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ABSTRACT

Point cloud anomaly detection, particularly under the anomaly-free setting, poses
a significant challenge as it requires the precise capture of 3D normal data fea-
tures to accurately identify deviations indicative of anomalies. Current efforts
focus on devising reconstruction tasks, such as acquiring normal data representa-
tions by restoring normal samples from altered, pseudo-anomalous counterparts.
Nonetheless, such methods tend to dilute the model’s focus, as they require at-
tention to both normal and pseudo-anomalous data points, thereby hampering the
efficacy of the learning process. Moreover, the inherently disordered and sparse
nature of 3D point cloud data significantly complicates the task. In response to
those predicaments, we introduce an innovative approach that involves learning
point offsets for the first time, with a concentrated emphasis on more informa-
tive pseudo-abnormal points, thus fostering more effective distillation of normal
data representations. We have crafted an augmentation technique that is steered
by normal vectors, facilitating the creation of credible pseudo anomalies that en-
hance the efficiency of the training process. Our comprehensive experimental
evaluation on the Anomaly-ShapeNet and Real3D-AD datasets evidences that our
proposed method outperforms existing state-of-the-art approaches, achieving an
average enhancement of 9.0% and 1.4% in the AUC-ROC detection metric across
these datasets, respectively.

1 INTRODUCTION

Point cloud anomaly detection aims to identify defective samples and locate abnormal regions that
deviate from expected data patterns (Roth et al.;, [2022; [Zhou et al.| [2024)). Owing to the high cost
of collecting and labeling anomaly samples, this task is usually implemented in an anomaly-free
setting, i.e., only normal samples are available during training. The critical challenge within this
framework is to effectively capture the distinctive features that are characteristic of 3D normal data,
enabling the system to recognize and classify instances that deviate from these normal patterns
as anomalies. Nonetheless, the inherently disordered and sparse nature of 3D point cloud data
significantly complicates the process of acquiring such discriminative knowledge.

As one reasonable way to tackle this task, anomaly detection in 3D point clouds often involves de-
signing reconstruction tasks to capture normal representations,as illustrated in Fig.[T[a). Anomalies
are detected by comparing inputs to their reconstruction outputs. For instance, IMRNet (Li et al.,
2024) randomly masks training normal samples and trains a reconstruction task to restore complete
point clouds. However, this approach may fail to detect anomalies in unmasked regions. To ad-
dress this limitation, R3D-AD (Zhou et al., [2024) proposes reconstructing normal samples from
their pseudo-abnormal variants. A test sample with high differences between its input and output
is considered an anomaly. Despite its efficacy, reconstructing each point’s coordinates in 3D space
causes the model to assign equal loss weight to both normal and pseudo-abnormal points, which
may hinder learning normal representations. Empirical evidence in Fig. [[[c) shows that the per-
formance degrades as the normal point loss weight increases from 0.1 to 1.0 (the loss weight of
pseudo-abnormal points is fixed at 1.0). Extraction of normal patterns relies on learning to restore
normal regions from pseudo-abnormal ones, but equal loss weights impair the network to focus on
this process, thus limiting the detection performance.



Under review as a conference paper at ICLR 2025

Compare Anomaly I]I] |] . |]|] Point . Anomaly
score offsets score
Reconstruct network Backbone Predictor
(a) Reconstruction-based method (b) Ours
g ; & -§’ & Normal points === Pseudo-abnormal points
S§ = 55 = 5F
3 5% Es (<5 2100 12 F
SR IR Sz =
5 e ;
U h = 55
3 o8 S 2 90f £F \
) o 57 F g 2l \
> % . =) §3 Fs 3 SN
< g = w2 55 N\
g %4 s& 2 - 358 \
B S s g 70 N
s 92 = = aemzieen e,
j53
a g E 601 Epochs Epochs
Reconstruction-based Ours Reconstruction-based Ours Reconstruction-based Ours
(c) Performance comparison (d) Loss comparison

Figure 1: Comparison of reconstruction-based method and our method in terms of structure, perfor-
mance, and efficiency. (a) Restores normal samples from pseudo-abnormal variants; anomaly scores
from input-output comparison. (b) Predicts point offsets of pseudo anomalies; anomaly scores from
predicted offsets during testing. (c) Detection and localization performance of the reconstruction-
based method on the ashtray0 category with various normal point loss weights; pseudo-abnormal
points consistently weighted at 1.0 (implemented with our network due to the absence of official
code). (d) Our method quickly converges on normal points, enabling focus on anomalies in later
training (loss values are normalized to range 0-1 using min-max method).

In this paper, we propose to predict point offsets for pseudo anomalies (as illustrated in Fig. [T[b))
to allow the model to concentrate on pseudo-abnormal regions, ensuring the effective distillation
of normal representations. Specifically, point offsets are essentially vectors characterized by two at-
tributes: magnitude and direction. The offsets of abnormal points in pseudo anomalies are defined by
these attributes, representing their displacement distance and direction relative to their correspond-
ing points in original normal ones. In contrast, the offsets of normal points in pseudo anomalies
can be predominantly governed by their displacement distance, as they remain unchanged relative to
their corresponding points in original normal ones, making the direction less relevant and the magni-
tude zero. Therefore, learning the task of point offset prediction allows the model to estimate normal
points’ offset magnitude only, while requiring it to predict both offset magnitude and direction for
pseudo-abnormal points. This is significantly different from the current mainstream reconstruction-
based methods that need to precisely restore the coordinates of each point, thus leading the model to
concentrate unnecessarily on both normal and pseudo-abnormal points simultaneously. Empirical
evidence is presented in Fig. [[(d). In the right part, losses converge faster on normal points than
on pseudo-abnormal points, enabling the model to focus on pseudo-abnormal points in late training.
However, the losses of normal points follow almost the same trend as those of pseudo-abnormal
points in the reconstruction-based method, i.e., the model equally concentrates on both two kinds
of points. Additionally, the predicted offsets of test samples can directly assess their abnormality
levels during inference, while reconstruction-based methods need to design handcrafted metrics to
produce anomaly scores.

Drawing inspiration from the aforementioned observation, we propose a novel framework named
PO3AD, which efficiently predicts point offsets and adequately captures normal representations.
For practical implementation, in order to enable the model to learn the knowledge of predicting
offsets, we further propose an anomaly simulation method named Norm-AS, which is guided by
normal vectors[ﬂ Norm-AS is performed by moving points of a random region in normal data along
or against the normal vectors to produce pseudo anomalies. In contrast, the previous augmentation
method (Zhou et al.,[2024) ignores point movement direction, resulting in points potentially moving
in any direction in 3D space. This may cause pseudo-abnormal regions to overlap with normal

'In this paper, ‘normal vectors’ exclusively refers to the vectors perpendicular to the surface in point cloud
geometry, while ‘normal’ denotes non-abnormal. To avoid confusion, we italicized normal vectors.
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regions (as shown in Fig. [3(c)), which consequently confuses the model, leading to less effective
learning. Our Norm-AS leverages normal vectors to control point movement direction, enabling
the creation of credible pseudo anomalies that resemble real ones (as shown in Fig. Ekd)), thus
increasing learning efficiency. The offsets of points in pseudo anomaly samples relative to their
original normal counterparts serve as training labels. During testing, the predicted offsets are used
to recognize anomalies.

Our contributions can be summarized as follows:

* We propose a novel paradigm named PO3AD to predict point offsets, allowing the model
to concentrate on pseudo-abnormal regions and ensuring the effective learning of normal
representations for 3D point cloud anomaly detection.

* We design a point cloud pseudo anomaly generation method guided by normal vectors,
termed Norm-AS, creating credible pseudo anomalies from normal samples for improving
training efficiency.

* Extensive experiments conducted on two benchmark point cloud anomaly detection
datasets demonstrate the superiority of our method to state-of-the-art methods, with an
average improvement of 9.0% and 1.4% detection AUC-ROC on Anomaly-ShapeNet and
Real3D-AD, respectively.

2 RELATED WORK

2D anomaly detection. Anomaly detection methods on 2D image data under anomaly-free scenar-
ios have been widely studied in recent years. To address the issue that anomalies are unavailable
during training, a straightforward approach involves generating pseudo anomalies (Hu et al.| 2024;
Zavrtanik et al.l |2021a; [L1 et al.l 2021 [Schliiter et al., [2022} |Liu et al., 2023bj; [Zhang et al., 2024),
allowing models to learn discriminative knowledge for identifying anomalies. An alternative way
to tackle this task relies on constructing a memory bank storing normal features produced by pre-
trained encoders (Bae et al., 2023; Kim et al., 2023} Roth et al., 2022} Xie et al.| [2023). Such
methods detect anomalies by contrasting features of test data with those of normal training samples.
Flow-based methods (Rudolph et al., [2021; |Gudovskiy et al., [2022) leverage normalizing flows for
estimation of the feature distribution to detect anomalies. Reconstruction-based methods (Huang
et al.l 2022; Pirnay & Chail [2022; [Yan et al., 2021} [Zavrtanik et al.l 2021b) designs reconstruc-
tion tasks to capture normal representations; anomalies are detected by comparing inputs to their
reconstruction results. In this paper, we focus on 3D point cloud anomaly detection. This task is
particularly challenging due to the disordered and sparse characteristics of point cloud data.

3D anomaly detection. Although significant progress has been made in 2D anomaly detection, re-
search into anomaly detection for 3D data is still relatively limited. Due to the absence of point cloud
anomaly detection datasets, early studies are conducted on RGB-D datasets, such as the MVTec AD-
3D dataset (Bergmann et al., 2022). AST (Rudolph et al., 2023) enhances the detection capability
by leveraging depth information to suppress background. 3D-ST (Bergmann & Sattlegger, 2023)
proposes a teacher-student framework to capture representations of normal samples during training,
and anomalies are detected by assessing regression errors between teacher and student networks.
BTF (Horwitz & Hoshenl [2023) proposes to utilize handcrafted 3D descriptors combined with K-
Nearest Neighbors (KNN) to tackle the task of 3D anomaly detection. M3DM (Wang et al., [2023)
designs a multimodal hybrid fusion paradigm that merges point and image features to strengthen
the detection performance. CPMF (Cao et al.| 2024)) fuses 2D and 3D features by projecting point
cloud data into multi-view images to construct a memory bank. With the proposal of two point cloud
anomaly detection datasets: Real3D-AD (Liu et al.,2023a) and Anomaly-ShapeNet (Li et al.|[2024)),
recent efforts focus on anomaly detection for point cloud data. Reg3D-AD combines the classical
2D method PatchCore (Roth et al.,[2022) with RANSAC algorithm (Bolles & Fischler, [1981]) to de-
velop a memory bank-based framework for point cloud anomaly detection. Group3AD (Zhu et al.,
2024) groups points into multiple clusters and designs a group-level contrastive loss to capture inter-
cluster dispersion and intracluster compactness features, which are subsequently stored in a memory
bank. Although memory bank-based methods have shown effectiveness, they suffer the prohibitive
computational and storage. IMRNet (Li et al., [2024) adopts the idea of 2D reconstruction-based
methods, randomly masking training point clouds and restoring them by training a PointMAE (Pang
et al.} 2022). While R3D-AD (Zhou et al., [2024)) creates pseudo anomalies from normal samples
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Figure 2: Illustration of our framework. Norm-AS generates pseudo anomalies from training normal
samples. The backbone extracts features from pseudo anomalies, and the offset predictor estimates
offsets for each point of input. The network trains under an offset loss constraint. During inference,
the predicted offset distances serve as anomaly scores for test instances.

and reconstructs them via a denoising Diffusion model (Ho et al.l2020), anomalies are detected by
evaluating the differences between inputs and their outputs. Unlike previous methods, we make a
first attempt and propose to predict point offsets to capture effective normal representations.

3 METHODOLOGY

Problem statement. Point cloud anomaly detection involves a training set Dj, ., = {FP; €

RY X3}é‘i1, which consists of M normal samples with N points, belonging to a specific category
e. Atestset, DL, = {P, € RV*3 ¢, € 7'}5(:1, consists of samples P, with labels ¢,, where

T = {0,1} (0 denotes a normal and 1 denotes an anomaly). The objective is to train a deep
anomaly detection model on DY, ;. to build a scoring function ¢: RY*? — R that quantitatively

evaluate the abnormality levels of new point cloud instances.

Overview. The overview of our framework is presented in Fig.[2] Given one sample for illustrating
our procedure, a pseudo anomaly point cloud is generated from it by our Norm-AS. The subtraction
of the input normal sample from the pseudo-abnormal one is used as the training label. Then, the
pseudo anomaly is fed into a backbone to extract its features. An offset prediction module then
takes these features as input to produce the prediction results. Afterward, the model parameters are
optimized by an offset loss. During testing, the predicted offsets are applied to test data to evaluate
their abnormal levels.

3.1 OFFSET PREDICTION LEARNING

To capture normal representation for anomaly detection, we propose to predict point offsets. Practi-
cally, we construct an offset prediction network and leverage an offset loss to supervise the network
in learning the knowledge of estimating points offsets.

3.1.1 OFFSET PREDICTION NETWORK

Our network is composed of two modules: a backbone and an offset predictor. Inspired by exem-
plary pioneering work (Hu et al., [2021} |[Zhao et al., 2023; [Schult et al.| [2023}; [Delitzas et al., 2024)
in 3D domain, we adopt MinkUNet (Choy et al.l 2019bza) as the backbone for our method. Specifi-
cally, MinkUNet is a voxel-based sparse convolutional network (Graham, [2015; \Gwak et al., [2020)
that effectively captures detailed local features from point clouds. This allows the extraction of fine-
grained pseudo-abnormal features during training, thus facilitating normal representation learning.
Given one point cloud sample P € RN %3 it is voxelized into V' € RNV >3 where Ny stands for
the number of voxels. It is noted that Ny, < N and Ny are inversely correlated with the voxel size.
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The MinkUNet f; maps V to latent voxelized features GV € RNV XY = f;(V), where C denotes
the dimension of each voxel’s feature. Then, the voxel-to-point index is leveraged to transform G
to latent point features G € RV*C | which are utilized to predict point-wise offsets. Our offset
predictor fo is constructed using a Multi-Layer Perceptron (MLP), which takes G*" as input to es-
timate the offset of each point OP™¢ € RV*3 = f5(GT). The offset of each point is composed of
three coordinate (xyz) offsets. Each element in OP"° refers to the offset of a point along a particular
coordinate.

3.1.2 OFFSET LOSS

An offset loss is adopted to guide the network in learning the knowledge of predicting point offsets.
These point offsets are vectors that describe the displacement distance and direction of each point in
pseudo anomalies compared to its corresponding point in normal ones. Accordingly, an L1 loss and
a negative cosine loss are employed to supervise the network in predicting point offset distance and
direction, respectively, which yields an offset loss:

Losr = Laist + Lair,
N

(1)

1
Laist = N Zofre c Opre7 O?t c Ogt Hog)re . 0_th| 7 )
i=1
N . t
1 oPre o?
Liir = —— Zo’-”"e eorre, o € 09t i : i 3)
A= o 10" ll2 + € Jlof"[l2 + €

where L4;5: and L4, are equally weighted to avoid a possible bias to one loss. Here, € is set to

le-8 to prevent division by zero, and 09t € RV*3 = P — P, where Pisa pseudo anomaly sample
created from P through the Norm-AS. It is worth noting that L 4;, works for pseudo-abnormal points
only since the ground truth offset for each normal point is a zero vector. The significance of L£4;s:
and L 4;, in capturing normal representations is demonstrated in Section [4.3]

3.2 NORM-AS

To create credible pseudo anomalies to improve

training efficiency, we develop a novel anomaly

simulation method guided by normal vectors.

Our proposed Norm-AS is performed by mov-

ing the points of a random region along the nor- /

mal vectors or in the opposite direction, gener- £ ( 5

ating anomaly types of bulge or concavity. The ‘

region is selected by dividing a point cloud into (a) Normal () Pseudo w/o normal vector
multiple patches and then randomly sampling one -
of these patches. Given a training normal point

cloud sample P € RY*3 it is divided into .J |
patches as PH = {ph, € RN»>*3}/_  where ( \

|

Ny, is the number of points in each patch and is
equal to N/J. Specifically, Each patch is deter-

mined iteratively by randomly selecting one point
and its nearest N, — 1 points from P". P" de-
notes the points in the point cloud P that have not
been included in any patches. In light of this, phy
exhibits various shapes rather than being only cir-
cular, enabling the creation of pseudo anomalies
with various shapes. A randomly sampled phy, is
then produced as a pseudo-abnormal region by:

phy = phy + o -y - (1 —w) - B,

where nu, € RV»*3

(b) Real anomaly (d) Pseudo w/ normal vector (ours)

Figure 3: Visualization of pseudo samples with
and without normal vectors on the bottle0 cat-
egory. Samples generated with normal vectors
better mimic real anomalies.

“4)

is the normal vectors of phy. « is randomly sampled from {—1, 1} to control

whether the point moves along the nv, (av = 1) or in the opposite direction (o« = —1). w refers to a
matrix with IV, elements, each representing the normalized distance of a point in ph;, from the center
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point. By performing 1 — w, we aim to move the center point the greatest distance, while points
farther from the center are moved shorter distances. [ denotes the movement distance of the center
point. It is sampled from a uniform distribution, where the range is empirically set to [0.06,0.12],
to produce pseudo anomalies with various offset distances. A pseudo anomaly sample is produced
by replacing the corresponding region in P with pﬁb. The size of the pseudo-abnormal region is
determined by J, the impact of J for normal representation learning is described in Section[4.6] The
Norm-AS enables the creation of pseudo anomalies resembling real ones, as evidenced in Fig. [3(d).
As for the pseudo anomaly generated without the guidance of normal vectors, as shown in Fig. [3c),
pseudo-abnormal points overlap with normal ones, which may hinder the model from extracting
effective features of this region, resulting in training efficiency reduction. More examples of our
pseudo anomalies are provided in Fig. [7] of Appendix [A]l The significance of generating pseudo
anomalies guided by normal vectors for normal representation learning is validated in Section[4.3]

3.3 ANOMALY SCORE FOR INFERENCE

The abnormal level for each point in test data is assessed by its predicted offset. Specifically, the
anomaly score of a point is calculated by summing the offset distances along three coordinates (xyz).
The point-level anomaly score function ¢(p;) is defined as:

$(ps) = |07 | + [ofy | + |07

; &)
where p; € P and {0!"7, 0", o} = ol € OP"¢. According to ¢(p;), the object-level anomaly

T 0 Uy ) Ui,z

score function ¢(P) is obtained by:

1 N
o(P) =5 > o). (6)
i=1

The anomaly scores for normal samples or points are expected to be as small as possible. The greater
the anomaly score, the more likely that a sample or point is an anomaly.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. Our evaluation encompasses two 3D point cloud anomaly detection datasets: Anomaly-
ShapeNet (Li et al., 2024) and Real3D-AD (Liu et al., |2023a). Anomaly-ShapeNet is a synthesis
dataset based on ShapeNet (Chang et al., 2015) dataset. It consists of 1,600 samples belonging to
40 categories. The training set of each category contains 4 normal samples, and the test set includes
both normal and abnormal samples. Real3D-AD is a high-resolution point cloud dataset based
on real objects of 12 categories. Each category contains 4 training normal samples and 100 test
instances. There is a large difference between training and test samples in the Real3D-AD dataset
where training samples undergo 360° scan, while test samples are scanned on only one side.

Evaluation metrics. Experiments are conducted by following previous work (Liu et al.,[2023a; L1
et al.,|2024). Area Under the Receiver-Operating-Characteristic Curve (AUC-ROC) is utilized as our
evaluation criterion. It can objectively evaluate detection (object-level) and localization (point-level)
performance without making any assumption on the decision threshold.

4.2 IMPLEMENTATION DETAILS

The MinkUNet34C (Choy et al., 2019bja) serves as our backbone for feature extraction. A three-
layer MLP with PReLU activation function forms the offset predictor. We set the dimension of latent
features C' to 32, and the voxel size to 0.03. Our network is trained for 1,000 epochs with a batch
size of 32 (the training set is replicated 100 times to obtain 400 samples). The model parameters
are optimized by Adam with an initial learning rate of 0.001, which decays with the cosine anneal
schedule (Loshchilov & Hutter, [2017). Our method does not involve point cloud downsampling.
Training samples are applied with random rotation before normalization. All input point clouds
are normalized by aligning their center of gravity with the origin of coordinates and scaling their
dimensions to range from -1 to 1. We set the patch number J to 64 for our Norm-AS, which is
performed after normalization. The normal vectors are obtained from official OBJ files of datasets.



Under review as a conference paper at ICLR 2025

Table 1: Comparison of object-level AUC-ROC results (%) of various methods on the Anomaly-
ShapeNet dataset. The best result per category is bold, while the second best result is underlined.
Micro. refers to the microphoneO category. BTF (Raw) refers to that the point coordinates are
adopted into the BTF method. PFFH and PointMAE denote utilizing Fast Point Feature His-
tograms (Rusu et al.| [2009) and ShapeNet (Chang et al.l 2015) pre-trained PointMAE (Pang et al.,
2022) as the feature extractor, respectively.

Category (gg) BTF M3DM P;‘;%‘FC}‘;)'S PaichCore  CPMF  Reg3D-AD  IMRNet  R3D-AD
(CVPR a3y (FPFH) (CVPR23)  (ypp®). (PointMAE) (PR24') (NewrPS23) (CVPR24) (ECCV24')

ashtray0 57.8 42.0 57.7 58.7 59.1 353 59.7 67.1 833 100.0
bag0 41.0 54.6 53.7 57.1 60.1 64.3 70.6 66.0 72.0 833
bottleO 59.7 344 57.4 60.4 513 52.0 48.6 55.2 733 90.0
bottle 51.0 54.6 63.7 66.7 60.1 482 69.5 70.0 737 933
bottle3 56.8 322 54.1 572 65.0 405 525 64.0 78.1 92.6
bowl0 56.4 50.9 63.4 504 523 783 67.1 68.1 819 922
bowll 26.4 66.8 66.3 63.9 62.9 63.9 525 70.2 7738 829
bowl2 525 51.0 68.4 61.5 45.8 62.5 49.0 68.5 74.1 833
bowl3 385 49.0 61.7 53.7 57.9 65.8 34.8 59.9 76.1 88.1

bowl4 66.4 60.9 46.4 49.4 50.1 68.3 66.3 67.6 744 98.1

bowl5 417 69.9 409 55.8 59.3 68.5 59.3 71.0 656 84.9
bucket0 61.7 40.1 309 46.9 593 482 61.0 58.0 683 853
bucketl 32.1 633 50.1 55.1 56.1 60.1 752 77.1 75.6 78.7
cap0 66.8 61.8 55.7 58.0 58.9 60.1 69.3 73.7 822 87.7
cap3 52.7 522 423 453 47.6 55.1 725 77.5 73.0 85.9
capd 46.8 52.0 771 75.7 72.7 553 64.3 652 68.1 792
capS 373 58.6 63.9 79.0 53.8 69.7 467 65.2 67.0 67.0
cup0 403 58.6 53.9 60.0 61.0 497 51.0 64.3 77.6 87.1

cupl 52.1 61.0 55.6 58.6 55.6 49.9 53.8 75.7 757 833
eraser0 525 719 62.7 65.7 67.7 68.9 343 548 89.0 99.5
headset0 37.8 52.0 57.7 583 59.1 64.3 53.7 72.0 738 80.8
headset] 515 49.0 61.7 63.7 62.7 458 61.0 67.6 795 923
helmet0 55.3 57.1 52.6 54.6 55.6 55.5 60.0 59.7 751 762
helmet1 349 719 427 484 552 58.9 38.1 60.0 72.0 96.1

helmet2 60.2 542 62.3 425 447 462 61.4 64.1 633 86.9
helmet3 52,6 444 37.4 404 424 52.0 36.7 573 70.7 75.4
jar0 42,0 424 4.1 472 483 61.0 59.2 78.0 838 86.6
micro. 56.3 67.1 35.7 38.8 48.8 50.9 414 755 762 71.6
shelf0 16.4 60.9 56.4 49.4 523 68.5 68.8 60.3 69.6 57.3

tap0 525 56.0 75.4 753 458 359 67.6 67.6 73.6 745

tapl 57.3 54.6 739 76.6 53.8 69.7 64.1 69.6 90.0 68.1

vase0 53.1 342 423 455 44.7 45.1 533 533 78.8 85.8
vasel 54.9 21.9 4217 423 552 345 702 75.7 729 742
vase2 41.0 54.6 73.7 72.1 74.1 582 60.5 61.4 752 952
vase3 71.7 69.9 439 449 46.0 582 65.0 70.0 742 82.1

vased 425 51.0 476 50.6 516 514 50.0 52.4 63.0 67.5
vase5 58.5 40.9 317 41.7 57.9 61.8 52,0 67.6 751 852
vase7 448 51.8 65.7 69.3 65.0 39.7 462 63.5 771 96.6
vase8 424 66.8 66.3 662 66.3 529 62.0 63.0 721 739
vase9 56.4 26.8 66.3 66.0 62.9 60.9 59.4 59.4 718 83.0
Average 49.3 52.8 55.2 56.8 56.2 55.9 57.2 66.1 74.9 83.9
Mean rank 77 7.0 6.8 6.3 6.4 6.3 6.4 39 22 13

4.3 BASELINE METHODS

We compare our method with eight outstanding methods: BTF (Horwitz & Hoshen| 2023)),
M3DM (Wang et al., [2023)), PatchCore (Roth et al., 2022), CPMF (Cao et al., 2024), Reg3D-AD
(Liu et al.| 2023a), IMRNet (L1 et al. 2024), R3D-AD (Zhou et al.| |2024), and Group3AD (Zhu
et al.,|2024). PatchCore is originally a 2D anomaly detection method and is applied to 3D by re-
placing feature extractors. The results of BTF, M3DM, PatchCore, and CPMF are implemented by
Real3D-AD and IMRNet. The results of other methods are obtained from their papers.

4.4 MAIN RESULTS

4.4.1 RESULTS ON ANOMALY-SHAPENET

Table |1| and [2] respectively present the detection and localization results of our method alongside
the competing methods on the Anomaly-ShapeNet dataset. Evidently, our method achieves the best
overall performance on both two tasks, outperforming the second-best method by an average of
9.0% on detection and 23.0% on localization. To prevent a few categories from dominating the
averaged results, we also calculate the mean rank ({) for comparison. Our method obtains the best
mean rank on both object-level and point-level AUC-ROC, which is significantly lower than com-
peting methods. At the category level, our method beats competitors in the overwhelming majority
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Table 2: Comparsion of point-level AUC-ROC results on the Anomaly-ShapeNet dataset.

BTF PatchCore

Category (Raw) BTF M3DM i (FPFH) PatchCore CPMF’ Reg3D-AD’ IMRNet’ Ours
(CVPR 23") (FPFH) (CVPR 23’) (CVPR 22") (PointMAE) (PR 24’)  (NeurIPS 23") (CVPR 24’)
ashtray0 51.2 62.4 57.7 59.7 49.5 61.5 69.8 67.1 96.2
bag0 43.0 74.6 63.7 574 67.4 65.5 71.5 66.8 94.9
bottle0 55.1 64.1 66.3 65.4 553 52.1 88.6 55.6 91.2
bottlel 49.1 54.9 63.7 68.7 60.6 57.1 69.6 70.2 84.4
bottle3 72.0 62.2 53.2 51.2 65.3 435 525 64.1 88.0
bowl0 524 71.0 65.8 524 52.7 74.5 71.5 78.1 97.8
bowll 46.4 76.8 66.3 53.1 524 48.8 61.5 70.5 91.4
bowl2 42.6 51.8 69.4 62.5 51.5 63.5 59.3 68.4 91.8
bowl3 68.5 59.0 65.7 327 58.1 64.1 65.4 59.9 93.5
bowl4 56.3 67.9 62.4 72.0 50.1 68.3 80.0 57.6 96.7
bowl5 51.7 69.9 48.9 35.8 56.2 68.4 69.1 71.5 94.1
bucketO 61.7 40.1 69.8 459 58.6 48.6 61.9 58.5 75.5
bucketl 68.6 63.3 69.9 57.1 574 60.1 75.2 714 89.9
cap0 524 73.0 53.1 47.2 54.4 60.1 63.2 71.5 95.7
cap3 68.7 65.8 60.5 65.3 48.8 55.1 71.8 70.6 94.8
cap4 46.9 52.4 71.8 59.5 72.5 553 815 75.3 94.0
cap5 373 58.6 65.5 79.5 54.5 55.1 46.7 74.2 86.4
cup0 63.2 79.0 71.5 65.5 51.0 49.7 68.5 64.3 90.9
cupl 56.1 61.9 55.6 59.6 85.6 50.9 69.8 68.8 93.2
eraser( 63.7 71.9 71.0 81.0 37.8 68.9 75.5 54.8 97.4
headset0 57.8 62.0 58.1 58.3 57.5 69.9 58.0 70.5 82.3
headset1 47.5 59.1 58.5 46.4 423 45.8 62.6 47.6 90.7
helmet0 50.4 57.5 59.9 54.8 58.0 55.5 60.0 59.8 87.8
helmet1 449 749 42.7 48.9 56.2 542 62.4 60.4 94.8
helmet2 60.5 64.3 62.3 45.5 65.1 515 825 64.4 93.2
helmet3 70.0 72.4 65.5 737 61.5 52.0 62.0 66.3 84.6
jar0 423 42.7 54.1 47.8 48.7 61.1 59.9 76.5 87.1
micro. 583 67.5 35.8 48.8 88.6 54.5 59.9 74.2 81.0
shelfO 46.4 61.9 55.4 61.3 543 78.3 68.8 60.5 66.3
tap0 52.7 56.8 65.4 733 85.8 45.8 58.9 68.1 783
tapl 56.4 59.6 71.2 76.8 54.1 65.7 74.1 69.9 69.2
vase0 61.8 64.2 60.8 65.5 67.7 45.8 54.8 535 95.5
vasel 54.9 61.9 60.2 453 55.1 48.6 60.2 68.5 88.2
vase2 40.3 64.6 73.7 72.1 742 58.2 40.5 61.4 97.8
vase3 60.2 69.9 65.8 43.0 46.5 58.2 S51.1 40.1 88.4
vase4 61.3 71.0 65.5 50.5 523 514 755 524 90.2
vase5 58.5 429 64.2 44.7 57.2 65.1 62.4 68.2 93.7
vase7 57.8 54.0 51.7 69.3 65.1 50.4 88.1 59.3 98.2
vase8 55.0 66.2 55.1 57.5 36.4 529 81.1 63.5 95.0
vase9 56.4 56.8 66.3 66.3 423 54.5 694 69.1 95.2
Average 55.0 62.8 61.6 58.0 57.7 573 66.8 65.0 89.8
Mean rank 6.9 4.8 5.1 59 6.2 6.5 3.8 42 1.2

of categories, while exhibiting competitive performance in the remaining categories. Additionally,
our method attains considerable performance gains compared to the best contestant on various cate-
gories, such as bag0 and bowl4. Generally, these comparison results validate the superiority of our
method. We also provide object-level AUC-PR results in Table [5]of Appendix [B]

4.4.2 RESULTS ON REAL3D-AD

Table 3] depicts the comparison of object-level AUC-ROC results on the Real3D-AD dataset. Ac-
cording to the mean rank, our method secures the first place by a narrow margin, with an average
AUC-ROC improvement of 1.4% over the second-best method. At the category level, our method
achieves the best or the second-best results in 6 categories and exhibits commendable performance
in the rest. It is noted that there is a huge gap between training data and test data of the Real3D-AD
dataset, i.e., training samples are scanned 360°, but test point clouds are scanned only on one side.
The memory bank-based methods (Reg3D-AD, Group3AD) have an advantage when dealing with
such situations, as they leverage the technique of template registration to detect anomalies. Despite
this, our method still surpasses them on both average performance and mean rank. Compared to
reconstruction-based methods, our method achieves the best results in most categories: 8 compared
to R3D-AD and 7 compared to IMRNet. Overall, these comparison results evidences the effective-
ness of our method.
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Table 3: Object-level AUC-ROC results of our method and competitors on the Real3D-AD dataset.

Category (EZS) BTF  M3DM P?]‘:C}I‘FCI_‘I’)' °©  PuchCoe  CPMF  RegdD-AD  IMRNet  R3D-AD  GrowpdAD ()
g (CVPRaz, (FPFH) (CVPR23) (T (PoinMAE) (PR24) (NewlPS23) (CVPR24) (ECCV24) (MM 24)
Airplane 730 520 434 88.2 726 70.1 716 762 772 744 804
Car 64.7 56.0 541 59.0 498 55.1 9.7 711 69.3 728 654
Candy 53.9 63.0 552 5401 663 552 68.5 755 713 847 785
Chicken 789 432 68.3 837 82.7 504 85.2 780 714 786 686
Diamond 70.7 545 60.2 374 78.3 523 90.0 90.5 68.5 932 801
Duck 69.1 784 433 546 489 582 584 517 90.9 679 820
Fish 602 54.9 54.0 67.5 63.0 55.8 915 88.0 69.2 976 859
Gemstone | 68.6 64.8 64.4 37.0 374 589 a7 674 66.5 539 693
Seahorse 596 779 495 50.5 53.9 729 76.2 60.4 72,0 841 756
Shell 39.6 754 69.4 589 50.1 653 583 66.5 84.0 585 80.0
Starfish 53.0 57.5 55.1 441 519 70.0 50.6 674 70.1 562 758
Toffees 70.3 462 450 56.5 58.5 39.0 827 774 703 796 711
Average 63.5 60.3 552 59.3 594 58.6 704 725 734 751 765
Men rank 65 6.9 8.8 75 7.8 7.9 50 42 40 36 32

Table 4: Ablation study of our method and its g ?""“"':'_f_"_‘:'_"_"_'it::-_--_...__'
variants. g 801e-—
& 701 == Object-level
O 601 «-@- E
Method | Variant 1 Variant2 Variant3 Ours EC) s ¢ Point-level
Laist v - v v 16 32 64 128
Liir - v v v Patch number
Normal vector v v - v
Object-level AUC-ROC ‘ 503 67.5 8L.1 842 Figure 4: Detection and localization perfor-
Point-level AUC-ROC 50.4 74.9 78. 87.8 mance vs. patch numbers.

4.5 ABLATION STUDY

We select fifteen categories ending in O of the Anomaly-ShapeNet dataset to conduct the ablation
study. The averaged results are reported in Table

Normal representation learning heavily relies on £ ;,.: We design “Variant 1”, where the model
is supervised solely by Lg;s:. The absence of L4, causes the network to struggle with precisely
estimating the offset direction of pseudo-abnormal points. According to the experimental results,
the performance of “Variant” is much lower than that of our method, validating the significance of
L 4ir for capturing effective normal representations.

La;st is essential for capturing effective normal representations: “Variant 2” learns a single
objective of predicting point offset direction. Evidently, it is significantly inferior to our method.
Without Lg4; s, the model fails to learn offset distance for both normal and pseudo-abnormal points.
Additionally, it completely disregards normal points as L4;,- is not applicable for them. Therefore,
L 4;s¢ 18 indispensable in our offset prediction-based framework.

Generating pseudo anomalies guided by normal vectors helps the normal representation learn-
ing: A substantial performance drop is observed in “Variant 3”, since moving points in random
directions may produce unsuitable pseudo anomalies that confuse the model, resulting in less effi-
cient learning. This indicates that the proposed Norm-AS is crucial for facilitating the extraction of
normal representations. Besides, the detection performance of “Variant 3” further demonstrates the
superiority of our offset prediction framework compared to reconstruction-based R3D-AD (77.2%).

4.6 ANALYSIS ON PATCH NUMBER

Fig. @ reports the object-level and point-level AUC-ROC results vs. different patch numbers, which
are average on fifteen categories ending in 0 of the Anomaly-ShapeNet dataset. The size of pseudo-
abnormal regions is inversely correlated with the patch number J. An appropriate size is crucial for
learning normal representations. Difficulty in predicting point offset for a region that is too large
may hinder the model’s convergence. Conversely, learning point offsets for a region that is too small
may prevent the model from capturing sufficient normal representations. However, despite these
effects, our method is generally less sensitive to the size of pseudo-abnormal regions. According
to the presented results, the detection and localization performance reach their best when the patch
numbers are 32 and 64, respectively. We set the patch number to 64 in our implementation to achieve
the best detection performance, at the cost of a slight sacrifice in localization performance.
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Figure 6: Qualitative results of localization on five categories of the Anomaly-ShapeNet dataset,
where brighter color refers to a higher abnormal level.

4.7 ROBUSTNESS TO NOISY DATA

In real-world scenarios, the complexity of environments and the instability of equipment may
result in scanned point clouds containing noise, i.e., noisy data. To analyze the robustness
of our method with respect to noisy data, we conduct experiments on test samples containing
Gaussian noise with a standard deviation of 0, 0.001, 0.003, and 0.005 (0 denotes clean data).
Selecting bottle0, 1, and 3 as illus-
trative categories, analysis results are
presented in Fig. 5] It is observed

—¥— bottle0 —+— bottle] —e— bottle3

that performance only drops slightly £ 100 - g1 .

as the noise standard deviation in- § 9017 p——1 § 9 "’/"r_,_,_*\‘

creases. Additionally, the worst & 80 8 80

case of our method is still higher = 7 0

than competing methods tested on % 0 % P

clean data (such as 73.3%, 73.7%, § % E ©

and 78.1% object-level AUC-ROC of © Y% 0001 0003 0005 0 0001 0003 0005
Noise standard deviation Noise standard deviation

R3D-AD on bottleO, 1, and 3). Such
empirical results ev1denc§ the robust-  Fjgure 5: Detection and localization performance vs. noise
ness of our method to noisy data. We  with various standard deviations.

visualize noisy point clouds in Fig.

of Appendix[C]

4.8 QUALITATIVE RESULTS

Fig.[6]illustrates anomaly maps for localization on five categories of the Anomaly-ShapeNet dataset.
The anomaly map is obtained by performing the point-level scoring function ¢(p;). Evidently, our
method precisely locates the abnormal regions, and also assigns relatively much lower abnormal
levels to normal points. This validates the effectiveness of our method.

5 CONCLUSION

In this paper, we design a novel framework PO3AD based on point offset prediction to capture
effective normal representations for 3D point cloud anomaly detection. Moreover, we propose an
anomaly simulation method named Norm-AS guided by normal vectors, creating credible pseudo
anomalies from normal samples to facilitate the distillation of normal representations. Extensive ex-
periments conducted on the Anomaly-ShapeNet and Real3D-AD datasets evidence that our method
outperforms the existing best methods.

Limitations and future work. It is imperative to note that our current design is still under the
one-model-per-category learning paradigm, i.e., each category needs a specifically trained detection
model, leading to prohibitive computational and storage. In future work, we intend to investigate
the inter-category common patterns to explore a one-model-all-category learning paradigm for point
cloud anomaly detection.

10
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A VISUALIZATIONS OF OUR PSEUDO ANOMALIES

Fig. [/| presents visualizations of normal, real anomaly, and our pseudo anomaly samples. It is
observed that our Norm-AS enables the creation of credible pseudo anomalies, which look very
similar to real anomalies.

Ashtray0 Bag0 Cap0 Eraser0 Helmet1
Normal
point cloud

Real anomaly
point cloud

Pseudo anomaly
point cloud

Figure 7: Visualizations of normal, real anomaly, and our pseudo anomaly samples.

B ADDITIONAL EXPERIMENTAL RESULTS

We report comparison object-level AUC-PR results on the Anomaly-ShapeNet dataset in Table [5
Evidently, our method achieves the best mean rank and significantly outperforms the second-best
method by an average of 26.0% AUC-PR. Such experimental results evidence the superiority of our
method.
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Table 5: Comparison of object-level AUC-PR results on the Anomaly-ShapeNet dataset.

BTF PatchCore

Category (Raw) BTF M3DM (FPFH) PaichCore  CPMF  Reg3D-AD IMRNet
(VPR 2y) (FPFH) (CVPR23)  (ypp®h.  (PointMAE) (PR24) (NeurlPS23") (CVPR24)
ashtray0 57.8 65.1 63.2 44.5 67.9 453 58.8 61.2 99.9
bag0 45.8 55.1 64.2 60.8 60.1 65.5 60.8 66.5 80.9
bottle0 46.6 64.4 76.3 61.5 54.5 58.8 63.2 55.8 92.7
bottle] 57.3 62.5 67.4 67.7 64.5 59.2 69.5 70.2 95.9
bottle3 543 60.2 45.1 57.9 65.1 50.5 474 64.8 96.2
bowl0 58.8 57.6 52.5 54.8 56.2 715 49.4 48.1 94.6
bowl1 464 64.8 515 54.5 61.1 62.1 515 50.4 90.5
bowl2 57.6 515 63.0 61.1 45.6 60.1 495 68.1 8.8
bowl3 65.4 49.9 63.5 62.0 55.6 418 44.1 614 92.7
bowl4 60.1 63.2 57.1 575 60.1 683 62.4 63.0 98.5
bowl5 61.5 69.9 60.1 54.1 58.5 68.5 55.5 65.2 90.4
bucket0 65.2 483 60.9 60.4 54.1 66.2 63.2 57.8 92.3
bucket1 62.0 64.8 50.7 56.5 64.2 50.1 71.4 732 88.2
cap0 65.9 61.8 56.4 58.5 56.1 60.1 69.3 711 84.1
cap3 61.2 57.9 65.2 45.7 58.3 54.1 71.1 70.2 90.6
cap4 515 54.5 477 65.5 72.1 64.5 623 65.8 87.6
cap5 65.3 59.3 64.2 725 542 69.7 77.0 50.2 80.1
cup0 60.1 58.5 57.0 60.4 64.2 647 53.1 45.5 87.9
cupl 70.1 65.1 75.2 58.6 71.0 60.9 63.8 62.7 87.0
eraser0 05 71.9 62.5 58.4 80.1 544 424 59.9 99.5
headset0 37.9 53.1 63.2 70.1 515 60.2 53.8 70.1 76.5
headset1 515 523 62.3 60.1 423 61.9 61.7 65.6 91.4
helmet0 55.9 56.8 52.8 52.5 63.3 333 60.0 69.7 86.4
helmet1 38.8 72.1 62.7 63.0 57.1 50.1 38.1 615 96.1
helmet2 61.5 58.8 63.6 475 49.6 47.7 61.8 60.2 93.4
helmet3 52.6 56.4 4538 49.4 61.1 645 46.8 575 84.9
jar0 42.8 479 55.5 499 46.3 61.8 60.1 76.0 91.5
micro. 61.3 66.2 464 332 65.2 65.5 61.4 55.2 80.3
shelf0 62.4 61.1 66.5 50.4 543 68.1 67.5 62.5 68.0
tap0 535 61.0 722 712 712 63.9 67.6 40.1 85.6
tapl 59.4 57.5 63.8 68.4 542 69.7 59.9 79.6 70.9
vase0 56.2 64.1 78.8 64.5 54.8 63.2 61.5 57.3 753
vasel 44.1 65.5 65.2 62.3 572 64.5 46.8 725 78.9
vase2 413 56.9 61.5 80.1 71.1 63.2 64.1 65.5 96.3
vase3 71.7 65.2 55.1 481 455 58.8 65.1 70.8 90.2
vased 038 58.7 52.6 711 58.6 65.5 50.5 52.8 82.4
vaseS 61.5 472 63.3 515 58.5 51.8 58.8 65.4 87.9
vase7 54.7 59.2 64.8 62.1 65.2 432 455 60.1 97.1
vase8 41.6 62.4 46.3 515 65.5 673 62.9 63.9 83.3
vase9 482 63.8 65.1 66.0 63.4 61.8 57.4 46.2 90.4
Average 54.9 59.8 60.3 58.8 59.5 59.7 58.4 62.1 88.1
Mean rank 6.5 53 5.1 5.6 5.6 5.1 5.6 46 1.0

C VISUALIZATIONS OF NOISY DATA

We illustrate the visualizations of a clean point cloud and its noisy variants with various standard
deviations in Fig[8] It is observed that as the noise standard deviation grows, the point cloud surface
becomes progressively less smooth.

Clean Noise with 0.001 std Noise with 0.003 std Noise with 0.005 std

Figure 8: Visualizations of clean, and noisy point clouds with various standard deviations (std).
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