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ABSTRACT

Point cloud anomaly detection, particularly under the anomaly-free setting, poses
a significant challenge as it requires the precise capture of 3D normal data fea-
tures to accurately identify deviations indicative of anomalies. Current efforts
focus on devising reconstruction tasks, such as acquiring normal data representa-
tions by restoring normal samples from altered, pseudo-anomalous counterparts.
Nonetheless, such methods tend to dilute the model’s focus, as they require at-
tention to both normal and pseudo-anomalous data points, thereby hampering the
efficacy of the learning process. Moreover, the inherently disordered and sparse
nature of 3D point cloud data significantly complicates the task. In response to
those predicaments, we introduce an innovative approach that involves learning
point offsets for the first time, with a concentrated emphasis on more informa-
tive pseudo-abnormal points, thus fostering more effective distillation of normal
data representations. We have crafted an augmentation technique that is steered
by normal vectors, facilitating the creation of credible pseudo anomalies that en-
hance the efficiency of the training process. Our comprehensive experimental
evaluation on the Anomaly-ShapeNet and Real3D-AD datasets evidences that our
proposed method outperforms existing state-of-the-art approaches, achieving an
average enhancement of 9.0% and 1.4% in the AUC-ROC detection metric across
these datasets, respectively.

1 INTRODUCTION

Point cloud anomaly detection aims to identify defective samples and locate abnormal regions that
deviate from expected data patterns (Roth et al., 2022; Zhou et al., 2024). Owing to the high cost
of collecting and labeling anomaly samples, this task is usually implemented in an anomaly-free
setting, i.e., only normal samples are available during training. The critical challenge within this
framework is to effectively capture the distinctive features that are characteristic of 3D normal data,
enabling the system to recognize and classify instances that deviate from these normal patterns
as anomalies. Nonetheless, the inherently disordered and sparse nature of 3D point cloud data
significantly complicates the process of acquiring such discriminative knowledge.

As one reasonable way to tackle this task, anomaly detection in 3D point clouds often involves de-
signing reconstruction tasks to capture normal representations,as illustrated in Fig. 1(a). Anomalies
are detected by comparing inputs to their reconstruction outputs. For instance, IMRNet (Li et al.,
2024) randomly masks training normal samples and trains a reconstruction task to restore complete
point clouds. However, this approach may fail to detect anomalies in unmasked regions. To ad-
dress this limitation, R3D-AD (Zhou et al., 2024) proposes reconstructing normal samples from
their pseudo-abnormal variants. A test sample with high differences between its input and output
is considered an anomaly. Despite its efficacy, reconstructing each point’s coordinates in 3D space
causes the model to assign equal loss weight to both normal and pseudo-abnormal points, which
may hinder learning normal representations. Empirical evidence in Fig. 1(c) shows that the per-
formance degrades as the normal point loss weight increases from 0.1 to 1.0 (the loss weight of
pseudo-abnormal points is fixed at 1.0). Extraction of normal patterns relies on learning to restore
normal regions from pseudo-abnormal ones, but equal loss weights impair the network to focus on
this process, thus limiting the detection performance.
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(c) Performance comparison (d) Loss comparison
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Figure 1: Comparison of reconstruction-based method and our method in terms of structure, perfor-
mance, and efficiency. (a) Restores normal samples from pseudo-abnormal variants; anomaly scores
from input-output comparison. (b) Predicts point offsets of pseudo anomalies; anomaly scores from
predicted offsets during testing. (c) Detection and localization performance of the reconstruction-
based method on the ashtray0 category with various normal point loss weights; pseudo-abnormal
points consistently weighted at 1.0 (implemented with our network due to the absence of official
code). (d) Our method quickly converges on normal points, enabling focus on anomalies in later
training (loss values are normalized to range 0-1 using min-max method).

In this paper, we propose to predict point offsets for pseudo anomalies (as illustrated in Fig. 1(b))
to allow the model to concentrate on pseudo-abnormal regions, ensuring the effective distillation
of normal representations. Specifically, point offsets are essentially vectors characterized by two at-
tributes: magnitude and direction. The offsets of abnormal points in pseudo anomalies are defined by
these attributes, representing their displacement distance and direction relative to their correspond-
ing points in original normal ones. In contrast, the offsets of normal points in pseudo anomalies
can be predominantly governed by their displacement distance, as they remain unchanged relative to
their corresponding points in original normal ones, making the direction less relevant and the magni-
tude zero. Therefore, learning the task of point offset prediction allows the model to estimate normal
points’ offset magnitude only, while requiring it to predict both offset magnitude and direction for
pseudo-abnormal points. This is significantly different from the current mainstream reconstruction-
based methods that need to precisely restore the coordinates of each point, thus leading the model to
concentrate unnecessarily on both normal and pseudo-abnormal points simultaneously. Empirical
evidence is presented in Fig. 1(d). In the right part, losses converge faster on normal points than
on pseudo-abnormal points, enabling the model to focus on pseudo-abnormal points in late training.
However, the losses of normal points follow almost the same trend as those of pseudo-abnormal
points in the reconstruction-based method, i.e., the model equally concentrates on both two kinds
of points. Additionally, the predicted offsets of test samples can directly assess their abnormality
levels during inference, while reconstruction-based methods need to design handcrafted metrics to
produce anomaly scores.

Drawing inspiration from the aforementioned observation, we propose a novel framework named
PO3AD, which efficiently predicts point offsets and adequately captures normal representations.
For practical implementation, in order to enable the model to learn the knowledge of predicting
offsets, we further propose an anomaly simulation method named Norm-AS, which is guided by
normal vectors 1. Norm-AS is performed by moving points of a random region in normal data along
or against the normal vectors to produce pseudo anomalies. In contrast, the previous augmentation
method (Zhou et al., 2024) ignores point movement direction, resulting in points potentially moving
in any direction in 3D space. This may cause pseudo-abnormal regions to overlap with normal

1In this paper, ‘normal vectors’ exclusively refers to the vectors perpendicular to the surface in point cloud
geometry, while ‘normal’ denotes non-abnormal. To avoid confusion, we italicized normal vectors.
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regions (as shown in Fig. 3(c)), which consequently confuses the model, leading to less effective
learning. Our Norm-AS leverages normal vectors to control point movement direction, enabling
the creation of credible pseudo anomalies that resemble real ones (as shown in Fig. 3(d)), thus
increasing learning efficiency. The offsets of points in pseudo anomaly samples relative to their
original normal counterparts serve as training labels. During testing, the predicted offsets are used
to recognize anomalies.

Our contributions can be summarized as follows:

• We propose a novel paradigm named PO3AD to predict point offsets, allowing the model
to concentrate on pseudo-abnormal regions and ensuring the effective learning of normal
representations for 3D point cloud anomaly detection.

• We design a point cloud pseudo anomaly generation method guided by normal vectors,
termed Norm-AS, creating credible pseudo anomalies from normal samples for improving
training efficiency.

• Extensive experiments conducted on two benchmark point cloud anomaly detection
datasets demonstrate the superiority of our method to state-of-the-art methods, with an
average improvement of 9.0% and 1.4% detection AUC-ROC on Anomaly-ShapeNet and
Real3D-AD, respectively.

2 RELATED WORK

2D anomaly detection. Anomaly detection methods on 2D image data under anomaly-free scenar-
ios have been widely studied in recent years. To address the issue that anomalies are unavailable
during training, a straightforward approach involves generating pseudo anomalies (Hu et al., 2024;
Zavrtanik et al., 2021a; Li et al., 2021; Schlüter et al., 2022; Liu et al., 2023b; Zhang et al., 2024),
allowing models to learn discriminative knowledge for identifying anomalies. An alternative way
to tackle this task relies on constructing a memory bank storing normal features produced by pre-
trained encoders (Bae et al., 2023; Kim et al., 2023; Roth et al., 2022; Xie et al., 2023). Such
methods detect anomalies by contrasting features of test data with those of normal training samples.
Flow-based methods (Rudolph et al., 2021; Gudovskiy et al., 2022) leverage normalizing flows for
estimation of the feature distribution to detect anomalies. Reconstruction-based methods (Huang
et al., 2022; Pirnay & Chai, 2022; Yan et al., 2021; Zavrtanik et al., 2021b) designs reconstruc-
tion tasks to capture normal representations; anomalies are detected by comparing inputs to their
reconstruction results. In this paper, we focus on 3D point cloud anomaly detection. This task is
particularly challenging due to the disordered and sparse characteristics of point cloud data.

3D anomaly detection. Although significant progress has been made in 2D anomaly detection, re-
search into anomaly detection for 3D data is still relatively limited. Due to the absence of point cloud
anomaly detection datasets, early studies are conducted on RGB-D datasets, such as the MVTec AD-
3D dataset (Bergmann et al., 2022). AST (Rudolph et al., 2023) enhances the detection capability
by leveraging depth information to suppress background. 3D-ST (Bergmann & Sattlegger, 2023)
proposes a teacher-student framework to capture representations of normal samples during training,
and anomalies are detected by assessing regression errors between teacher and student networks.
BTF (Horwitz & Hoshen, 2023) proposes to utilize handcrafted 3D descriptors combined with K-
Nearest Neighbors (KNN) to tackle the task of 3D anomaly detection. M3DM (Wang et al., 2023)
designs a multimodal hybrid fusion paradigm that merges point and image features to strengthen
the detection performance. CPMF (Cao et al., 2024) fuses 2D and 3D features by projecting point
cloud data into multi-view images to construct a memory bank. With the proposal of two point cloud
anomaly detection datasets: Real3D-AD (Liu et al., 2023a) and Anomaly-ShapeNet (Li et al., 2024),
recent efforts focus on anomaly detection for point cloud data. Reg3D-AD combines the classical
2D method PatchCore (Roth et al., 2022) with RANSAC algorithm (Bolles & Fischler, 1981) to de-
velop a memory bank-based framework for point cloud anomaly detection. Group3AD (Zhu et al.,
2024) groups points into multiple clusters and designs a group-level contrastive loss to capture inter-
cluster dispersion and intracluster compactness features, which are subsequently stored in a memory
bank. Although memory bank-based methods have shown effectiveness, they suffer the prohibitive
computational and storage. IMRNet (Li et al., 2024) adopts the idea of 2D reconstruction-based
methods, randomly masking training point clouds and restoring them by training a PointMAE (Pang
et al., 2022). While R3D-AD (Zhou et al., 2024) creates pseudo anomalies from normal samples
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Figure 2: Illustration of our framework. Norm-AS generates pseudo anomalies from training normal
samples. The backbone extracts features from pseudo anomalies, and the offset predictor estimates
offsets for each point of input. The network trains under an offset loss constraint. During inference,
the predicted offset distances serve as anomaly scores for test instances.

and reconstructs them via a denoising Diffusion model (Ho et al., 2020), anomalies are detected by
evaluating the differences between inputs and their outputs. Unlike previous methods, we make a
first attempt and propose to predict point offsets to capture effective normal representations.

3 METHODOLOGY

Problem statement. Point cloud anomaly detection involves a training set De
train = {Pq ∈

RN×3}Mq=1, which consists of M normal samples with N points, belonging to a specific category
e. A test set, De

test = {Pq ∈ RN×3, tq ∈ T }Kq=1, consists of samples Pq with labels tq , where
T = {0, 1} (0 denotes a normal and 1 denotes an anomaly). The objective is to train a deep
anomaly detection model on De

train to build a scoring function ϕ: RN×3 → R that quantitatively
evaluate the abnormality levels of new point cloud instances.

Overview. The overview of our framework is presented in Fig. 2. Given one sample for illustrating
our procedure, a pseudo anomaly point cloud is generated from it by our Norm-AS. The subtraction
of the input normal sample from the pseudo-abnormal one is used as the training label. Then, the
pseudo anomaly is fed into a backbone to extract its features. An offset prediction module then
takes these features as input to produce the prediction results. Afterward, the model parameters are
optimized by an offset loss. During testing, the predicted offsets are applied to test data to evaluate
their abnormal levels.

3.1 OFFSET PREDICTION LEARNING

To capture normal representation for anomaly detection, we propose to predict point offsets. Practi-
cally, we construct an offset prediction network and leverage an offset loss to supervise the network
in learning the knowledge of estimating points offsets.

3.1.1 OFFSET PREDICTION NETWORK

Our network is composed of two modules: a backbone and an offset predictor. Inspired by exem-
plary pioneering work (Hu et al., 2021; Zhao et al., 2023; Schult et al., 2023; Delitzas et al., 2024)
in 3D domain, we adopt MinkUNet (Choy et al., 2019b;a) as the backbone for our method. Specifi-
cally, MinkUNet is a voxel-based sparse convolutional network (Graham, 2015; Gwak et al., 2020)
that effectively captures detailed local features from point clouds. This allows the extraction of fine-
grained pseudo-abnormal features during training, thus facilitating normal representation learning.
Given one point cloud sample P ∈ RN×3, it is voxelized into V ∈ RNV ×3, where NV stands for
the number of voxels. It is noted that NV ≤ N and NV are inversely correlated with the voxel size.
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The MinkUNet fU maps V to latent voxelized features GV ∈ RNV ×C = fU (V ), where C denotes
the dimension of each voxel’s feature. Then, the voxel-to-point index is leveraged to transform GV

to latent point features GP ∈ RN×C , which are utilized to predict point-wise offsets. Our offset
predictor fO is constructed using a Multi-Layer Perceptron (MLP), which takes GP as input to es-
timate the offset of each point Opre ∈ RN×3 = fO(G

P ). The offset of each point is composed of
three coordinate (xyz) offsets. Each element in Opre refers to the offset of a point along a particular
coordinate.

3.1.2 OFFSET LOSS

An offset loss is adopted to guide the network in learning the knowledge of predicting point offsets.
These point offsets are vectors that describe the displacement distance and direction of each point in
pseudo anomalies compared to its corresponding point in normal ones. Accordingly, an L1 loss and
a negative cosine loss are employed to supervise the network in predicting point offset distance and
direction, respectively, which yields an offset loss:

Loff = Ldist + Ldir, (1)

Ldist =
1

N

N∑
i=1

oprei ∈ Opre, ogti ∈ Ogt
∥∥oprei − ogti

∥∥ , (2)

Ldir = − 1

N

N∑
i=1

oprei ∈Opre, ogti ∈ Ogt oprei

∥oprei ∥2 + ϵ
· ogti
∥ogti ∥2 + ϵ

, (3)

where Ldist and Ldir are equally weighted to avoid a possible bias to one loss. Here, ϵ is set to
1e-8 to prevent division by zero, and Ogt ∈ RN×3 = P̂ − P , where P̂ is a pseudo anomaly sample
created from P through the Norm-AS. It is worth noting that Ldir works for pseudo-abnormal points
only since the ground truth offset for each normal point is a zero vector. The significance of Ldist

and Ldir in capturing normal representations is demonstrated in Section 4.5.

3.2 NORM-AS

(a) Normal

(b) Real anomaly

(c) Pseudo w/o normal vector

(d) Pseudo w/ normal vector (ours)

Figure 3: Visualization of pseudo samples with
and without normal vectors on the bottle0 cat-
egory. Samples generated with normal vectors
better mimic real anomalies.

To create credible pseudo anomalies to improve
training efficiency, we develop a novel anomaly
simulation method guided by normal vectors.
Our proposed Norm-AS is performed by mov-
ing the points of a random region along the nor-
mal vectors or in the opposite direction, gener-
ating anomaly types of bulge or concavity. The
region is selected by dividing a point cloud into
multiple patches and then randomly sampling one
of these patches. Given a training normal point
cloud sample P ∈ RN×3, it is divided into J
patches as PH = {phb ∈ RNh×3}Jb=1, where
Nh is the number of points in each patch and is
equal to N/J . Specifically, Each patch is deter-
mined iteratively by randomly selecting one point
and its nearest Nh − 1 points from P r. P r de-
notes the points in the point cloud P that have not
been included in any patches. In light of this, phb

exhibits various shapes rather than being only cir-
cular, enabling the creation of pseudo anomalies
with various shapes. A randomly sampled phb is
then produced as a pseudo-abnormal region by:

ˆphb = phb + α · nvb · (1− w) · β, (4)

where nvb ∈ RNh×3 is the normal vectors of phb. α is randomly sampled from {−1, 1} to control
whether the point moves along the nvb (α = 1) or in the opposite direction (α = −1). w refers to a
matrix with Nh elements, each representing the normalized distance of a point in phb from the center
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point. By performing 1 − w, we aim to move the center point the greatest distance, while points
farther from the center are moved shorter distances. β denotes the movement distance of the center
point. It is sampled from a uniform distribution, where the range is empirically set to [0.06, 0.12],
to produce pseudo anomalies with various offset distances. A pseudo anomaly sample is produced
by replacing the corresponding region in P with ˆphb. The size of the pseudo-abnormal region is
determined by J , the impact of J for normal representation learning is described in Section 4.6. The
Norm-AS enables the creation of pseudo anomalies resembling real ones, as evidenced in Fig. 3(d).
As for the pseudo anomaly generated without the guidance of normal vectors, as shown in Fig. 3(c),
pseudo-abnormal points overlap with normal ones, which may hinder the model from extracting
effective features of this region, resulting in training efficiency reduction. More examples of our
pseudo anomalies are provided in Fig. 7 of Appendix A. The significance of generating pseudo
anomalies guided by normal vectors for normal representation learning is validated in Section 4.5.

3.3 ANOMALY SCORE FOR INFERENCE

The abnormal level for each point in test data is assessed by its predicted offset. Specifically, the
anomaly score of a point is calculated by summing the offset distances along three coordinates (xyz).
The point-level anomaly score function ϕ(pi) is defined as:

ϕ(pi) =
∣∣oprei,x

∣∣+ ∣∣oprei,y

∣∣+ ∣∣oprei,z

∣∣ , (5)

where pi ∈ P and {oprei,x , oprei,y , oprei,z } = oprei ∈ Opre. According to ϕ(pi), the object-level anomaly
score function ϕ(P ) is obtained by:

ϕ(P ) =
1

N

N∑
i=1

ϕ(pi). (6)

The anomaly scores for normal samples or points are expected to be as small as possible. The greater
the anomaly score, the more likely that a sample or point is an anomaly.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. Our evaluation encompasses two 3D point cloud anomaly detection datasets: Anomaly-
ShapeNet (Li et al., 2024) and Real3D-AD (Liu et al., 2023a). Anomaly-ShapeNet is a synthesis
dataset based on ShapeNet (Chang et al., 2015) dataset. It consists of 1,600 samples belonging to
40 categories. The training set of each category contains 4 normal samples, and the test set includes
both normal and abnormal samples. Real3D-AD is a high-resolution point cloud dataset based
on real objects of 12 categories. Each category contains 4 training normal samples and 100 test
instances. There is a large difference between training and test samples in the Real3D-AD dataset
where training samples undergo 360◦ scan, while test samples are scanned on only one side.

Evaluation metrics. Experiments are conducted by following previous work (Liu et al., 2023a; Li
et al., 2024). Area Under the Receiver-Operating-Characteristic Curve (AUC-ROC) is utilized as our
evaluation criterion. It can objectively evaluate detection (object-level) and localization (point-level)
performance without making any assumption on the decision threshold.

4.2 IMPLEMENTATION DETAILS

The MinkUNet34C (Choy et al., 2019b;a) serves as our backbone for feature extraction. A three-
layer MLP with PReLU activation function forms the offset predictor. We set the dimension of latent
features C to 32, and the voxel size to 0.03. Our network is trained for 1,000 epochs with a batch
size of 32 (the training set is replicated 100 times to obtain 400 samples). The model parameters
are optimized by Adam with an initial learning rate of 0.001, which decays with the cosine anneal
schedule (Loshchilov & Hutter, 2017). Our method does not involve point cloud downsampling.
Training samples are applied with random rotation before normalization. All input point clouds
are normalized by aligning their center of gravity with the origin of coordinates and scaling their
dimensions to range from -1 to 1. We set the patch number J to 64 for our Norm-AS, which is
performed after normalization. The normal vectors are obtained from official OBJ files of datasets.
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Table 1: Comparison of object-level AUC-ROC results (%) of various methods on the Anomaly-
ShapeNet dataset. The best result per category is bold, while the second best result is underlined.
Micro. refers to the microphone0 category. BTF (Raw) refers to that the point coordinates are
adopted into the BTF method. PFFH and PointMAE denote utilizing Fast Point Feature His-
tograms (Rusu et al., 2009) and ShapeNet (Chang et al., 2015) pre-trained PointMAE (Pang et al.,
2022) as the feature extractor, respectively.

Category
BTF

(Raw)
(CVPR 23’)

BTF
(FPFH)

M3DM
(CVPR 23’)

PatchCore
(FPFH)

(CVPR 22’)

PatchCore
(PointMAE)

CPMF
(PR 24’)

Reg3D-AD
(NeurIPS 23’)

IMRNet
(CVPR 24’)

R3D-AD
(ECCV 24’) Ours

ashtray0 57.8 42.0 57.7 58.7 59.1 35.3 59.7 67.1 83.3 100.0
bag0 41.0 54.6 53.7 57.1 60.1 64.3 70.6 66.0 72.0 83.3
bottle0 59.7 34.4 57.4 60.4 51.3 52.0 48.6 55.2 73.3 90.0
bottle1 51.0 54.6 63.7 66.7 60.1 48.2 69.5 70.0 73.7 93.3
bottle3 56.8 32.2 54.1 57.2 65.0 40.5 52.5 64.0 78.1 92.6
bowl0 56.4 50.9 63.4 50.4 52.3 78.3 67.1 68.1 81.9 92.2
bowl1 26.4 66.8 66.3 63.9 62.9 63.9 52.5 70.2 77.8 82.9
bowl2 52.5 51.0 68.4 61.5 45.8 62.5 49.0 68.5 74.1 83.3
bowl3 38.5 49.0 61.7 53.7 57.9 65.8 34.8 59.9 76.7 88.1
bowl4 66.4 60.9 46.4 49.4 50.1 68.3 66.3 67.6 74.4 98.1
bowl5 41.7 69.9 40.9 55.8 59.3 68.5 59.3 71.0 65.6 84.9
bucket0 61.7 40.1 30.9 46.9 59.3 48.2 61.0 58.0 68.3 85.3
bucket1 32.1 63.3 50.1 55.1 56.1 60.1 75.2 77.1 75.6 78.7
cap0 66.8 61.8 55.7 58.0 58.9 60.1 69.3 73.7 82.2 87.7
cap3 52.7 52.2 42.3 45.3 47.6 55.1 72.5 77.5 73.0 85.9
cap4 46.8 52.0 77.7 75.7 72.7 55.3 64.3 65.2 68.1 79.2
cap5 37.3 58.6 63.9 79.0 53.8 69.7 46.7 65.2 67.0 67.0
cup0 40.3 58.6 53.9 60.0 61.0 49.7 51.0 64.3 77.6 87.1
cup1 52.1 61.0 55.6 58.6 55.6 49.9 53.8 75.7 75.7 83.3
eraser0 52.5 71.9 62.7 65.7 67.7 68.9 34.3 54.8 89.0 99.5
headset0 37.8 52.0 57.7 58.3 59.1 64.3 53.7 72.0 73.8 80.8
headset1 51.5 49.0 61.7 63.7 62.7 45.8 61.0 67.6 79.5 92.3
helmet0 55.3 57.1 52.6 54.6 55.6 55.5 60.0 59.7 75.7 76.2
helmet1 34.9 71.9 42.7 48.4 55.2 58.9 38.1 60.0 72.0 96.1
helmet2 60.2 54.2 62.3 42.5 44.7 46.2 61.4 64.1 63.3 86.9
helmet3 52.6 44.4 37.4 40.4 42.4 52.0 36.7 57.3 70.7 75.4
jar0 42.0 42.4 44.1 47.2 48.3 61.0 59.2 78.0 83.8 86.6
micro. 56.3 67.1 35.7 38.8 48.8 50.9 41.4 75.5 76.2 77.6
shelf0 16.4 60.9 56.4 49.4 52.3 68.5 68.8 60.3 69.6 57.3
tap0 52.5 56.0 75.4 75.3 45.8 35.9 67.6 67.6 73.6 74.5
tap1 57.3 54.6 73.9 76.6 53.8 69.7 64.1 69.6 90.0 68.1
vase0 53.1 34.2 42.3 45.5 44.7 45.1 53.3 53.3 78.8 85.8
vase1 54.9 21.9 42.7 42.3 55.2 34.5 70.2 75.7 72.9 74.2
vase2 41.0 54.6 73.7 72.1 74.1 58.2 60.5 61.4 75.2 95.2
vase3 71.7 69.9 43.9 44.9 46.0 58.2 65.0 70.0 74.2 82.1
vase4 42.5 51.0 47.6 50.6 51.6 51.4 50.0 52.4 63.0 67.5
vase5 58.5 40.9 31.7 41.7 57.9 61.8 52.0 67.6 75.7 85.2
vase7 44.8 51.8 65.7 69.3 65.0 39.7 46.2 63.5 77.1 96.6
vase8 42.4 66.8 66.3 66.2 66.3 52.9 62.0 63.0 72.1 73.9
vase9 56.4 26.8 66.3 66.0 62.9 60.9 59.4 59.4 71.8 83.0
Average 49.3 52.8 55.2 56.8 56.2 55.9 57.2 66.1 74.9 83.9
Mean rank 7.7 7.0 6.8 6.3 6.4 6.3 6.4 3.9 2.2 1.3

4.3 BASELINE METHODS

We compare our method with eight outstanding methods: BTF (Horwitz & Hoshen, 2023),
M3DM (Wang et al., 2023), PatchCore (Roth et al., 2022), CPMF (Cao et al., 2024), Reg3D-AD
(Liu et al., 2023a), IMRNet (Li et al., 2024), R3D-AD (Zhou et al., 2024), and Group3AD (Zhu
et al., 2024). PatchCore is originally a 2D anomaly detection method and is applied to 3D by re-
placing feature extractors. The results of BTF, M3DM, PatchCore, and CPMF are implemented by
Real3D-AD and IMRNet. The results of other methods are obtained from their papers.

4.4 MAIN RESULTS

4.4.1 RESULTS ON ANOMALY-SHAPENET

Table 1 and 2 respectively present the detection and localization results of our method alongside
the competing methods on the Anomaly-ShapeNet dataset. Evidently, our method achieves the best
overall performance on both two tasks, outperforming the second-best method by an average of
9.0% on detection and 23.0% on localization. To prevent a few categories from dominating the
averaged results, we also calculate the mean rank (↓) for comparison. Our method obtains the best
mean rank on both object-level and point-level AUC-ROC, which is significantly lower than com-
peting methods. At the category level, our method beats competitors in the overwhelming majority
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Table 2: Comparsion of point-level AUC-ROC results on the Anomaly-ShapeNet dataset.

Category
BTF

(Raw)
(CVPR 23’)

BTF
(FPFH)

M3DM
(CVPR 23’)

PatchCore
(FPFH)

(CVPR 22’)

PatchCore
(PointMAE)

CPMF
(PR 24’)

Reg3D-AD
(NeurIPS 23’)

IMRNet
(CVPR 24’) Ours

ashtray0 51.2 62.4 57.7 59.7 49.5 61.5 69.8 67.1 96.2
bag0 43.0 74.6 63.7 57.4 67.4 65.5 71.5 66.8 94.9
bottle0 55.1 64.1 66.3 65.4 55.3 52.1 88.6 55.6 91.2
bottle1 49.1 54.9 63.7 68.7 60.6 57.1 69.6 70.2 84.4
bottle3 72.0 62.2 53.2 51.2 65.3 43.5 52.5 64.1 88.0
bowl0 52.4 71.0 65.8 52.4 52.7 74.5 77.5 78.1 97.8
bowl1 46.4 76.8 66.3 53.1 52.4 48.8 61.5 70.5 91.4
bowl2 42.6 51.8 69.4 62.5 51.5 63.5 59.3 68.4 91.8
bowl3 68.5 59.0 65.7 32.7 58.1 64.1 65.4 59.9 93.5
bowl4 56.3 67.9 62.4 72.0 50.1 68.3 80.0 57.6 96.7
bowl5 51.7 69.9 48.9 35.8 56.2 68.4 69.1 71.5 94.1
bucket0 61.7 40.1 69.8 45.9 58.6 48.6 61.9 58.5 75.5
bucket1 68.6 63.3 69.9 57.1 57.4 60.1 75.2 77.4 89.9
cap0 52.4 73.0 53.1 47.2 54.4 60.1 63.2 71.5 95.7
cap3 68.7 65.8 60.5 65.3 48.8 55.1 71.8 70.6 94.8
cap4 46.9 52.4 71.8 59.5 72.5 55.3 81.5 75.3 94.0
cap5 37.3 58.6 65.5 79.5 54.5 55.1 46.7 74.2 86.4
cup0 63.2 79.0 71.5 65.5 51.0 49.7 68.5 64.3 90.9
cup1 56.1 61.9 55.6 59.6 85.6 50.9 69.8 68.8 93.2
eraser0 63.7 71.9 71.0 81.0 37.8 68.9 75.5 54.8 97.4
headset0 57.8 62.0 58.1 58.3 57.5 69.9 58.0 70.5 82.3
headset1 47.5 59.1 58.5 46.4 42.3 45.8 62.6 47.6 90.7
helmet0 50.4 57.5 59.9 54.8 58.0 55.5 60.0 59.8 87.8
helmet1 44.9 74.9 42.7 48.9 56.2 54.2 62.4 60.4 94.8
helmet2 60.5 64.3 62.3 45.5 65.1 51.5 82.5 64.4 93.2
helmet3 70.0 72.4 65.5 73.7 61.5 52.0 62.0 66.3 84.6
jar0 42.3 42.7 54.1 47.8 48.7 61.1 59.9 76.5 87.1
micro. 58.3 67.5 35.8 48.8 88.6 54.5 59.9 74.2 81.0
shelf0 46.4 61.9 55.4 61.3 54.3 78.3 68.8 60.5 66.3
tap0 52.7 56.8 65.4 73.3 85.8 45.8 58.9 68.1 78.3
tap1 56.4 59.6 71.2 76.8 54.1 65.7 74.1 69.9 69.2
vase0 61.8 64.2 60.8 65.5 67.7 45.8 54.8 53.5 95.5
vase1 54.9 61.9 60.2 45.3 55.1 48.6 60.2 68.5 88.2
vase2 40.3 64.6 73.7 72.1 74.2 58.2 40.5 61.4 97.8
vase3 60.2 69.9 65.8 43.0 46.5 58.2 51.1 40.1 88.4
vase4 61.3 71.0 65.5 50.5 52.3 51.4 75.5 52.4 90.2
vase5 58.5 42.9 64.2 44.7 57.2 65.1 62.4 68.2 93.7
vase7 57.8 54.0 51.7 69.3 65.1 50.4 88.1 59.3 98.2
vase8 55.0 66.2 55.1 57.5 36.4 52.9 81.1 63.5 95.0
vase9 56.4 56.8 66.3 66.3 42.3 54.5 69.4 69.1 95.2
Average 55.0 62.8 61.6 58.0 57.7 57.3 66.8 65.0 89.8
Mean rank 6.9 4.8 5.1 5.9 6.2 6.5 3.8 4.2 1.2

of categories, while exhibiting competitive performance in the remaining categories. Additionally,
our method attains considerable performance gains compared to the best contestant on various cate-
gories, such as bag0 and bowl4. Generally, these comparison results validate the superiority of our
method. We also provide object-level AUC-PR results in Table 5 of Appendix B.

4.4.2 RESULTS ON REAL3D-AD

Table 3 depicts the comparison of object-level AUC-ROC results on the Real3D-AD dataset. Ac-
cording to the mean rank, our method secures the first place by a narrow margin, with an average
AUC-ROC improvement of 1.4% over the second-best method. At the category level, our method
achieves the best or the second-best results in 6 categories and exhibits commendable performance
in the rest. It is noted that there is a huge gap between training data and test data of the Real3D-AD
dataset, i.e., training samples are scanned 360◦, but test point clouds are scanned only on one side.
The memory bank-based methods (Reg3D-AD, Group3AD) have an advantage when dealing with
such situations, as they leverage the technique of template registration to detect anomalies. Despite
this, our method still surpasses them on both average performance and mean rank. Compared to
reconstruction-based methods, our method achieves the best results in most categories: 8 compared
to R3D-AD and 7 compared to IMRNet. Overall, these comparison results evidences the effective-
ness of our method.
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Table 3: Object-level AUC-ROC results of our method and competitors on the Real3D-AD dataset.

Category
BTF

(Raw)
(CVPR 23’)

BTF
(FPFH)

M3DM
(CVPR 23’)

PatchCore
(FPFH)

(CVPR 22’)

PatchCore
(PointMAE)

CPMF
(PR 24’)

Reg3D-AD
(NeurIPS 23’)

IMRNet
(CVPR 24’)

R3D-AD
(ECCV 24’)

Group3AD
(MM 24’) Ours

Airplane 73.0 52.0 43.4 88.2 72.6 70.1 71.6 76.2 77.2 74.4 80.4
Car 64.7 56.0 54.1 59.0 49.8 55.1 69.7 71.1 69.3 72.8 65.4
Candy 53.9 63.0 55.2 54.1 66.3 55.2 68.5 75.5 71.3 84.7 78.5
Chicken 78.9 43.2 68.3 83.7 82.7 50.4 85.2 78.0 71.4 78.6 68.6
Diamond 70.7 54.5 60.2 57.4 78.3 52.3 90.0 90.5 68.5 93.2 80.1
Duck 69.1 78.4 43.3 54.6 48.9 58.2 58.4 51.7 90.9 67.9 82.0
Fish 60.2 54.9 54.0 67.5 63.0 55.8 91.5 88.0 69.2 97.6 85.9
Gemstone 68.6 64.8 64.4 37.0 37.4 58.9 41.7 67.4 66.5 53.9 69.3
Seahorse 59.6 77.9 49.5 50.5 53.9 72.9 76.2 60.4 72.0 84.1 75.6
Shell 39.6 75.4 69.4 58.9 50.1 65.3 58.3 66.5 84.0 58.5 80.0
Starfish 53.0 57.5 55.1 44.1 51.9 70.0 50.6 67.4 70.1 56.2 75.8
Toffees 70.3 46.2 45.0 56.5 58.5 39.0 82.7 77.4 70.3 79.6 77.1

Average 63.5 60.3 55.2 59.3 59.4 58.6 70.4 72.5 73.4 75.1 76.5
Men rank 6.5 6.9 8.8 7.5 7.8 7.9 5.0 4.2 4.0 3.6 3.2

Table 4: Ablation study of our method and its
variants.

Method Variant 1 Variant 2 Variant 3 Ours

Ldist ✓ - ✓ ✓
Ldir - ✓ ✓ ✓

Normal vector ✓ ✓ - ✓

Object-level AUC-ROC 50.3 67.5 81.1 84.2
Point-level AUC-ROC 50.4 74.9 78.4 87.8

Figure 4: Detection and localization perfor-
mance vs. patch numbers.

4.5 ABLATION STUDY

We select fifteen categories ending in 0 of the Anomaly-ShapeNet dataset to conduct the ablation
study. The averaged results are reported in Table 4.

Normal representation learning heavily relies on Ldir: We design “Variant 1”, where the model
is supervised solely by Ldist. The absence of Ldir causes the network to struggle with precisely
estimating the offset direction of pseudo-abnormal points. According to the experimental results,
the performance of “Variant” is much lower than that of our method, validating the significance of
Ldir for capturing effective normal representations.

Ldist is essential for capturing effective normal representations: “Variant 2” learns a single
objective of predicting point offset direction. Evidently, it is significantly inferior to our method.
Without Ldist, the model fails to learn offset distance for both normal and pseudo-abnormal points.
Additionally, it completely disregards normal points as Ldir is not applicable for them. Therefore,
Ldist is indispensable in our offset prediction-based framework.

Generating pseudo anomalies guided by normal vectors helps the normal representation learn-
ing: A substantial performance drop is observed in “Variant 3”, since moving points in random
directions may produce unsuitable pseudo anomalies that confuse the model, resulting in less effi-
cient learning. This indicates that the proposed Norm-AS is crucial for facilitating the extraction of
normal representations. Besides, the detection performance of “Variant 3” further demonstrates the
superiority of our offset prediction framework compared to reconstruction-based R3D-AD (77.2%).

4.6 ANALYSIS ON PATCH NUMBER

Fig. 4 reports the object-level and point-level AUC-ROC results vs. different patch numbers, which
are average on fifteen categories ending in 0 of the Anomaly-ShapeNet dataset. The size of pseudo-
abnormal regions is inversely correlated with the patch number J . An appropriate size is crucial for
learning normal representations. Difficulty in predicting point offset for a region that is too large
may hinder the model’s convergence. Conversely, learning point offsets for a region that is too small
may prevent the model from capturing sufficient normal representations. However, despite these
effects, our method is generally less sensitive to the size of pseudo-abnormal regions. According
to the presented results, the detection and localization performance reach their best when the patch
numbers are 32 and 64, respectively. We set the patch number to 64 in our implementation to achieve
the best detection performance, at the cost of a slight sacrifice in localization performance.
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Ground 
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Figure 6: Qualitative results of localization on five categories of the Anomaly-ShapeNet dataset,
where brighter color refers to a higher abnormal level.

4.7 ROBUSTNESS TO NOISY DATA

In real-world scenarios, the complexity of environments and the instability of equipment may
result in scanned point clouds containing noise, i.e., noisy data. To analyze the robustness
of our method with respect to noisy data, we conduct experiments on test samples containing
Gaussian noise with a standard deviation of 0, 0.001, 0.003, and 0.005 (0 denotes clean data).

Figure 5: Detection and localization performance vs. noise
with various standard deviations.

Selecting bottle0, 1, and 3 as illus-
trative categories, analysis results are
presented in Fig. 5. It is observed
that performance only drops slightly
as the noise standard deviation in-
creases. Additionally, the worst
case of our method is still higher
than competing methods tested on
clean data (such as 73.3%, 73.7%,
and 78.1% object-level AUC-ROC of
R3D-AD on bottle0, 1, and 3). Such
empirical results evidence the robust-
ness of our method to noisy data. We
visualize noisy point clouds in Fig. 8
of Appendix C.

4.8 QUALITATIVE RESULTS

Fig. 6 illustrates anomaly maps for localization on five categories of the Anomaly-ShapeNet dataset.
The anomaly map is obtained by performing the point-level scoring function ϕ(pi). Evidently, our
method precisely locates the abnormal regions, and also assigns relatively much lower abnormal
levels to normal points. This validates the effectiveness of our method.

5 CONCLUSION

In this paper, we design a novel framework PO3AD based on point offset prediction to capture
effective normal representations for 3D point cloud anomaly detection. Moreover, we propose an
anomaly simulation method named Norm-AS guided by normal vectors, creating credible pseudo
anomalies from normal samples to facilitate the distillation of normal representations. Extensive ex-
periments conducted on the Anomaly-ShapeNet and Real3D-AD datasets evidence that our method
outperforms the existing best methods.

Limitations and future work. It is imperative to note that our current design is still under the
one-model-per-category learning paradigm, i.e., each category needs a specifically trained detection
model, leading to prohibitive computational and storage. In future work, we intend to investigate
the inter-category common patterns to explore a one-model-all-category learning paradigm for point
cloud anomaly detection.
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struction Embedding for Surface Anomaly Detection. In IEEE/CVF International Conference on
Computer Vision, pp. 8330–8339, 2021a.

Vitjan Zavrtanik, Matej Kristan, and Danijel Skočaj. Reconstruction by Inpainting for Visual
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A VISUALIZATIONS OF OUR PSEUDO ANOMALIES

Fig. 7 presents visualizations of normal, real anomaly, and our pseudo anomaly samples. It is
observed that our Norm-AS enables the creation of credible pseudo anomalies, which look very
similar to real anomalies.

Normal 
point cloud

Real anomaly 
point cloud

Pseudo anomaly 
point cloud

Bag0 Helmet1Eraser0Cap0Ashtray0

Figure 7: Visualizations of normal, real anomaly, and our pseudo anomaly samples.

B ADDITIONAL EXPERIMENTAL RESULTS

We report comparison object-level AUC-PR results on the Anomaly-ShapeNet dataset in Table 5.
Evidently, our method achieves the best mean rank and significantly outperforms the second-best
method by an average of 26.0% AUC-PR. Such experimental results evidence the superiority of our
method.
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Table 5: Comparison of object-level AUC-PR results on the Anomaly-ShapeNet dataset.

Category
BTF

(Raw)
(CVPR 23’)

BTF
(FPFH)

M3DM
(CVPR 23’)

PatchCore
(FPFH)

(CVPR 22’)

PatchCore
(PointMAE)

CPMF
(PR 24’)

Reg3D-AD
(NeurIPS 23’)

IMRNet
(CVPR 24’) Ours

ashtray0 57.8 65.1 63.2 44.5 67.9 45.3 58.8 61.2 99.9
bag0 45.8 55.1 64.2 60.8 60.1 65.5 60.8 66.5 80.9
bottle0 46.6 64.4 76.3 61.5 54.5 58.8 63.2 55.8 92.7
bottle1 57.3 62.5 67.4 67.7 64.5 59.2 69.5 70.2 95.9
bottle3 54.3 60.2 45.1 57.9 65.1 50.5 47.4 64.8 96.2
bowl0 58.8 57.6 52.5 54.8 56.2 77.5 49.4 48.1 94.6
bowl1 46.4 64.8 51.5 54.5 61.1 62.1 51.5 50.4 90.5
bowl2 57.6 51.5 63.0 61.1 45.6 60.1 49.5 68.1 88.8
bowl3 65.4 49.9 63.5 62.0 55.6 41.8 44.1 61.4 92.7
bowl4 60.1 63.2 57.1 57.5 60.1 68.3 62.4 63.0 98.5
bowl5 61.5 69.9 60.1 54.1 58.5 68.5 55.5 65.2 90.4
bucket0 65.2 48.3 60.9 60.4 54.1 66.2 63.2 57.8 92.3
bucket1 62.0 64.8 50.7 56.5 64.2 50.1 71.4 73.2 88.2
cap0 65.9 61.8 56.4 58.5 56.1 60.1 69.3 71.1 84.1
cap3 61.2 57.9 65.2 45.7 58.3 54.1 71.1 70.2 90.6
cap4 51.5 54.5 47.7 65.5 72.1 64.5 62.3 65.8 87.6
cap5 65.3 59.3 64.2 72.5 54.2 69.7 77.0 50.2 80.1
cup0 60.1 58.5 57.0 60.4 64.2 64.7 53.1 45.5 87.9
cup1 70.1 65.1 75.2 58.6 71.0 60.9 63.8 62.7 87.0
eraser0 42.5 71.9 62.5 58.4 80.1 54.4 42.4 59.9 99.5
headset0 37.9 53.1 63.2 70.1 51.5 60.2 53.8 70.1 76.5
headset1 51.5 52.3 62.3 60.1 42.3 61.9 61.7 65.6 91.4
helmet0 55.9 56.8 52.8 52.5 63.3 33.3 60.0 69.7 86.4
helmet1 38.8 72.1 62.7 63.0 57.1 50.1 38.1 61.5 96.1
helmet2 61.5 58.8 63.6 47.5 49.6 47.7 61.8 60.2 93.4
helmet3 52.6 56.4 45.8 49.4 61.1 64.5 46.8 57.5 84.9
jar0 42.8 47.9 55.5 49.9 46.3 61.8 60.1 76.0 91.5
micro. 61.3 66.2 46.4 33.2 65.2 65.5 61.4 55.2 80.3
shelf0 62.4 61.1 66.5 50.4 54.3 68.1 67.5 62.5 68.0
tap0 53.5 61.0 72.2 71.2 71.2 63.9 67.6 40.1 85.6
tap1 59.4 57.5 63.8 68.4 54.2 69.7 59.9 79.6 70.9
vase0 56.2 64.1 78.8 64.5 54.8 63.2 61.5 57.3 75.3
vase1 44.1 65.5 65.2 62.3 57.2 64.5 46.8 72.5 78.9
vase2 41.3 56.9 61.5 80.1 71.1 63.2 64.1 65.5 96.3
vase3 71.7 65.2 55.1 48.1 45.5 58.8 65.1 70.8 90.2
vase4 42.8 58.7 52.6 77.7 58.6 65.5 50.5 52.8 82.4
vase5 61.5 47.2 63.3 51.5 58.5 51.8 58.8 65.4 87.9
vase7 54.7 59.2 64.8 62.1 65.2 43.2 45.5 60.1 97.1
vase8 41.6 62.4 46.3 51.5 65.5 67.3 62.9 63.9 83.3
vase9 48.2 63.8 65.1 66.0 63.4 61.8 57.4 46.2 90.4
Average 54.9 59.8 60.3 58.8 59.5 59.7 58.4 62.1 88.1
Mean rank 6.5 5.3 5.1 5.6 5.6 5.1 5.6 4.6 1.0

C VISUALIZATIONS OF NOISY DATA

We illustrate the visualizations of a clean point cloud and its noisy variants with various standard
deviations in Fig 8. It is observed that as the noise standard deviation grows, the point cloud surface
becomes progressively less smooth.

Clean Noise with 0.001 std Noise with 0.003 std Noise with 0.005 std

Figure 8: Visualizations of clean, and noisy point clouds with various standard deviations (std).

14


	Introduction
	Related Work
	Methodology
	Offset Prediction Learning
	Offset prediction network
	Offset loss

	Norm-AS
	Anomaly Score for Inference

	Experiments
	Experimental Settings
	Implementation Details
	Baseline Methods
	Main Results
	Results on Anomaly-ShapeNet
	Results on Real3D-AD

	Ablation Study
	Analysis on Patch Number
	Robustness to Noisy Data
	Qualitative Results

	Conclusion
	Visualizations of Our Pseudo Anomalies
	Additional Experimental Results
	Visualizations of Noisy Data

