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Abstract

Lexically constrained neural machine transla-
tion (NMT) draws much industrial attention for
its practical usage in specific domains. How-
ever, current autoregressive approaches suffer
from high latency. In this paper, we focus
on non-autoregressive translation (NAT) for
this problem for its efficiency advantage. We
identify that current constrained NAT models,
which are based on iterative editing, do not
handle low-frequency constraints well. To this
end, we propose a plug-in algorithm for this
line of work, i.e., Aligned Constrained Training
(ACT), which alleviates this problem by famil-
iarizing the model with the source-side context
of the constraints. Experiments on the gen-
eral and domain datasets show that our model
improves over the backbone constrained NAT
model in constraint preservation and translation
quality, especially for rare constraints.1

1 Introduction

Despite the success of neural machine translation
(NMT) (Bahdanau et al., 2015; Vaswani et al.,
2017; Barrault et al., 2020), real applications usu-
ally require the precise (if not exact) translation of
specific terms. One popular solution is to incor-
porate dictionaries of pre-defined terminologies as
lexical constraints to ensure the correct translation
of terms, which has been demonstrated to be ef-
fective in many areas such as domain adaptation,
interactive translation, etc.

Previous methods on lexically constrained
translation are mainly built upon Autoregressive
Translation (AT) models, imposing constraints at
inference-time (Ture et al., 2012; Hokamp and Liu,
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1Our implementation can be found at https://
github.com/sted-byte/ACT4NAT.

Source
Travellers︸ ︷︷ ︸

1.8K

screamed︸ ︷︷ ︸
24

and︸︷︷︸
2.8M

children︸ ︷︷ ︸
30.0K

cried︸ ︷︷ ︸
122

.

Target
Reisende︸ ︷︷ ︸

944

hätten︸ ︷︷ ︸
9.9K

geschrien︸ ︷︷ ︸
13

und︸︷︷︸
2.6M

Kinder︸ ︷︷ ︸
20.1K

geweint︸ ︷︷ ︸
13

.

Terminology Constraints
scream → geschrien
Unconstrained translation
Reisende schrien und Kinder rieen. ⇒ wrong term
Soft constrained translation
Reisende rien. ⇒ incomplete sentence & wrong term
Hard constrained translation
Reisende geschrien. ⇒ incomplete sentence

Table 1: Translation examples of a lexically constrained
non-autoregressive translation (NAT) model (Gu et al.,
2019) under a low-frequency word as constraint. The
underbraced word frequencies (uncased) are calculated
from the vast WMT14 English-German translation (En-
De) datasets (Vaswani et al., 2017).

2017; Post and Vilar, 2018) or training-time (Lu-
ong et al., 2015; Ailem et al., 2021). However, such
methods either are time-consuming in real-time ap-
plications or do not ensure the appearance of con-
straints in the output. To develop faster MT mod-
els for industrial applications, Non-Autoregressive
Translation (NAT) has been put forth (Gu et al.,
2018; Ghazvininejad et al., 2019; Gu et al., 2019;
Qian et al., 2021), which aims to generate tokens
in parallel, boosting inference efficiency compared
with left-to-right autoregressive decoding.

Researches on lexically constrained NAT are rel-
atively under-explored. Recent studies (Susanto
et al., 2020; Xu and Carpuat, 2021) impose lexical
constraints at inference time upon editing-based
iterative NAT models, where constraint tokens are
set as the initial sequence for further editing. How-
ever, such methods are vulnerable when encoun-
tered with low-frequency words as constraints. As
illustrated in Table 1, when translated with a rare

https://github.com/sted-byte/ACT4NAT
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constraint, the model is unable to generate the cor-
rect context of the term “geschrien” as if it does
not understand the constraint at all. It is dangerous
since terms in specific domains are usually low-
frequency words. We argue that the main reasons
behind this problem are 1) the inconsistency be-
tween training and constrained inference and 2) the
unawareness of the source-side context of the con-
straints.

To solve this problem, we build our algorithm
based on the idea that the context of a rare con-
straint tends not to be rare as well, i.e., “a stranger’s
neighbors are not necessarily strangers”, as demon-
strated in Table 1. We believe that, when the con-
straint is aligned to the source text, the context of
its source-side counterpart can be utilized to be
translated into the context of the target-side con-
straint, even if the constraint itself is rare. Also,
when enforced to learn to preserve designated con-
straints at training-time, a model should be better
at coping with constraints during inference-time.

Driven by these motivations, we propose a plug-
in algorithm to improve constrained NAT, namely
Aligned Constrained Training (ACT). ACT ex-
tends the family of editing-based iterative NAT (Gu
et al., 2019; Susanto et al., 2020; Xu and Carpuat,
2021), the current paradigm of constrained NAT.
Specifically, ACT is composed of two major com-
ponents: Constrained Training and Alignment
Prompting. The former extends regular training of
iterative NAT with pseudo training-time constraints
into the state transition of imitation learning. The
latter incorporates source alignment information of
constraints into training and inference, indicating
the context of the potentially rare terms.

In summary, this work makes the following con-
tributions:

• We identify and analyse the problems w.r.t.
rare lexical constraints in current methods for
constrained NAT;

• We propose a plug-in algorithm for current
constrained NAT models, i.e., aligned con-
strained training, to improve the translation
under rare constraints;

• Experiments show that our approach improves
the backbone model w.r.t. constraint preserva-
tion and translation quality, especially for rare
constraints.

2 Related Work

Lexically Constrained Translation Existing
translation methods impose lexical constraints dur-
ing either inference or training. At training time,
constrained MT models include code-switching
data augmentation (Dinu et al., 2019; Song et al.,
2019; Chen et al., 2020) and training with auxiliary
tasks such as token or span-level mask-prediction
(Ailem et al., 2021; Lee et al., 2021). At infer-
ence time, autoregressive constrained decoding al-
gorithms include utilizing placeholder tag (Luong
et al., 2015; Crego et al., 2016), grid beam search
(Hokamp and Liu, 2017; Post and Vilar, 2018)
and alignment-enhanced decoding (Alkhouli et al.,
2018; Song et al., 2020; Chen et al., 2021). For
the purpose of efficiency, recent studies also fo-
cus on non-autoregressive constrained translation.
Susanto et al. (2020) proposes to modify the infer-
ence procedure of Levenshtein Transformer (Gu
et al., 2019) where they disallow the deletion of
constraint words during iterative editing. Xu and
Carpuat (2021) further develops this idea and in-
troduces a reposition operation that can reorder the
constraint tokens. Our work absorbs the idea of
both lines of work. Based on NAT methods, we
brings alignment information by terminologies to
help learn the contextual information for lexical
constraints, especially the rare ones.

Non-Autoregressive Translation Although en-
joy the speed advantage, NAT models suffer from
performance degradation due to the multi-modality
problem, i.e., generating text when multiple trans-
lations are plausible. Gu et al. (2018) applies
sequence-level knowledge distillation (KD) (Kim
and Rush, 2016) that uses an AT’s output as an
NAT’s new target, which reduces word diversity
and reordering complexity in reference, resulting
in fewer modes (Zhou et al., 2020; Xu et al., 2021).
Various algorithms have also been proposed to alle-
viate this problem, including incorporating latent
variables (Kaiser et al., 2018; Shu et al., 2020),
iterative refinement (Ghazvininejad et al., 2019;
Stern et al., 2019; Gu et al., 2019; Guo et al.,
2020), advanced training objective (Wang et al.,
2019; Du et al., 2021) and gradually learning target-
side word inter-dependency by curriculum learning
(Qian et al., 2021). Our work extends the family
of editing-based iterative NAT models for its flexi-
bility to impose lexical constraints (Susanto et al.,
2020; Xu and Carpuat, 2021).



Action Implementation
Insertion Placeholder Classifier: predicts the number

of tokens (0 ∼ Kmax) to be inserted at every
consecutive position pairs and then inserts
the corresponding number of [PLH].
Token Classifier: predicts the actual target
token of the [PLH].

Deletion Deletion Classifier: predicts whether each
token (except for the boundaries) should be
“kept” or “deleted”.

Table 2: The implementation details of insertion and
deletion operations in LevT.

3 Background

3.1 Non-Autoregressive Translation

Given a source sentence as x and a target sentence
as y = {y1, · · · , yn}, an AT model generates in a
left-to-right order, i.e., generating yt by condition-
ing on x and y<t. An NAT model (Gu et al., 2018),
however, discards the word inter-dependency in
output tokens, with the conditional independent
probability distribution modeled as:

P (y|x) =
n∏

t=1

P (yt|x). (1)

Such factorization is featured with high effi-
ciency at the cost of performance drop in trans-
lation tasks due to the multi-modality problem, i.e.,
translating in mixed modes and resulting in token
repetition, missing, or incoherence.

3.2 Editing-based Iterative NAT

Iterative refinement by editing is an NAT paradigm
that suits constrained translations due to its flex-
ibility. It alleviates the multi-modality prob-
lem by being autoregressive in editing previ-
ously generated sequences while maintaining non-
autoregressiveness within each iteration. Thus, it
achieves better performance than fully NATs while
is faster than ATs.

Levenshtein Transformer To better illustrate
our idea, we use Levenshtein Transformer (LevT,
Gu et al., 2019) as the backbone model in this work,
which is a representative model for constrained
NAT based on iterative editing.

LevT is based on the Transformer architecture
(Vaswani et al., 2017), but more flexible and fast
than autoregressive ones. It models the generation
of sentences as Markov Decision Process (MDP)
defined by a tuple (Y,A, E ,R,y0). At each decod-
ing iteration, the agent E receives an input y ∈ Y ,

chooses an action a ∈ A and gets reward r. Y is a
set of discrete sentences and R is the reward func-
tion. y0 ∈ A is the initial sentence to be edited.

Each iteration consists of two basic operations,
i.e., deletion and insertion, which is described in
Table 2. For the k-th iteration of the sentence yk =
(<s>, y1, ..., yn,</s>), the insertion consists of
placeholder and token classifiers, and the deletion
is achieved by a deletion classifier. LevT trains the
model with imitation learning to insert and delete,
which lets the agent imitate the behaviors drawn
from the expert policy:

• Learning to insert: edit to reference by insert-
ing tokens from a fragmented sentence (e.g.,
random deletion of reference).

• Learning to delete: delete from the insertion
result of the current training status to the ref-
erence.

The key idea is to learn how to edit from a ground
truth after adding noise or the output of an adver-
sary policy to the reference. The ground truth of
the editing process is derived from the Levenshtein
distance (Levenshtein, 1965).

Lexically Constrained Inference Lexical con-
straints can be imposed upon a translation model
in: 1) soft constraints: allowing the constraints not
to appear in the translation; and 2) hard constraints:
forcing the constraints to appear in the translation.
In NAT, the constraints are generally incorporated
at inference time. Susanto et al. (2020) injects con-
straints as the initial sequence for iterative editing
in Levenshtein Transformer (LevT, Gu et al., 2019),
achieving soft constrained translation. And hard
constrained translation can be easily done by dis-
allowing the deletion of the constraints. Xu and
Carpuat (2021) alters the deletion action in LevT
with the reposition operation, allowing the reorder-
ing of multiple constraints.

3.3 Motivating Study: Self-Constrained
Translation

According to Table 1, constrained NAT models
seem to suffer from the low-frequency of lexical
constraints, which is dangerous as most terms in
practice are rare. To further explore the impact
of constraint frequency upon NATs, we conduct a
preliminary analysis on constrained LevT (Susanto
et al., 2020). We sort words in each reference text
based on frequency, dividing them into six buckets
by frequency order (as in Figure 1), and sample a
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Figure 1: Ablation study of self-constrained translation
on WMT14 En→De test set with Wiktionary terminol-
ogy constraints (Dinu et al., 2019). The absolute average
frequencies of self-constraints in a bucket decrease from
left to right in the x-axis.

word from each bucket as lexical constraints for
translation.2 We denote these constraints as self-
constraints. In this way, we have six times the data,
and the six samples derived from one raw sample
only differ in the lexical constraints.

As shown in Figure 1, translation performance
generally keeps improving as the self-constraint
gets rarer. This is because setting low-frequency
words in a sentence as constraints, which are often
hard to translate, actually lightens the load of an
NAT model. However, there are two noticeable per-
formance drops around relative frequency ranges
of 10%-30% (bucket 2) and 90%-100% (bucket
6), denoted as Drop#1 (-0.3 BLEU) and Drop#2
(-0.6 BLEU). Note that Drop#1 is mainly due to
the the fact that there are mostly unknown tokens
(i.e., <UNK>) in the bucket 2. We leave detailed
discussions about buckets and Drop#1 to Appendix
C.

In this experiment, we are more interested in
the reasons for Drop#2 when constraints are low-
frequency words. We assume a trade-off in self-
constrained NAT: the model does not have to trans-
late rare words as they are set as an initial sequence
(constraints), but it will have a hard time under-
standing the context of the rare constraint due to 1)
the rareness itself and 2) the lack of the alignment
information between target-side constraint tokens
and source tokens. Thus, the model does not know
how many tokens should be inserted to the left and
right of the constraint, which is consistent with the
findings in Table 1.

2Sentences that cannot be divided into six buckets are
removed.

4 Proposed Approach

The findings and assumptions discussed above mo-
tivate us to propose a plug-in algorithm for lexically
constrained NAT models, i.e., Aligned Constrained
Training (ACT). ACT is designed based on two
major ideas: 1) Constrained Training: bridging the
discrepancy between training and constrained infer-
ence; 2) Alignment Prompting: helping the model
understand the context of the constraints.

4.1 Constrained Training

As introduced in §3.2, constraints are typically im-
posed during inference time in NAT (Susanto et al.,
2020; Xu and Carpuat, 2021). Specifically, lexical
constraints are imposed by setting the initial se-
quence y0 as (<S>, C1, C2, ..., Ck,</S>), where
Ci = (c1, c2, ..., cl) is the i-th lexical constrained
word, l is the number of tokens in the i-th con-
straint, and k is the number of constraints.

However, such mandatory preservation of the
constraints is not carried out during training. Dur-
ing imitation learning, random deletion is applied
for ground-truth y∗ to get the incomplete sentences
y′, producing the data samples for expert policies
of how to insert from y′ to y∗. This leads to a sit-
uation where the model does not learn to preserve
fixed tokens and organize the translation around
the tokens. Such discrepancy could harm the appli-
cations of soft constrained translation.

To solve this problem, we propose a simple but
effective Constrained Training (CT) algorithm. We
first build pseudo terms from the target by sam-
pling 0-3 words (more tokens after tokenization)
from reference as the pre-defined constraints for
training.3 Afterward, we disallow the deletion of
pseudo term tokens during building data samples
for imitation learning. This encourages the model
to edit incomplete sentences containing lexical con-
straints into complete ones, bridging the gap be-
tween training and inference.

4.2 Alignment Prompting

As stated in §3.3, we assume the rareness of con-
straints hinders the model to insert proper tokens
of its contexts (i.e., a stranger’s neighbors are also
strangers). To make the matter worse, previous
research (Ding et al., 2021) has also shown that
lexical choice errors on low-frequency words tend

3In the experiments, these pseudo constraints are sampled
based on TF-IDF score to mimic the rare but important termi-
nology constraints in practice.
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Figure 2: An example of alignment prompting. The
constraint tokens y∗ are given by users during inference,
and can also be sampled from target sentence during
training. Given y∗, we align them with tokens x∗ in the
source and build alignment embeddings to be fed into
the encoder.

to be propagated from the teacher (an AT model)
to the student (an NAT model) in knowledge distil-
lation.

However, terminologies, by nature, provide hard
alignment information for source and target which
the model can conveniently utilize. Thus, on top
of constrained training, we propose an enhanced
approach named Aligned Constrained Training
(ACT). As illustrated in Figure 2, we propose to
directly align the target-side constraints with the
source words and prompt the alignment informa-
tion to the model during both training and infer-
ence.

Building Alignment for Constraints We first
align the source words to the target-side con-
straints, which are either pseudo constraints dur-
ing training or actual constraints during infer-
ence. For each translated sentence constraints
Ctgt = (C1, C2, ..., Ck), we use an external align-
ment tool external aligner, such as GIZA++ (Brown
et al., 1993; Och and Ney, 2003), to find the
corresponding source words, denoted as Csrc =
(C ′

1, C
′
2, ..., C

′
k).

Prompting Alignment into LevT The encoder
in LevT, besides token embedding and position
embedding, is further added with a learnable align-

Dataset # Sent. Avg. Len. Avg. Con.
(test set) of Con. Freq.

WMT14-WIKT 454 1.15 25,724.73
WMT17-IATE 414 1.09 3,685.42
WMT17-WIKT 728 1.22 26,252.70
OPUS-EMEA 2,996 1.95 2,187.63
OPUS-JRC 2,984 1.99 3,725.71

Table 3: Statistics of the test sets with target-side lexical
constraints. “Avg. Len. of Con.” denotes the average
number of words in a constraint. “Avg. Con. Freq.”
is the average frequency of lexical constraints calcu-
lated with the training vocabularies of corresponding
language.

ment embedding that comes from Csrc and Ctgt. We
set the alignment value for each token in C ′

i to i
and the others to 0, which are further encoded into
embeddings. The prompting of alignment is not
limited to training, as we also add such alignment
embeddings to source tokens aligned to target-side
constraints during inference.

5 Experiments

5.1 Data and Evaluation

Parallel Data and Knowledge Distillation We
consider the English→German (En→De) transla-
tion task and train all of the MT models on WMT14
En-De (3,961K sentence pairs), a benchmark trans-
lation dataset. All sentences are pre-processed via
byte-pair encoding (BPE) (Sennrich et al., 2016)
into sub-word units. Following the common prac-
tice of training an NAT model, we use the sentence-
level knowledge distillation data generated by a
Transformer, (Vaswani et al., 2017) provided by
Kasai et al. (2020).

Datasets with Lexical Constraints Given mod-
els trained on the above-mentioned training sets,
we evaluate them on the test sets of several lexically
constrained translation datasets. These test sets are
categorized into two types of standard lexically
constrained translation datasets: 1) Type#1: tasks
from WMT14 (Vaswani et al., 2017) and WMT17
(Bojar et al., 2017), which are of the same general
domain (news) as training sets; 2) Type#2: tasks
from OPUS (Tiedemann, 2012) that are of spe-
cific domains (medical and law). Particularly, the
real application scenarios of lexically constrained
MT models are usually domain-specific, and the
constrained words in these domain datasets are rel-
atively less frequent and more important.



Models WMT17-IATE WMT17-WIKT WMT14-WIKT Latency
Term% BLEU Term% BLEU Term% BLEU (ms)

Reported results in previous work
Transformer (Vaswani et al., 2017)† 79.65 29.58 79.75 30.80 76.77 31.75 244.5
DBA (Post and Vilar, 2018) 82.00 25.30 99.50 25.80 - - 434.4
Train-by-rep (Dinu et al., 2019) 94.50 26.00 93.40 26.30 - - -
LevT (Gu et al., 2019)† 80.31 28.97 81.11 30.24 80.23 29.86 92.0

w/ soft constraint (Susanto et al., 2020) 93.81 29.73 93.44 30.82 94.43 29.93 -
w/ hard constraint (Susanto et al., 2020) 100.00 30.13 100.00 31.20 100.00 30.49 -

EDITOR (Xu and Carpuat, 2021)† 83.00 27.90 83.50 28.80 - - 121.7
w/ soft constraint 97.10 28.80 96.80 29.30 - - -
w/ hard constraint 100.00 28.90 99.80 29.30 - - 134.1

Our implementation
LevT† 78.32 29.80 80.20 30.75 79.53 29.95 71.9

+ constrained training (CT)† 78.76 29.46 80.77 30.82 79.13 30.24 78.6
+ aligned constrained training (ACT)† 79.43 29.57 80.20 30.63 77.17 30.35 77.0

LevT w/ soft constraint 94.25 30.11 93.78 30.92 94.88 30.38 79.5
+ constrained training (CT) 96.24 30.19 96.61 30.96 97.44 31.01 75.4
+ aligned constrained training (ACT) 96.90 30.56 97.62 31.06 98.82 31.08 76.3

LevT w/ hard constraint 100.00 30.31 100.00 30.65 100.00 30.49 82.7
+ constrained training (CT) 100.00 30.31 100.00 30.99 100.00 31.01 78.1
+ aligned constrained training (ACT) 100.00 30.68 100.00 31.18 100.00 31.11 77.0

Table 4: Translation results with lexical constraints. Term% is the constraint term usage rate. Method† translates
without lexical constraints in input.

Following previous work (Dinu et al., 2019; Su-
santo et al., 2020; Xu and Carpuat, 2021), the lexi-
cal constraints in Type#1 tasks are extracted from
existing terminology databases such as Interactive
Terminology for Europe (IATE)4 and Wiktionary
(WIKT)5 accordingly. The OPUS-EMEA (medical
domain) and OPUS-JRC (legal domain) in Type#2
tasks are datasets from OPUS. The constraints are
extracted by randomly sampling 1 to 3 words from
the reference (Post and Vilar, 2018). These con-
straints are then tokenized with BPE, yielding a
larger number of tokens as constraints. The sta-
tistical report is shown in Table 3, indicating the
frequencies of Type#2 datasets are generally much
lower than Type#1 ones.

Evaluation Metrics We use BLEU (Papineni
et al., 2002) for estimating the general quality of
translation. We also use Term Usage Rate (Term%,
Dinu et al., 2019; Susanto et al., 2020; Lee et al.,
2021) to evaluate lexically constrained translation,
which is the ratio of term constraints appearing in
the translated text.

5.2 Models

We use Levenshtein Transformer (LevT, Gu et al.,
2019) as the backbone model to ACT algorithm for
constrained NAT. We compare our approach with a
series of previous MT models on applying lexical

4https://iate.europa.eu
5https://www.wiktionary.org

constraints:

• Transformer (Vaswani et al., 2017), set as the
AT baseline;

• Dynamic Beam Allocation (DBA) (Post and
Vilar, 2018) for constrained decoding with
dynamic beam allocation over Transformer;

• Train-by-sep (Dinu et al., 2019), trained on
augmented code-switched data by replacing
the source terms with target constraints or ap-
pend on source terms during training;

• Constrained LevT (Susanto et al., 2020),
which develops LevT (Gu et al., 2019) by set-
ting constraints as initial editing sequence;

• EDITOR (Xu and Carpuat, 2021), a variant
of LevT, replacing the delete action with a
reposition action.

Implementation Details We use and extend the
FairSeq framework (Ott et al., 2019) for train-
ing our models. We keep mostly the default pa-
rameters of FairSeq, such as setting dmodel =
512, dhidden = 2,048, nheads = 8, nlayers = 6 and
pdropout = 0.3. The learning rate is set as 0.0005,
the warmup step is set as 4,000 steps. All models
are trained with a batch size of 16,000 tokens for
maximum of 300,000 steps with Adam optimizer
(Kingma and Ba, 2014) on 2 NVIDIA GeForce
RTX 3090 GPUs with gradient accumulation of 4
batches. Checkpoints for testing are selected from
the average weights of the last 5 checkpoints. For
Transformer (Vaswani et al., 2017), we use the



checkpoint released by Ott et al. (2018).

5.3 Main Results

Table 4 reports the performance of LevT with ACT
(as well as the CT ablation) on the type 1 tasks
(WIKT and IATE as terminologies), compared with
baselines. In general, the results indicate the pro-
posed CT/ACT algorithms achieve a consistent
gain in performance, term coverage, and speed over
the backbone model mainly in the setting of con-
strained translation.

When translating with soft constraints, i.e., the
constraints need not appear in the output, adding
ACT to LevT helps preserve the terminology con-
straints (+∼5 Term%) and improves translation
performance (+0.31-0.88 on BLEU). If we enforce
hard constraints, the term usage rate doubtlessly
reaches 100%, with reasonable improvements on
BLEU. When translating without constraints, how-
ever, adding ACT does not bring consistent im-
provements as hard and soft constraints do.

As for the ablation for CT and ACT, we have two
observations: 1) term usage rate increases mainly
because of CT, and can be further improved by
ACT; 2) translation quality (BLEU) increases due
to the additional hard alignment of ACT over CT.
The former could be attributed to the behavior of
not deleting the constraints in CT. The latter is
because of the introduction of source-side informa-
tion of constraints that familiarize the model with
the constraint context.

Table 4 also shows the efficiency advantage of
non-autoregressive methods compared with autore-
gressive ones, which is widely reported in the
NAT research literature. The proposed methods
do not cause drops in translation speed against the
backbone LevT. When translating with lexical con-
straints, LevT with CT or ACT is even faster than
LevT. In contrast, constrained decoding methods
for autoregressive models (i.e., DBA) nearly dou-
ble the translation latency. Since the main purpose
of non-autoregressive research is developing effi-
cient algorithms, such findings could facilitate the
industrial usage for constrained translation.

Translation Results on Domain Datasets For a
generalized evaluation of our methods, we apply
the models trained on the general domain dataset
(WMT14 En-De) to medical (OPUS-EMEA) and
legal domains (OPUS-JRC). As seen in Table 5,
even greater performance boosts are witnessed.
When trained with ACT, both term usage (+∼8-

Model OPUS-EMEA OPUS-JRC

Term% BLEU Term% BLEU

LevT† 52.40 27.90 55.39 30.24
+ ACT† 53.41 28.30 55.35 31.01

LevT w/ soft 83.37 30.35 84.32 32.53
+ ACT 92.09 32.02 91.94 33.70

LevT w/ hard 100.00 30.77 100.00 30.08
+ ACT 100.00 32.30 100.00 34.09

Table 5: Experiments on test sets from OPUS, which is
out of the training domain (WMT14 En→De). Results
show that ACT brings larger performance for lower-
frequency lexical constraints within these datasets.

10 Term%) and translation performance (up to 4
BLEU points) largely increase, which is more sig-
nificant than the general domain.

The reason behind this observation is that the
backbone LevT would have a hard time recog-
nizing them as constraints since the lexical con-
straints in these datasets are much rarer. There-
fore, forcing LevT to translate with these rare con-
straints would generate worse text, e.g., BLEU
drops for 2.45 points on OPUS-JRC than with soft
constraints. And when translating with soft con-
straints, LevT over-deletes these rare constraints.
In contrast, the context information around con-
straints is effectively pin-pointed by ACT, so ACT
would know the context (“neighbors”) of the rare
constraint (“strangers”) and insert the translated
context around the lexical constraints. In this way,
more terms are preserved by ACT, and the transla-
tion achieves better results.

6 Analysis

6.1 Self-Constrained Translation Revisited

As a direct response to our motivation in this paper,
we revisit the ablation study of self-constrained
NAT in §3.3 with the proposed ACT algorithm.
Same as before, we build self-constraints from each
target sentence and sort them by frequency. As
shown in Figure 3(a), different from constrained
LevT that suffers from Drop#2 (§3.3), ACT man-
aged to handle this scenario pretty well. Following
the motivations given in §3.3, when constraints be-
come rarer, ACT successfully breaks the trade-off
with better understanding of the provided contex-
tual information.

What if the self-constraints are sorted based
on TF-IDF? We also study the importance of
different words in a sentence via TF-IDF by forcing
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(a) Sorting self-constraints by frequency.
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(b) Sorting self-constraints by TF-IDF.

Figure 3: Extended self-constrained translation results
on WMT14-WIKT. Each and every word of a reference
is used as a lexical constraint (i.e., self-constraint) for
translation, sorted by frequency or TF-IDF.

them as constraints. As results in Figure 3(b) show,
we have very similar observations from frequency-
based self-constraints at Figure 3(a), and the gap
between LevT and LevT + ACT is even higher as
TF-IDF score reaches the highest.

6.2 How does ACT perform under different
kinds of lexical constraints?

The experiments in §6.1 create pseudo lexical con-
straints by traversing the target-side reference for
understanding the proposed ACT. In the following
analyses, we study different properties of lexical
constraints, e.g., frequency and numbers, and how
they affect constrained translation.

Are improvements by ACT robust against con-
straints of different frequencies? Given termi-
nology constraints in the samples, we sort them
by (averaged) frequency and evenly average the
corresponding data samples into high, medium and
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Figure 4: Ablation results of constrained translation
with one-to-multiple constraints.

low categories.6 The results on translation quality
of each category for the En→De translation tasks
are presented in Table 6. We find that LevT benef
its mostly from ACT in the scenarios of lower-
frequency terms for three datasets. Although, in
some settings such as HIGH in WMT14-WIKT and
MED in WMT17-WIKT, the introduction of ACT
for constrained LevT seems to bring performance
drops for those higher-frequency terms. Since
terms from IATE are rarer than WIKT as in Table
3, the improvements brought by ACT are steady.

Are improvements by ACT robust against con-
straints of different numbers? In more practical
settings, the number of constraints is usually more
than one. To simulate this, we randomly sample 1-
5 words from each reference as lexical constraints,
and results are presented in Figure 4. We find that,
as the number of constraints grows, the translation
quality ostensibly becomes better for LevT with
or without ACT. And ACT consistently brings ex-
tra improvements, indicating the help by ACT for
constrained decoding in constrained NAT.

6.3 Limitations

Although the proposed ACT algorithm is effective
to improve NAT models on constrained translation,
we also find it does not bring much performance
gain on translation quality (i.e., BLEU) over the
backbone LevT for unconstrained translation. The
results on the full set of WMT14 En→De test set
further corroborate this finding, which is shown in
Appendix A.

Another limitation of our work is that we do not
propose a new paradigm for constrained NAT. The

6For multi-word terms, we take the average frequency of
the words.



Model WMT14-WIKT WMT17-IATE WMT17-WIKT

ALL HIGH MED. LOW ALL HIGH MED. LOW ALL HIGH MED. LOW

LevT† 29.95 30.46 28.03 31.49 29.80 30.08 29.72 29.45 30.75 30.96 29.09 32.16
+ ACT† 30.35 30.68 28.00 32.54 29.57 29.63 29.57 29.20 30.63 30.35 29.11 32.46

LevT w/ soft 30.38 30.37 28.50 32.19 30.11 29.25 30.67 30.04 30.92 30.70 29.58 32.23
+ ACT 31.08 30.48 29.18 33.85 30.56 29.93 31.05 30.36 31.06 30.72 29.53 32.73

LevT w/ hard 30.49 30.50 28.67 31.99 30.31 29.46 30.66 30.37 30.65 30.28 29.44 32.00
+ ACT 31.11 30.23 29.32 33.85 30.68 29.97 31.18 30.67 31.18 30.58 29.71 32.90

Table 6: Ablation results of terminology-constrained En→De translation tasks w.r.t. word frequency of terms.

purpose of this work is to enhance existing methods
for constrained NAT, i.e., editing-based iterative
NAT methods, under rare lexical constraints. It
would be interesting for future research to explore
new ways to impose lexical constraints on NAT
models, perhaps on non-iterative NAT.

Note that, machine translation in real scenario
still falls behind human performance. Moreover,
since we primary focus on improving constrained
NAT, real applications calls for refinement in vari-
ous aspects that we do not consider in this work.

7 Conclusion

In this work, we propose a plug-in algorithm
(ACT) to improve lexically constrained non-
autoregressive translation, especially under low-
frequency constraints. ACT bridges the gap
between training and constrained inference and
prompts the context information of the constraints
to the constrained NAT model. Experiments show
that ACT improves translation quality and term
preservation over the backbone NAT model Lev-
enshtein Transformer. Further analyses show that
the findings are consistent over constraints varied
from frequency, TF-IDF, and lengths. In the future,
we will explore the application of this approach
to more languages. We also encourage future re-
search to explore a new paradigm of constrained
NAT methods beyond editing-based iterative NAT.
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A Results on Full Test Set of WMT14
(En→De)

We extend the experiment on WMT14 En→De
task to the full test set (3,003 samples) in Ta-
ble 7. Following Susanto et al., we report results
on both the filtered test set for sentence pairs that
contain at least one target constraint (“Con.”, 454
sentences) and the full test set (“Full”, 3,003 sen-
tences), which contains samples that do not have
lexical constraints. When trained on the full test
set, term usage rate raises from 94.88% to 98.82%
when trained with ACT under soft constrained de-
coding, but the BLEU score has marginal improve-
ments. The conclusion is consistent with the ex-
periments in the main body of the paper that LevT
with ACT is not significantly better than LevT on
unconstrained translation, though our main claim
rests on the scenario of constrained NAT.

Model Term% BLEU

Full (3,003) Con. (454)

LevT† 79.53 26.95 29.95
+ ACT† 77.17 26.93 30.35

LevT w/ soft 94.88 27.04 30.38
+ ACT 98.82 27.06 31.08

LevT w/ hard 100.00 27.06 30.49
+ ACT 100.00 27.07 31.11

Table 7: Experiments on the test set of WMT14 En→De
task, which shares the same domain of training set. Fol-
lowing Susanto et al. (2020), “Con.” is the subset of
WMT14-Full as shown in Table 3, where every sample
has at least one lexical term as constraint.

B Case Study

The case study of LevT and LevT with ACT is pre-
sented in Table 8. In the case of unconstrained or
soft constrained translation, LevT incorrectly trans-
lates low frequency constraint words (e.g., Hühn-
erfeiern in case 1). In the case of hard constrained
translation, LevT tends to have more interfering
words around the constraint words (e.g., sind in
case 1). After incorporating ACT, we witness con-
sistent improvements in the translation of the con-
straints for LevT, especially for soft constrained
translation where it successfully translates given
constraints. However, when the translation is not
constrained on lexical terms (i.e., unconstrained
translation), LevT with ACT still struggles at trans-
lating the term correctly (both case 1 and 2).

Case 1
Source
However, carriages are also popular for hen parties, he
commented.
Target
Kutschen sind aber auch für Jungesellinnenabschiede be-
liebt, meint er.
Terminology Constraints
hen parties → Jungesellinnenabschiede

LevT
Unconstrained translation
Kutschen sind aber auch für Hühnerfeiern beliebt, kom-
mentierte er. ⇒ wrong term
Soft constrained translation
Allerdings sind auch für Hinnenabschiebeliebt, kommen-
tierte er. ⇒ wrong term
Hard constrained translation
Aber Auch für Jungesellinnenabschiede sind beliebt, sagte
er. ⇒ incomplete sentence

LevT + ACT
Unconstrained translation
Wagen sind aber auch für Hühnerpartys beliebt, kommen-
tierte er. ⇒ wrong term
Soft constrained translation
Kutschen sind aber auch für Jungesellinnenabschiede be-
liebt, sagte er.
Hard constrained translation
Kutschen sind aber auch für Jungesellinnenabschiede be-
liebt, sagte er.

Case 2
Source
The media also reported that several people injured.
Target
Medien berichteten außerdem von mehreren Verletzten.
Terminology Constraints
injured → Verletzten

LevT
Unconstrained translation
Die Medien berichteten auch, dass mehrere Menschen
verletzt wurden. ⇒ wrong term
Soft constrained translation
Die Medien berichteten auch, dass mehrere Verletzte wur-
den. ⇒ wrong term
Hard constrained translation
Die Medien berichteten auch, dass mehrere Verletzte wur-
den. ⇒ wrong term

LevT + ACT
Unconstrained translation
Die Medien berichteten auch, dass mehrere Menschen
verletzt wurden. ⇒ wrong term
Soft constrained translation
Die Medien berichteten auch, dass mehrere Verletzten.
Hard constrained translation
Die Medien berichteten auch, dass mehrere Verletzten.

Table 8: Case study of LevT and LevT with ACT. Text
in brown denotes the constraint word, text in red de-
notes the translation error of constraints, and ⇒ denotes
analysis of the translation errors.



Bucket # PUNC # NN* # (JJ*,RB*,VB*) # UNK # OTHER # ALL

1 1,300 971 433 0 63 2,767
2 148 1,520 567 186 346 2,767
3 12 1,926 531 97 201 2,767
4 2 2,298 308 4 155 2,767
5 0 2,377 208 3 179 2,767
6 0 2,336 134 5 292 2,767

Table 9: The counted statistics of constraint tokens within each bucket in self-constrained translation study, where
tokens are categorized according to their Part-Of-Speech tags. Among them, PUNC denotes punctuation; NN*
denotes all sets of nouns (whose POS tags start with NN, including NN, NNP, NNS, NNPS, etc.); JJ*, RB* and
VB* denotes all kinds of adjectives, adverbs and verbs; UNK is the constraint with UNK token and some special
symbols; and others as denoted as OTHER.
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Figure 5: Extended self-constrained translation results on WMT14-WIKT by removing UNK as constraints. The
settings are the same as in §6.1.

C Unraveling the Buckets in
Self-Constrained Translation

In this section, we dig further into the buckets in
self-constrained translation (§3.3, §6.1), especially
for understanding why Drop#1 happens.

As seen in Table 9, we categorize and count the
constraints into five classes based on their Part-Of-
Speech tagging with NLTK (Bird et al., 2009). We
find that, 1) punctuation (PUNK) dominates bucket
1; 2) as the constraint frequency decreases (from
bucket 1 to bucket 6), the number of constraints
identified as nouns (NN*) grows; 3) bucket 2 has
the most UNK constraints. The third finding is
because, as the BPE training was only done on the
training set of the datasets, there will be <UNK> on
the target side of the test set. Thus, cases in bucket
2 have a relatively large number of UNK tokens as
constraints, resulting in the Drop#1.

To give a clearer view about how is UNK caus-

ing Drop#1, we exclude samples with UNK as
constraints, and obtain a revised self-constrained
translation results, as in Figure 5. Clearly, Drop#1
disappears in the given setting. Of course, Drop#2
still verifies our claim in the paper.


