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ABSTRACT

Class imbalance is a fundamental problem in computer vision applications such as
semantic segmentation and image classification. Specifically, uneven class distri-
butions in a training dataset often result in unsatisfactory performance on under-
represented classes. Many works have proposed to weigh the standard cross en-
tropy loss function with pre-computed weights based on class statistics such as
the number of samples and class margins. There are two major drawbacks to
these methods: 1) constantly up-weighing minority classes can introduce exces-
sive false positives especially in semantic segmentation; 2) many recent works
discovered that pre-computed weights have adversarial effects on representation
learning. In this regard, we propose a hard-class mining loss by reshaping the
vanilla cross entropy loss such that it weights the loss for each class dynami-
cally based on changing recall performance. We show mathematically that the
novel recall loss changes gradually between the standard cross entropy loss and
the well-known inverse frequency cross entropy loss and balances precision and
accuracy. We first demonstrate that the proposed loss effectively balances preci-
sion and accuracy on semantic segmentation datasets, and leads to significant per-
formance improvement over other state-of-the-art loss functions used in semantic
segmentation, especially on shallow networks. On image classification, we design
a simple two-head training strategy to show that the novel loss function improves
representation learning on imbalanced datasets. We outperform the previously
best performing method by 5.7% on Place365-LT and by 1.1% on iNaturalist.

1 INTRODUCTION

Dataset imbalance is an important problem for many computer vision tasks such as semantic seg-
mentation and image classification. In semantic segmentation, imbalance occurs as a result of natural
occurrence and varying sizes of different classes. For example, in an outdoor driving segmentation
dataset, light poles and pedestrians are considered minority classes compared to large classes such as
building, sky, and road. These minority classes are often more important than large classes for safety
reasons. In image classification, imbalance can occur as a result of data collection. Some classes are
more difficult to obtain data for than others. For example, the inaturalist dataset (Van Horn et al.,
2018) has collected images of over 8000 natural species. Since some species are rare, the dataset
exhibits the notorious long-tail distribution. When presented with imbalanced datasets, the standard
cross entropy loss often yields unsatisfactory results as the training process naturally biases towards
large classes resulting in low accuracy and precision on small classes.

Researchers have studied the imbalance problem for classification, detection, and segmentation ex-
tensively. Most prior research has been on designing balanced loss functions. We classify ex-
isting loss functions under three categories: region-based losses, statistics-balanced losses and
performance-balanced losses. Region-based losses directly optimize region metrics (e.g., Jac-
card index (Rahman & Wang, 2016)) and are mainly popular in medical segmentation applications;
Statistics-balanced losses (e.g., LDAM (Cao et al., 2019), Class-Balanced (CB) loss (Cui et al.,
2019)) up/down weighs the contribution of a class based on its class margin or class size; how-
ever, they tend to encourage excessive false positives in minority classes to improve mean accuracy
especially in segmentation. A recent study in Zhou et al. (2020) also shows that the weighting
undermines the generic representation learning capability of the feature extractors; Performance-

balanced losses (e.g., focal loss (Lin et al., 2017)) use a certain performance indicator to weigh
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Figure 1: (a) We show normalized recall weights over iterations for recall loss. The horizontal axis
is arranged in descending order in terms of pixel percentage. % indicates class pixel percentage. The
recall weights change dynamically according to the performance metric recall. (b) We design a Sim-
ple Decoupled Network (SDN) to decouple representation and classifier learning. (c) In inference,
only one branch is used in SDN.

the loss of each class. As an example, focal loss assumes that the difficulty of a class is correlated
with imbalance and can be reflected by the predicted confidence. However, it has not been very
successful in other applications for dealing with imbalance as reported by Cui et al. (2019). We
investigate the reasons of failure in Appendix A.1. Besides various losses, another thread focuses
on training strategies to decouple classifier and representation learning in image classification such
as the two-stage (Kang et al., 2020) and two-branch (Zhou et al., 2020) approaches. The decoupling
approaches have shown state-of-the-art performance compared to other carefully designed losses.
As studied by Zhou et al. (2020), statistics-balanced losses might even negatively affect representa-
tion learning because they always upweigh a minority class and ignores many more examples from
the large classes.

We propose a novel performance-balanced loss using the recall metric to address the imbalance
problem. The recall loss down/up weighs a class based on the training recall performance of that
class. It is an example of hard class mining as supposed to the hard example mining strategy in the
focal loss. Unlike the statistics-balanced losses, the recall loss dynamically changes its weights with
training based on per-class recall performance (see fig. 1(a)). The dynamism is the key to overcome
many drawbacks of the statistics-balanced losses. In our experiments, the CB loss improves accu-
racy at the expense of Intersection over Union (IOU) which considers false positives in semantic
segmentation. However, our recall loss can effectively balance between precision and recall of each
class, and hence, it improves accuracy but maintains a competitive IOU. Experiments on two bench-
mark semantic segmentation datasets demonstrate that the proposed recall loss shows significantly
better performance than state-of-the-art loss functions used in prior works. We also show that while
statistics-balanced losses negatively affect representation learning, the recall loss improves repre-
sentation learning for imbalanced image classification and achieves state-of-the-art results with our
simple decoupled network (fig. 1(b),(c)) on two common benchmarks. Specifically, we outperform
previous state-of-the-art methods on Place-LT by 5.7% and iNaturalist2018 by 1.1%.

Our main contributions are summarized below.

• We introduce a novel loss function based on the metric recall. Recall loss weighs the standard
cross entropy loss for each class with its instantaneous training recall performance.

• The proposed recall loss learns a better semantic segmentation model that provides improved and
balanced performance of accuracy and IOU. We demonstrate the loss on both synthetic and real
semantic segmentation datasets.

• The proposed loss also improves feature learning in image classification. We show state-of-the-art
results on two common classification benchmarks with a simple decoupled network.

2 RELATED WORK

Imbalance in Image Classification. Various losses have been proposed to deal with imbalance
or long-tail distributions in image classification. Cost-sensitive loss (Khan et al., 2017) proposes to
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iteratively optimize both the model parameters and also a cost-sensitive layer which is integrated into
the cost function (more in Appendix B). Lifted Loss (Oh Song et al., 2016) considers all positive and
negative pairs in a mini-batch. Range loss (Zhang et al., 2017) pushes examples in the same class
together while forcing different class centers away from each other. More complicated margin-
based approaches, (Dong et al., 2018; Khan et al., 2019; Hayat et al., 2019) are discussed in the
Appendix B. Class-Balanced Loss (Cui et al., 2019) motivates a weighted cross entropy loss with
the concept of effective number of samples in each class. LDAM (Cao et al., 2019) also derives a
weighted cross entropy loss based on margins between classes. However, DecoupleRC (Kang et al.,
2020) pointed out that balanced losses might negatively affect the representation learning process;
hence, classifier learning and representation learning should be separated. OLTR (Liu et al., 2019)
first learns a good representation and uses an attention mechanism to learn a balanced classifier. In
the same spirit, DRW (Cao et al., 2019) uses a two-stage training, and BBN (Zhou et al., 2020)
proposes a two-branch network with a custom training schedule. Both methods emphasize generic
representation learning in the beginning and rebalancing the small classes at a later stage. However,
both methods require extensive experiments for finding a good learning schedule. Drawing from the
same idea, we design a Simple Decoupled Network (SDN) that uses two classification heads where
one head is responsible for feature extractor training and the other for classifier training.

Imbalance in Image Segmentation. In image segmentation, Dice and Jaccard indices (Intersection
over Union) are commonly used as the evaluation metrics. However, the most common training
criterion, cross entropy, does not directly optimize these metrics. In medical imaging, researchers
proposed to optimize soft/surrogate version of these indices. SoftIOU (Rahman & Wang, 2016)
proposes to optimize a soft version of the Jaccard index; Lovasz Softmax (Berman et al., 2018) also
optimizes the Jaccard index based on the Lovasz convex extension; SoftDice (Sudre et al., 2017)
optimizes a soft version of the Dice index and similarly softTversky (Salehi et al., 2017) optimizes a
soft Tversky index. Table 1 in Appendix 3.4 provides an overview of the different indices. However,
concerns have been raised in Taghanaki et al. (2019) on whether these losses consider the trade-
off between false positives and false negatives. We show that they also tend to yield high mean
accuracy at the expense of lower mean IOU, whereas our loss improves accuracy while maintaining
a competitive IOU.

Imbalance in Object Detection. Imbalance is also a problem in object detection where the
foreground-background imbalance is extreme and undermines learning. Online Hard Example Min-
ing (OHEM) (Shrivastava et al., 2016) proposes to find hard examples by ranking the losses and
only keeping those with the highest losses. Seesaw Loss (Wang et al., 2020) proposes to dynami-
cally weight the cross entropy loss with cumulative class ratios. Focal Loss (FL) (Lin et al., 2017)
chooses to down weigh easy samples and emphasize hard samples by weighting each sample by 1�p
where p is the predicted probability for the sample. The weight for each sample dynamically changes
with training and the method never completely discards any samples. Focal loss is especially suc-
cessful because it is easy to implement and proves effective in the binary foreground-background
imbalance setting. We compare the proposed method with these losses on image classification and
semantic segmentation.

3 RECALL LOSS

3.1 MOTIVATION: FROM INVERSE FREQUENCY LOSS TO RECALL LOSS

To motivate our proposed loss, we first analyze the standard cross entropy loss. Let {xn, yn}8n 2
{1, ..., N}, where xn 2 Rd, yn 2 {1, ..., C} denote the set of training data and corresponding labels.
Let Pn denotes the predictive softmax-distribution over all classes for input xn and P i

n denotes the
probability of the i-th class. The cross entropy loss used in multiclass classification is defined as:

CE = �
NX

n=1

log(P yn
n ) = �

CX

c=1

X

n:yn=c

log(P yn
n ) = �

CX

c=1

Nc log(P
c) (1)

where P c = (
Q

n:yn=c P
yn
n )1/Nc denotes the geometric mean confidence of class c and Nc denotes

the number of samples in class c. As shown in Eq. 1, the conventional cross entropy optimizes the
geometric mean confidence of each class weighted by the number of pixels in each class. When
there is a significant class imbalance in the dataset, the loss function biases towards large classes as
a result of larger Nc.
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One commonly used loss for imbalanced datasets is inverse frequency cross entropy loss (Eigen
& Fergus, 2015; Badrinarayanan et al., 2017) which assigns more weight to the loss of minority
classes. Let N denote the total number of pixels in the training set and Nc denotes the number
of pixels belonging to class c 2 {1, .., C}. The frequency of a class is calculated as freq(c) =
Nc/N . We show that while the unweighted cross entropy loss optimizes the overall confidence,
the loss weighted by inverse frequency optimizes mean confidence. If we use an inverse frequency
weighting, the loss is rebalanced. Note we leave out the N in freq(c) as it is shared by all classes.

InvCE = �
CX

c=1

1

freq(c)
Nc log(P

c) = �
CX

c=1

1

Nc
Nc log(P

c) = �
CX

c=1

log(P c) (2)

As shown in Eq. 2, the weighted loss optimizes the geometric mean of accuracy directly. However,
the inverse frequency loss might not be optimal in practice because it over-weighs the minority
classes and introduces excessive false positives, i.e., it sacrifices precision for recall. This problem
is especially severe in semantic segmentation (Chan et al., 2019). Applying the inverse frequency
loss to segmentation increases recall for each class. However, the improvement comes at the cost of
excessive false positives, especially for small classes.

While the inverse frequency loss solves the problem of imbalance, it focuses only on improving one
aspect of the problem in classification, i.e. the recall of each class. To solve this issue, we propose to
weigh the inverse frequency loss in Eq. 2 with the false negative (FNc) counts for each class. The
first insight is that the FNc is bounded by the total number of samples in a class and zero, i.e.

Nc � FNc � 0 (3)

By weighting the inverse frequency cross entropy loss in Eq. 2 by the false negative counts for each
class, we obtain a moderate loss function which sits between the regular cross entropy loss and
inverse frequency loss. We want to note that the idea of finding a middle ground between these
two loss functions has been explored in different forms. For example, the BBN (Zhou et al., 2020)
method explicitly uses an adaptor function that controls the contribution of the two losses. However,
an obvious drawback is that the adaptor function needs to be extensively searched based on empirical
evidence and intuition.

RecallCE = �
CX

c=1

FNc log(P
c) = �

CX

c=1

FNc

Nc
Nc log(P

c) = �
CX

c=1

FNc

FNc + TPc
Nc log(P

c)

(4)

As Eq. 4 shows, the loss can be implemented as the regular cross entropy loss weighted by class-
wise false negative rate (FNR). The second insight is that minority classes are most likely more
difficult to classify with higher FNR and large classes with smaller FNR. Therefore, similar to
inverse frequency loss, gradients of minority classes will be boosted and gradients of majority classes
will be suppressed. However, unlike frequency weighting, the weighting will not be as extreme as
motivated in Eq. 3. In the next section, we will derive the final dynamic form and compare it to the
other performance-balanced loss: the focal loss (Lin et al., 2017).

3.2 MOTIVATION: FROM FOCAL LOSS TO RECALL LOSS

The previous section proposed to weigh cross entropy with the false negative rate of each class.
Unlike frequency and decision margin (Cao et al., 2019) which are characteristics of the dataset,
FNR is a metric of a model’s performance. As we continue to update the model’s parameters, FNR
changes. Therefore, the weights for each class change dynamically to reflect a model’s instantaneous
performance. We rewrite Eq. 4 and introduce a subscript t to denote the time dependency.

RecallCE = �
CX

c=1

(1� TPc,t

FNc,t + TPc,t
)Nc log(p

c,t) = �
CX

c=1

X

n:yi=c

(1�Rc,t) log(pn,t) (5)

where Rc,t is the recall for class c at optimization step t. n : yi = c denotes all samples such that
the ground truth label yi is class c.

The other performance-balanced loss is focal loss (Lin et al., 2017). It is developed originally for
background-foreground imbalance in object detection. The loss function weighs the cross entropy

4



Under review as a conference paper at ICLR 2021

Recall(Gc,Pc) Precision(Gc,Pc) Dice(Gc,Pc) Jaccard(Gc,Pc) F1(Gc,Pc) Tversky(Gc,Pc)

Set Rep. |Gc\Pc|
|Gc|

|Gc\Pc|
|Pc|

2|Gi\Pc|
|Pc|+|Gc|

|Gc\Pc|
|Gc[Pc|

|Gc\Pc|
|Gc[Pc|+ 1

2 |Pc|+ 1
2 |Gc|

|Gc\Pc|
|Gc[Pc|+↵|Pc|+�|Gc|

Boolean Rep. TPc
TPc+FNc

TPc
TPc+FPc

2TPc
2TPc+FPc+FNc

TPc
TPc+FPc+FNc

TPc

TPc+ 1
2FPc+ 1

2FNc

TPc
TPc+↵FPc+�FNc

Table 1: Region Metrics: We show both set representation and Boolean representation. TP, FN and
FP stand for true positive, false negative and false positive respectively. The subscript c means that
the metrics are calculated for each class.

loss of each sample by 1�p where p is the predicted probability/confidence. Intuitively, hard samples
will have low confidence and therefore a high weight. It can be thought of as a hard-example mining
loss. To see recall loss’s resemblance to focal loss, we need to need to rewrite it slightly.

FocalCE = �
NX

n=1

(1� pyn
n,t)

� log pyn
n,t = �

CX

c=1

X

n:yn=c

(1� pn,t)
� log pn,t (6)

where pyn
n,t is predicted probability of class yn for sample n at time t; � is a scalar hyperparameter.

Focal loss has been a very popular loss function for imbalance in detection. It is appealing because it
dynamically adjusts the weight for each sample depending on the difficulty of the sample and model
performance. However, the focal loss is not specifically effective against imbalanced classification
problems as reflected by poor performance reported by many papers (Cao et al., 2019; Cui et al.,
2019). By examining the similarity between Eq. 5 and Eq. 6, we argue that the proposed recall loss
function can be seen as a class-wise focal loss with � = 1 and the per-class metric Rc,t replacing
per-sample probability pyn

n,t. The next section will discuss how to estimate the recall for each class.

3.3 RECALL ESTIMATION

The recall loss is designed to reflect the instantaneous training performance of a model on the cur-
rent input data. A straightforward way is to estimate the recall based on the current batch statistics,
i.e., count false positives for each class from an entire batch. This method provides a reliable esti-
mation of the model’s current performance if there is a sufficient number of samples for each class

in the batch. Intuitively for classification, batch recall is a good estimation if the number of classes
is not much larger than the batch size. For semantic segmentation, batch recall is almost always
reliable since each image contains hundreds of pixels for each class. For subsequent segmentation
experiments, we use the batch recall loss where the batch recall is calculated as follows:

Rc,t =
TPc,t

TPc,t + FNc,t
(7)

For classification, estimating recall is problematic for a large number of classes. For example, the
iNaturalist2018 dataset has 8,142 classes. For a batch size of 128, it is difficult to sample sufficient
data for any class. To mitigate the problem, we use the Exponential Moving Average (EMA) to
estimate the recall and calculate the EMA recall loss.

R̃c,t = ↵Rc,t + (1� ↵)Rc,t�1 (8)

3.4 ANALYSIS: RECALL, PRECISION, DICE, JACCARD AND TVESKY

Why do we not use other metrics such as F1, Dice, Jaccard and Tvesky as the weights? Following
previous convention, let Gc and Pc denote the set of ground truth (positive) samples and predicted
samples for class c. Let FPc, TNc denote the set of false positive and true negative samples respec-
tively for class c, and other terms are defined similarly. Recall is different from the other metrics in
that it does not have false positive in the denominator and this distinction makes it ideal for weight-
ing cross entropy loss (and others not) as shown in table 1. Referring back to Eq. 5, where recall loss
is defined as weighted cross entropy by 1 �Rc, replacing recall by any other metrics above would
result in FP appearing in the numerator of the weights. For example, a hypothetical precision loss
can be defined as following.

PrecisionLoss�
CX

c=1

X

n:yi=c

✓
FPc,t

FPc,t + TPc,t

◆�

log(pn,t) (9)
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This formulation will introduce unexpected behavior. A large false positive count in a class will
result in a large weight, which further encourages false detection for that class. This will cause the
number of false positives to explode. From a different perspective, because in cross entropy loss we
always penalize the ground truth samples i 2 Gc = {i : yi = c} for a class c, a proper weighting
should be proportional to FNc ✓ Gc but not FPc 6⇢ Gc which does not belong to the set of ground
truth samples. The same analysis can be applied to other metrics involving false positives.

3.5 RECALL LOSS AS A FEATURE LEARNING LOSS FOR IMBALANCED CLASSIFICATION

Recent works (Kang et al., 2020) on the imbalanced classification problem proposed to separate
representation learning and classifier learning. Intuitively, the final classifier layer is negatively
affected by highly imbalanced data distributions while the convolutional neural network backbone
is not as affected. In other words, representation learning benefits from all the data regardless of
their class membership. It has been shown in Kang et al. (2020) that weighted losses do not produce
large improvement because they can negatively affect representation learning. While we need to
be careful when introducing weighted losses to train the feature extractor, some previous works
(Cao et al., 2019; Zhou et al., 2020) showed that it can still be beneficial to carefully ”fine-tune”
CNNs with balancing techniques towards the end of a training cycle when the learning rate has
been annealed. We propose to use recall loss as a feature learning loss to replace the standard
cross entropy. We experimentally show that recall loss is a better suited loss for representation
learning because it considers imbalance in datasets while dynamically adjusting the weights to not
bias towards any class. To apply recall loss to classification, we introduce a Simple Decoupled
Network (SDN) to decouple representation and classifier learning (fig. 1(b),(c)).

Let f✓ denote the feature extractor and {g✓, h✓} denote two classifier heads on top of the feature
extractor. Generally speaking, f✓ is parameterized by a CNN and {g✓, h✓} are two separate fully
connected networks. Similar to previous works (Kang et al., 2020), (Zhou et al., 2020), we design
a simple decoupled network with two classification heads and a shared feature backbone as shown
in fig. 1 (b). More specifically, the loss from the head g✓ backpropagates to the feature extractor
f✓ while the loss from the head h✓ is stopped. The g✓ head is trained with recall loss and the h✓

head is trained with the CB loss (Cui et al., 2019). In other words, recall loss trains the feature
extractor while the CB loss does not. We only use the h✓ head in inference. Therefore, this simple
modification during training does not introduce any additional change to inference. The proposed
method simplifies BBN (Zhou et al., 2020) in two ways. 1) Only one loss function affects the
backbone. Therefore, there is no need for hand-tuning an adaptor function for controlling two
losses. 2) We only use one head for inference and discard the other. This simple design proves
to be effective in our experiments.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets. We evaluate our recall loss on two popular large-scale outdoor semantic segmentation
datasets, Synthia (Ros et al., 2016) and Cityscapes (Cordts et al., 2016). Synthia is a photorealistic
synthetic dataset with different seasons, weather, and lighting conditions. Specifically, we use the
Synthia-sequence Summer split for training (4400), validation (624), and testing (1272). Cityscapes
consists of real photos of urban street scenes in several cities in Europe. It has 5000 annotated
images for training and another 5000 for evaluation. We further show that recall loss is beneficial
for feature learning in image classification on two large-scale long-tailed datasets including Place-
LT (Liu et al., 2019) and iNaturvspacealist2018 (Van Horn et al., 2018). Place-LT has 365 classes
and long-tailed class distribution. It is created by sampling from the original balanced dataset (Zhou
et al., 2017) following a Pareto distribution. iNaturalist2018 is a long-tailed image collection of
natural species of 8142 classes. Please refer to Appendix A.2 for details on implementation.

Evaluation Metrics. We report mean accuracy and mean IOU for semantic segmentation exper-
iments and overall accuracy for image classification following previous works (Cao et al., 2019;
Zhou et al., 2020; Liu et al., 2019; Kang et al., 2020) on these datasts. We note that both mean
accuracy and mean IOU are important metrics for semantic segmentation. While a good mean IOU
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Figure 2: (a) Mean IOU per class on Synthia dataset with Resnet18. (b) Mean Accuracy per class
on Synthia dataset with Resnet18. (c) Normalized 1 � Rc,t weights over time for recall loss. The
weight for the bike class decreased over time indicating improved performance.

Focal RecallCross-EntropyInput Ground Truth

Figure 3: Visualization of Segmentation results on Synthia with Resenet18. Recall loss encourages
models to predict more small classes such as poles and pedestrians. Compared to the cross-entropy
trained model, the recall loss trained model is able to output finer details especially for small classes.

indicates a balanced performance of precision and recall, mean accuracy is an indicator of the de-
tection rate of each class, which is important for safety-critical applications such as self-driving.

4.2 SEMANTIC SEGMENTATION EXPERIMENTS

For semantic segmentation experiments, we compare our method with two region-based losses,
SoftIOU (Rahman & Wang, 2016) and Lovasz softamax (Berman et al., 2018). Both of these losses
aim to minimize a soft/surrogate version of the metric IOU. As analyzed by Eelbode et al. (2020),
the softDice loss (Sudre et al., 2017) and softTversky loss (Salehi et al., 2017) are similar to the
two chosen losses. It is representative to compare to two of them. We also compare with state-of-
the-art losses for imbalanced image classification and detection such as CB-CE (Cui et al., 2019),
Focal loss (Lin et al., 2017) and Online Hard Example Mining (OHEM) loss (Shrivastava et al.,
2016). We keep top 70% samples in OHEM. While there are other techniques for imbalanced image
classification, they require changes to learning schedules and architectures. A direct adaptation of
them for semantic segmentation is not trivial. We compare with them directly on image classification
datasets.

CE SoftIOU Lovasz OHEM CB-CE Focal Recall

mIOU 79.87 70.29 68.20 64.56 75.41 79.91 80.78
mACC 84.32 88.03 87.81 76.87 95.76 84.78 91.03

(a) DeepLab Resnet18 performance on Synthia

CE SoftIOU Lovasz OHEM CB-CE Focal Recall

mIOU 80.84 72.02 70.79 65.13 75.45 80.41 79.84
mACC 85.34 88.64 91.01 81.37 95.78 85.04 91.14

(b) DeepLab Resnet101 performance on Synthia

Table 2: We compare the recall loss with other losses on the Synthia dataset using two different
backbone networks. Recall loss improves accuracy significantly while offers competitive IOU.
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CE SoftIOU Lovasz OHEM CB-CE Focal Recall

mIOU 60.66 60.49 55.70 50.00 36.37 62.11 60.99
mACC 72.24 73.51 67.68 61.41 68.99 74.47 77.28

(a) DeepLab Resnet18 performance on Cityscapes

CE SoftIOU Lovasz OHEM CB-CE Focal Recall

mIOU 70.42 65.49 49.83 56.69 58.59 67.11 70.51
mACC 80.54 80.65 61.77 68.54 86.42 78.92 81.34

(b) DeepLab Resnet101 performance on Cityscapes

Table 3: We compare recall loss with other losses on the Cityscapes dataset with real images using
different backbones. Recall loss yields the best accuracy and maintains a competitive IOU. This
demonstrates its robustness to label noise in real datasets.

↵ 0.1 0.3 0.5 0.7 0.9

Resnet152 40.01 39.43 40.01 39.56 39.81

(a) Accuracy with different ↵ on Place-LT

↵ 0.001 0.01 0.1 0.2 0.3

Resnet50 67.03 66.70 66.57 66.20 66.01

(b) Accuracy with different ↵ on iNaturalist2018.

Table 4: To study sensitivity of EMA on different datasets, we experimented with different ↵ values
and report the validation accuracy. We use ↵ = 0.9 and ↵ = 0.001 for Place365 and iNaturalist2018
respectively in subsequent comparison with other methods.

Synthia. We first present results on the synthetic Synthia segmentation dataset in table 2. Soft-
IOU, Lovasz, CB-CE all improved the mean accuracy compared to the baseline cross entropy loss.
However, the improvement comes at a cost of lower mean IOU. Focal loss performs similarly to
the standard cross entropy loss. This is consistent with our statement that hard-example weighting
in focal loss is not effective against multi-class imbalance. OHEM performs worse on both met-
rics. We think this is because OHEM completely discards 30% training samples at each iteration
and this negatively affects feature learning. On the other hand, the proposed recall loss improves
the mean accuracy metric and maintains good mean IOU. This validates our analysis that the re-
call loss can balance between precision and recall. The same trend is observed for both shallow
backbone, resnet18, and deep backbone resnet101. However, we note that the effectiveness of the
recall loss is more obvious on a less powerful feature backbone. We hypothesize that less powerful
backbones are more likely to spend its limited representation capability on large class and thus bias
towards them. This is important because in many applications, hardware limits the deployment of
computation-heavy backbones and we need to attend to small classes for safety relying on shal-
low feature extractors. In fig. 2, we show per-class accuracy and IOU performance on three losses
including the recall loss. We observe that both CB-CE and recall loss can improve accuracy on
small classes significantly. However, CB-CE deteriorates IOU for those classes significantly while
recall loss maintains competitive performance because CB-CE uses a fixed weighting which always

emphasizes small classes. This observation supports our claim that recall loss balances recall and
precision because of its dynamic adaptability to performance. In the fig. 2(c), we show the 1�Rc,t

weights on resenet18 Synthia experiment. We observe that the weight for small classes such as
bike decreases over time. This indicates that the performance of the bike class has increased.We
further provide a visual comparison between a model trained with the cross-entropy loss and the
proposed recall loss in fig. 3. Our method provides more fine details on small classes which are
often suppressed in traditional cross entropy training.

Cityscapes. We further present results on the Cityscapes segmentation dataset with real images. As
shown in table 3, softIOU, and focal loss perform similarly to the standard cross entropy loss while
Lovasz, OHEM, and CB-CE are consistently worse on both of the resnet backbones. Compared to
performance on Synthia, this shows that some of the losses are not robust to label noise in a real
dataset. Recall loss again outperforms other losses by improving mean accuracy and maintaining
a good mean IOU. In other words, recall loss improves the detection rate of small classes such as
pedestrians, light poles on the road and maintains a good precision. This demonstrates the effective-
ness of recall loss on both synthetic and real datasets on outdoor driving segmentation datasets.

4.3 IMAGE CLASSIFICATION EXPERIMENTS

For classification experiments, we compare on two popular imbalanced datasets, Place-LT (Liu et al.,
2019) and iNaturalist2018 (Van Horn et al., 2018). We compare to the methods that have achieved
state-of-the-art performance on either dataset. We specifically introduce a baseline model, SDN-CE,
which replaces recall loss with a standard cross entropy loss to train the feature backbone.
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CE Lifted Loss† Focal Loss † Range Loss † OLTR † tau-norm ‡ LWS‡ SDN (CE) SDN (recall)

All 30.6 35.20 34.60 35.10 35.9 37.9 37.6 39.3 39.8

Many 46.7 41.1 41.1 41.1 44.7 37.8 40.6 43.0 43.3
Medium 30.1 35.4 34.8 35.4 37.0 40.7 39.1 40.3 41.0

Few 11.9 24.0 22.4 23.2 25.3 31.8 28.6 31.1 31.2

Table 5: Test Accuracy on Place-LT. † denotes results from Liu et al. (2019) and ‡ denotes results
from Kang et al. (2020). We follow previous works to report performance on many (more than
100 images), medium (20 to 100 images) and few-shot (fewer than 20 images). Our method yields
overall best performance. We highlight the Best and Second Best baseline method.

CE Focal Focal-DRW LDAM LDAM-DRW† BBN† tau-norm† LWS† SDN (CE) DN (Recall)

Resnet50 62.00 61.67 65.62 60.38 64.58 66.29 65.60 65.90 66.13 67.03

Table 6: Validation Accuracy on iNaturalist2018. † denotes results from Zhou et al. (2020) and ‡
denotes results from Kang et al. (2020).

Place-LT. Following previous works (Kang et al., 2020), (Liu et al., 2019), we compare to the Lifted
loss (Oh Song et al., 2016), Focal loss (Lin et al., 2017), Range Loss (Zhang et al., 2017), OLTR (Liu
et al., 2019), tau-norm (Kang et al., 2020) and LWS (Kang et al., 2020). We note that Kang et al.
(2020) experimented with many variants and tau-norm is the best performing one on this dataset.
Table 5 shows that the recall loss outperforms other loss including SDN-CE. The result is two-
fold. First, the strong performance of the baseline, SDN-CE agrees with the finding in Kang et al.
(2020) that imbalance affects the classifier more than the backbone and a simple decoupling trick
can outperform carefully designed losses. Second, the result validates our claim that the recall loss,
SDN-recall, is a more suitable feature loss for imbalanced datasets when comparing to SDN-CE.
Note that we use the EMA version of the recall loss. The table 4(a) shows the results of SDN-recall
with different ↵ on a validation set. We can conclude that the sensitivity of ↵ is low on the Place-LT
dataset. Specifically, the ratio of the number of classes to batch size is 365:128 in this case.

iNaturalist2018. On iNaturalist we compare to LDAM-DRW (Cao et al., 2019), BBN (Zhou et al.,
2020), tau-norm (Kang et al., 2020) and LWS (Kang et al., 2020). This dataset is the most chal-
lenging due to its extremely large number of classes. This presents a specific challenge to recall
loss since the effectiveness of recall loss depends on a reliable estimation of the training recall for
each class. Consequently, it motivated us to propose the exponential-moving average update rules.
Table 6 shows the results of SDN-recall, SDN-CE, and all compared methods. SDN-recall out-
performs all other methods including SDN-CE. It is worth mentioning that both LDAM-DRW and
BBN proposed to finetune the feature extractor with a balanced loss using a two-stage and two-
branch strategy respectively. Recall loss trains a feature backbone in an end-to-end manner and
outperforms other techniques that require careful hyperparameter tuning or modification to the ar-
chitectures. Table 4(b) shows the sensitivity of ↵ on this dataset. As the number of classes (8,142)
is much larger than the batch size (128), a small ↵ is critical to provide a reliable recall estimation.
We also present the training curves with different ↵ in the Appendix A.3. We observe that smaller
↵ yields lower training loss.

5 CONCLUSION

In this paper, we proposed a novel loss function based on the metric recall. The loss function uses a
hard-class mining strategy to improve model performance on imbalanced datasets. Specifically, the
recall loss weighs examples in a class based on its instantaneous recall performance during train-
ing, and the weights change dynamically to reflect relative change in performance among classes.
Experimentally, we demonstrated several advantages of the loss: 1) Recall loss improves accuracy
while maintains a competitive IOU performance in semantic segmentation. Most notably, recall
loss improves both accuracy and precision significantly in small networks, which possesses limited
representation power and is more prone to biased performance due to data imbalance. 2) Recall loss
works on both synthetic and real data and is robust to label noise present in real datasets. 3) The
EMA version of recall loss is able to handle an extremely large numbers of classes and provides a
stable improvement on representation learning. 4) Recall loss facilitates representation learning in
image classification. Using a simple decoupled training strategy and the recall loss, we outperform
more complicated methods on common imbalance learning benchmarks.
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Robin Chan, Matthias Rottmann, Fabian Hüger, Peter Schlicht, and Hanno Gottschalk. Applica-
tion of decision rules for handling class imbalance in semantic segmentation. arXiv preprint

arXiv:1901.08394, 2019.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 3213–3223, 2016.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on
effective number of samples. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 9268–9277, 2019.

Qi Dong, Shaogang Gong, and Xiatian Zhu. Imbalanced deep learning by minority class incremental
rectification. IEEE transactions on pattern analysis and machine intelligence, 41(6):1367–1381,
2018.

Tom Eelbode, Jeroen Bertels, Maxim Berman, Dirk Vandermeulen, Frederik Maes, Raf Bisschops,
and Matthew B Blaschko. Optimization for medical image segmentation: Theory and practice
when evaluating with dice score or jaccard index. IEEE Transactions on Medical Imaging, 2020.

David Eigen and Rob Fergus. Predicting depth, surface normals and semantic labels with a common
multi-scale convolutional architecture. In Proceedings of the IEEE international conference on

computer vision, pp. 2650–2658, 2015.

Munawar Hayat, Salman Khan, Syed Waqas Zamir, Jianbing Shen, and Ling Shao. Gaussian affinity
for max-margin class imbalanced learning. In Proceedings of the IEEE International Conference

on Computer Vision, pp. 6469–6479, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yannis
Kalantidis. Decoupling representation and classifier for long-tailed recognition. arXiv preprint

arXiv:1910.09217, 2020.

Salman Khan, Munawar Hayat, Syed Waqas Zamir, Jianbing Shen, and Ling Shao. Striking the
right balance with uncertainty. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 103–112, 2019.

Salman H Khan, Munawar Hayat, Mohammed Bennamoun, Ferdous A Sohel, and Roberto Togneri.
Cost-sensitive learning of deep feature representations from imbalanced data. IEEE transactions

on neural networks and learning systems, 29(8):3573–3587, 2017.

10



Under review as a conference paper at ICLR 2021

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980–2988, 2017.

Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large-scale
long-tailed recognition in an open world. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 2537–2546, 2019.

Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted
structured feature embedding. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 4004–4012, 2016.

Md Atiqur Rahman and Yang Wang. Optimizing intersection-over-union in deep neural networks
for image segmentation. In International symposium on visual computing, pp. 234–244. Springer,
2016.

German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M Lopez. The
synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3234–
3243, 2016.

Seyed Sadegh Mohseni Salehi, Deniz Erdogmus, and Ali Gholipour. Tversky loss function for
image segmentation using 3d fully convolutional deep networks. In International Workshop on

Machine Learning in Medical Imaging, pp. 379–387. Springer, 2017.

Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object detectors
with online hard example mining. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 761–769, 2016.

Carole H Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin, and M Jorge Cardoso. Generalised
dice overlap as a deep learning loss function for highly unbalanced segmentations. In Deep

learning in medical image analysis and multimodal learning for clinical decision support, pp.
240–248. Springer, 2017.

Saeid Asgari Taghanaki, Yefeng Zheng, S Kevin Zhou, Bogdan Georgescu, Puneet Sharma,
Daguang Xu, Dorin Comaniciu, and Ghassan Hamarneh. Combo loss: Handling input and out-
put imbalance in multi-organ segmentation. Computerized Medical Imaging and Graphics, 75:
24–33, 2019.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8769–8778,
2018.

Jiaqi Wang, Wenwei Zhang, Yuhang Zang, Yuhang Cao, Jiangmiao Pang, Tao Gong, Kai Chen,
Ziwei Liu, Chen Change Loy, and Dahua Lin. Seesaw loss for long-tailed instance segmentation.
arXiv preprint arXiv:2008.10032, 2020.

Xiao Zhang, Zhiyuan Fang, Yandong Wen, Zhifeng Li, and Yu Qiao. Range loss for deep face
recognition with long-tailed training data. In Proceedings of the IEEE International Conference

on Computer Vision, pp. 5409–5418, 2017.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. IEEE transactions on pattern analysis and machine

intelligence, 40(6):1452–1464, 2017.

Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min Chen. Bbn: Bilateral-branch network with
cumulative learning for long-tailed visual recognition. CVPR, 2020.

11


	Introduction
	Related Work
	Recall Loss
	Motivation: From Inverse Frequency Loss to Recall Loss
	Motivation: From Focal Loss to Recall Loss
	Recall Estimation
	Analysis: Recall, Precision, Dice, Jaccard and Tvesky
	Recall Loss as a Feature Learning Loss for Imbalanced Classification

	Experiments
	Experimental Setting
	Semantic Segmentation Experiments
	Image Classification Experiments

	conclusion
	Appendix
	Analysis of Focal Loss
	Implementation
	Training Curve for iNaturalist

	Related Work

