.1M

Flow++ (3.08) 31.4M (3.86) 169.0M
RQ-NSF (C) 3.38 11.8M - -

Our Method 3.29 35.5M 3.80 35.5M

6.3 NUMERICAL INVERSION OF AUTM

Existing normalizing flow models with no explicit inverse
usually employ bisection to compute the inverse transforma-
tion. For AUTM, more options are available to compute the
inverse mapping, such as fixed point iteration, which offers
faster convergence than bisection. We compare the perfor-
mance of bisection and fixed point iteration for AUTM by
considering a toy example where function g in (5) is cho-
sen as a specific quadratic polynomial in v and the input
variable x is randomly chosen from the unit interval. We
use the discretized version (five-point trapezoidal rule) of
the inverse formula in (5) as the initial guess for fixed point
iteration. Table 4 shows that this leads to significantly fewer
(around 50%) iteration steps than bisection to achieve the

same solution accuracy.

Table 4: Number of steps (averaged over 1000 random input)
of root-finding method to reach a certain error tolerance

Error tolerance 1e-3 1e-4 1e-5 1e-6

Iteration Method 4.565 6.642 8.658 10.831
Binary Search 8.967 12.398 15.668 19.073

6.4 COMPARISON OF FFJORD AND AUTM

Next, we test the runtime of FFJORD and AUTM on four
datasets from the UCI machine-learning repository POWER,
GAS. HEPMASS, MINIBOONE, all preprocessed by [Pa-
pamakarios et al., 2017]. For AUTM, we choose g(v, t) =
av + b+ cv3. We define the target negative log-likelihood
(target NLL) as the NLL achieved by FFJORD after train-
ing for 12 hours. The time for each method to reach the
target NLL is reported in Table 5. It demonstrates that
AUTM is significantly more efficient than FFJORD. This
is attributed to the structural advantages of AUTM. Firstly,
AUTM transforms the input vector x ∈ RD in an entrywise
fashion where the ith entry is a univariate function of xi.
In FFJORD, the transformation of x is characterized by a
neural network where each output dimension is a nonlinear
multivariate function of x = (x1, . . . , xD). Secondly, due
to the aforementioned structural differences, AUTM has a
triangular Jacobian while FFJORD has a dense Jacobian
that induces difficulty in computing the log-determinant ac-
curately. Thirdly, the integrand g in AUTM can be chosen



Figure 2: Left: Samples generated by using a pretrained model on CIFAR10 dataset. Right: Samples generated by using a
pretrained model on ImageNet32 dataset.

as a simple function, for example, a quadratic function in v.
In FFJORD, the integrand needs to be a neural network with
D input variables x1, . . . , xD. To evaluate the integral of
such a complicated integrand accurately, a large number of
quadrature nodes are needed, which will increase the cost in
both forward and backward transformations. Additionally,
AUTM enables the use of user-defined integrand g, which
will be beneficial if prior information of the transformation
to be learned is available.

Table 5: Runtime for FFJORD and AUTM to reach the target
negative log-likelihood for each dataset.

Dataset Target NLL FFJORD AUTM

POWER 0.23 12hr 6.92min
GAS -5.24 12hr 3.67min

HEPMASS 21.85 12hr 7.40min
MINIBOONE 11.29 12hr 1.75min

7 SUMMARY

We have introduced a new nonlinear monotonic triangular
flow called AUTM. AUTM leverages the explicit inverse
formula used in FFJORD and the triangular Jacobian in
coupling and autoregressive flows. Compared to FFJORD,
AUTM demonstrates much better computational efficiency
thanks to the triangular Jacobian structure, decoupled in-
put dimensions, simple representation of the scalar inte-
grand. Compared to other monotonic flows, AUTM has
unrestricted parameters and more convenient computation
of the inverse transformation. Theoretically, we have proved

that AUTM is a universal approximator for any monotonic
normalizing flow. The performance is demonstrated by com-
parison to the state-of-the-art models in density estima-
tion and image generation. As a nonlinear monotonic flow,
AUTM is able to achieve competitive performance on high-
dimensional image datasets.
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