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4 Université Côte d’Azur, LAMHESS, Nice, France
5 Department of Diagnostics and Intervention, Umeå University, Sweden

∗ These author have equally contributed to the work

Abstract

Neural source separation enables the extraction of individual spike trains from
complex electrophysiological recordings. When applied to electromyographic
(EMG) signals, it provides a unique window into the motor output of the nervous
system by isolating the spiking activity of motor units (MUs). MU decomposi-
tion from EMG signals is currently the only scalable neural interfacing approach
available in behaving humans and has become foundational in motor neuroscience
and neuroprosthetics. However, unlike related domains such as spike sorting or
electroencephalography (EEG) analysis, decomposition of EMG signals lacks open
benchmarks that reflect the diversity of muscles, movement contexts, and noise
sources encountered in practice. To address this gap, we introduce MUniverse, a
modular simulation and benchmarking suite for decomposing EMG signals into
individual MU spiking activity. MUniverse provides: (1) a simulation stack with a
user-friendly interface to a state-of-the-art EMG generator; (2) a curated library of
datasets across synthetic, hybrid synthetic-real data with ground truth spikes, and
experimental EMG; (3) a set of internal and external decomposition pipelines; and
(4) a unified benchmark with well-defined tasks, standard evaluation metrics, and
baseline results from established decomposition pipelines. MUniverse is designed
for extensibility, reproducibility, and community use, and all datasets are distributed
with standardised metadata (Croissant, BIDS). By standardising evaluation and
enabling dataset simulation at scale, MUniverse aims to catalyze progress on this
long-standing neural signal processing problem.

1 Introduction

Modern neuroscience increasingly relies on source separation techniques that recover latent neural
signals from mixtures, aligning with core machine learning challenges of inverse problems and
representation learning. These neural (blind) source separation problems are ubiquitous across
neuroscience, from spike sorting in extracellular electrophysiological recordings to calcium imaging
demixing, and source localization in electroencephalography (EEG) and magnetoencephalography
recordings. Each instance requires sophisticated algorithms to invert ill-posed signal models and
uncover the underlying neural activity patterns. Electromyographic (EMG) recordings present a
particularly compelling case for machine learning researchers: each surface electrode captures a
convolutive mixture of motor unit (MU) action potentials propagating through biological tissues,
creating a natural testbed for advanced blind source separation (BSS) techniques.
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Figure 1: MUniverse overview and motivation. (A) Decomposition of EMG signals obtained
at the surface of the skin into individual motor unit spike trains provides a unique window into the
neural control of movement. (B) The generation pathway from spike trains to EMG for an isometric
contraction with a ramp and hold pattern of effort exertion. Neural commands from the spinal cord
(shown as spikes here) drive the motor units to produce a particular pattern of force, and the resulting
biopotentials are captured using HD-EMG. (C) The scope of MUniverse includes curated datasets, a
simulation stack, algorithms, as well as tools to standardize EMG datasets.

The MU is the smallest voluntarily contractible unit comprising a motor neuron and an axon that
innervates tens to hundreds of muscle fibres (Figure 1A). EMG-based decomposition into MU
activity has played an important role in, e.g., improving our understanding of the neural control of
movement [23], developing neural interfaces with applications such as prosthetic control [15] and
human augmentation [12]. Decomposition – extracting individual MU activities from the mixed
EMG signals – has therefore emerged as a foundational technique with broad scientific and clinical
impact.

Over the past two decades, numerous BSS methods have been proposed to decompose high-density
EMG (HD-EMG) signals into individual MU spike trains [22, 8, 37, 9, 19]. The gold standard
for the validation of BSS methods is the two-source test, i.e., concurrent recording of HD-EMG
and intramuscular needle or fine wire electrodes, comparing the rate of agreement between the two
methods [14]. However, intramuscular fine wire electrodes provide a limited number of detectable
MUs due to their spatial selectivity. Further, there exist very few open datasets with these simultaneous
recordings. Further insights on the performance of decomposition algorithms can be obtained from
simulated data with known ground-truth, though such data might oversimplify some aspects of the
generation and recording of experimental EMG signals. Despite a growing ecosystem of algorithms,
EMG decomposition still lacks the rigorous benchmarking culture that catalysed breakthroughs in
spike sorting [34] [5]. Methods are evaluated on private data, with heterogeneous pre-processing
pipelines and different metrics, making it difficult to gauge real progress or identify failure modes.

The field of neural interfacing and motor neuroscience, therefore, needs a standardised, open, and
extensible benchmark that spans simulated, hybrid, and experimental recordings.

Our contributions To address this issue, we introduce MUniverse (Figure 1), an open-source simu-
lation and benchmarking suite for decomposing EMG recordings into MU spike trains. MUniverse
includes:

• A containerized simulation stack that integrates musculoskeletal modeling, motor neuron pool
dynamics, and generative models of MU action potentials (MUAPs) for end-to-end generation
of EMG signals.

• A library of curated, diverse datasets: fully simulated, hybrid (experimentally recorded MUAPs
convolved with synthetic spike trains), and experimental EMG.
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• A uniform API to a suite of decomposition algorithms, both implemented natively, as well as
containerized wrappers to existing algorithms.

• And a standard evaluation framework for decomposition outputs, that generates a report card
using standard metrics of source quality and signal reconstruction.

By unifying data generation, evaluation, and reporting under FAIR principles, MUniverse enables
the community to measure progress rigorously and accelerate the next decade of EMG-based neural
interfacing. MUniverse is currently hosted on GitHub1.

2 Background and related work
2.1 EMG signal model
HD-EMG signals can be modelled as a linear convolutive mixture [13]:

x(t) =

L−1∑
l=0

H(l, t) s(t− l) + ε(t) , (1)

where t is a discrete time sample, x(t) ∈ RM is the EMG signal (with M being the number of
channels), H(l, t) ∈ RM×N contains the finite MU impulse responses (i.e., the MUAPs) of length L
samples, ε(t) is additive noise, and s(t) ∈ RN are the N MU spike trains comprising zeros and ones.
The spike train for MU j is defined as sj(t) =

∑
r∈Sj

δ(t− trj) where Sj = {t1j , ..., t
Tj

j } is the set
of discharge times and δ(·) the Dirac delta function. Often H(l, t) is assumed to be stationary (e.g.,
by considering non-fatiguing and isometric contractions), i.e., not being dependent on time.

2.2 Decomposition methods
The goal of EMG decomposition is to estimate the motor neuron spike trains s(t) only given the
observed EMG signals x(t) (see Equation (1)). To solve that problem, existing decomposition
methods can be classified into three groups: (1) template-matching, (2) convolutive BSS, and (3)
deep learning-based methods.

Template matching summarizes a group of (semi-)supervised data analysis methods, which are
well-established in many fields of electrophysiological spike sorting problems [e.g., 34]. In short,
these methods find, match, and update MUAP templates (waveforms) [10], and resolve complex
superpositions [36]. Well-known algorithms in this category are the PD III [10] and PD-IPUS + PD-
IGAT [36], where the latter is an extension of the former. Yet, compared to invasive recordings, surface
EMG signals have a smaller bandwidth due to low-pass filtering of the volume conductor, making
the MUAPs more similar and the inverse problem more challenging. Hence, template matching
methods often face limitations in the presence of multiple overlapping sources (e.g., high-intensity
contractions or doublet discharges [38]) or signal non-stationarities.

Convolutive BSS (CBSS) is currently the most common method for MU identification from surface
EMG signals. In CBSS, MU spike trains are estimated by solving an optimization problem that
considers the statistical properties of the MU spike trains [13]. The theory is closely related to
independent component analysis [25], which has three main assumptions: linear superposition of
the observations, the prior of the MU spike trains and the joint prior of the MU spike trains being
factorial (i.e., statistical independence). Existing algorithms vary with respect to the selected objective
functions (e.g., higher-order statistical moments such as skewness or kurtosis), optimization methods
(e.g., gradient descent or quasi-Newton methods), and (partially algorithm-specific) hyperparameters
(often in the range of 10-50). Popular CBSS algorithms include the gradient convolution kernel
compensation (gCKC) [21], as well as variants of fast Independent Component Analysis (ICA) with
[8] or without peeling off (removing) estimated MU spike trains [37] and reiterating the spike train
estimation procedure.

Deep-learning outlook. Recent work [35] shows that a shallow autoencoder with an orthogonally
constrained encoder and a sparsity-promoting latent objective can recover spike-like sources from
EMG without labels, offering a principled deep learning alternative to traditional handcrafted ICA
contrasts. Other approaches are still in an exploratory phase. Recent non-linear ICA frameworks
offer a principled route to overcome the accuracy–latency limits of classical pipelines and, crucially,

1https://github.com/dfarinagroup/muniverse
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to deal with non-stationary signals. In particular, Time-Contrastive Learning (TCL) trains a classifier
to discriminate short, non-stationary segments of a time series; the resulting latent space provably
recovers the independent sources up to trivial indeterminacies [24]. Follow-up work with auxiliary
variables [26] and identifiable Variational Auto-Encoders [28] generalizes this idea, showing that
deep networks can achieve identifiability without ground-truth sources – an essential property for
EMG decomposition, where verified MU labels typically do not exist, and if known, might adapt over
time. Although these methods have been explored in modalities such as EEG, they have yet to be
brought to EMG. Integrating such self-supervised objectives with architectures already validated for
supervised HD-EMG decomposition [9, 31, 43] could yield low-latency, device-independent systems
that learn on-the-fly from raw recordings – eliminating the whitening and delay-embedding steps that
hamper current approaches and opening the path to robust MU decoding during natural movements.

2.3 Public EMG datasets, algorithms and benchmarking efforts
Over the past few years, a handful of open-source toolboxes [3, 39, 42, 27] have begun to lower the
barrier to EMG decomposition research. However, most studies have been based on in-house codes
or proprietary packages. Experimental data releases [6, 2, 27] have become more frequent in recent
years, yet standards for reporting both data and metadata are still missing, hindering the integration
into fully automated pipelines. Other sEMG collections [1, 11, 40, 41] address classification or
myoelectric control tasks but lack ground truth in terms of spike trains.

In contrast, fields such as spike sorting (through efforts like SpikeForest [34]) and EEG source
localization (through BCI Competitions) have access to large, standardized benchmarks that drive
rapid progress. However, EMG decomposition remains fragmented across private data, divergent
pipelines, and inconsistent reporting, motivating the need for a unified, extensible benchmark.

3 MUniverse overview
3.1 Design goals
We designed MUniverse to be modular, reproducible, and accessible to both neuroscientists and
machine learning researchers. For this purpose, there are three goals for MUniverse:

• FAIR and BIDS compliance: to facilitate users in rapidly finding and accessing the datasets, we
provide Croissant files for each curated dataset. Each dataset follows the proposed standard for
EMG data (in community review 2). BIDS (Brain Imaging Data Structure [17]) is a community
standard for organizing neuroimaging data and metadata in both human and machine-readable
formats and comes with existing pipelines to process and ingest data and metadata stored in the
format.

• Rich metadata and provenance: to ensure that the various datasets we provide and operate on
remain end-to-end reproducible, we provide automated logging to carry full provenance on raw
signals, simulation/algorithm parameters, and decomposition outputs.

• Modularity and containerization: to isolate dependencies and ensure cross-platform repro-
ducibility, we provide a clean and modular API for data generation, decomposition, as well
as evaluation, while each of the external packages (NeuroMotion [33] and Swarm-Contrastive
Decomposition (SCD) [19]) is containerized.

3.2 High-level architecture
MUniverse is organized into four high-level modules: (1) the simulation stack, (2) decomposition
pipelines, (3) evaluation and benchmarking tools, and (4) utilities to handle all data formatting and
reporting, enabling users to produce and ingest data and metadata seamlessly (Figure 2).

• Simulation stack: MUniverse features a user-friendly API to a state-of-the-art EMG simulator,
NeuroMotion [33]. NeuroMotion combines OpenSim-based muscle kinematics, motor neuron-
pool models to generate spike trains [16], and a MUAP waveforms generator [32], to synthesize
high-fidelity data that closely matches the biophysics of EMG generation. Through MUniverse,
users can supply a config file specifying the anatomical, movement, and recording parameters
that govern EMG. The simulator module parses this config to invoke NeuroMotion under the
hood and emit raw EMG together with ground-truth spike trains, kinematic variables of the
degree of freedom under consideration, torque/activation profile that generated the spike trains,
and a complete JSON provenance record.

2https://bids-specification--1998.org.readthedocs.build/en/1998/
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Figure 2: MUniverse simulation and benchmarking suite: MUniverse is organized into four
high-level modules, providing a user-friendly API to (1) load and simulate data, (2) decompose
HD-EMG recordings, (3) evaluate performance and (4) organise data into a standard format.

• Decomposition routines: the framework implements a uniform API to four decomposition
methods - (1) a well-established CBSS algorithm based on FastICA [37], (2) a containerized
version of the SCD algorithm [19], (3) a linear upper-bound method given ground truth MUAPs
[29, 30], and (4) a deep autoencoder-based decomposition algorithm [35].

• Evaluation and benchmarking: we provide convenience functions to evaluate decomposition
algorithms and generate report cards of algorithm performance. We implemented several
common metrics to evaluate both the quality of the estimated MU spike trains (individually)
and the overall reconstruction accuracy.

• Data standardisation and logging: We offer tools to organise experimental HD-EMG datasets
into BIDS structure for interoperability with existing tools like MNE [18] that operate on this
standardised format.

3.3 Usage and Access
The MUniverse codebase will be made publicly available on GitHub, providing researchers with
complete access to all components. Accompanying datasets are hosted on Harvard Dataverse 3

with comprehensive documentation and made available through Croissant files, enabling efficient
integration with existing workflows and analytical pipelines. This open-access approach encourages
community-driven improvements to the framework.

4 Data generation and curation
4.1 Datasets overview
Our dataset collection covers muscles with different sizes and architectural properties (e.g., tibialis
anterior and flexor digitorum muscles), isometric and dynamic movements, and low- to high-density
electrode arrays (Table 1), and thereby rigorously challenges decomposition algorithms under realistic
variability. We curated three complementary types of HD-EMG datasets – Synthetic, Hybrid, and
Experimental – to span a wide spectrum of muscles, contraction types, recording configurations, and
noise conditions.

1. Synthetic: Generated end-to-end by the NeuroMotion pipeline [33]. Here, a user-defined
’movement profile’ (e.g., a trapezoidal isometric contraction of the extensor carpi muscle at 50%
MVC) drives a motor neuron-pool model to produce spike trains [16], which are then convolved
with ’subject’-specific MUAPs. We generated two synthetic datasets – NeuroMotion Train set
and NeuroMotion Test set, of 10,000 and 985 recordings, respectively.

2. Hybrid: Uses the same pipeline as in the synthetic datasets, but replaces synthetic MUAPs
with experimentally recorded MUAPs (see “Experimental MUAP library” below), preserving
realistic spike trains while testing algorithm robustness to real filter shapes. Here, we generated
a dataset of 100 recordings of isometric contractions.

3. Experimental: Open access HD-EMG recordings of the tibialis anterior muscle during iso-
metric ankle dorsiflexion contractions (Caillet et al. (2023) [7]; Avrillon et al. (2024) [4];
Grison et al. (2025) [19]). For Grison et al. (2025), each file is accompanied by MU spike train

3https://dataverse.harvard.edu/dataverse/muniverse
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estimates extracted in vivo from synchronised high-density intramuscular EMG, providing an
independent, high-precision reference for benchmarking.

Table 1: MUniverse provides a curated library of datasets, that span a wide spectrum of muscles,
contraction types, recording configurations and noise conditions.

Dataset Name N. Recordings N. Muscles Effort (%MVC) Movement Profiles
NeuroMotion Train 10,000 7 [10, 100] 6
NeuroMotion Test 985 7 [10, 80] 6
Hybrid Tibialis 100 1 [10:5:100] 2
Caillet et al. (2023) 11 1 {30, 50} 1
Avrillon et al. (2024) 124 2 [10:10:70] 1
Grison et al. (2025) 10 1 [10:10:70] 1

4.2 Simulated datasets: synthetic and hybrid
Our synthetic and hybrid datasets were generated through a principled experimental design frame-
work. We employed Latin Hypercube Sampling (LHS) to efficiently explore the high-dimensional
parameter space of muscle types, movement profiles, effort levels, and recording configurations. This
approach ensures comprehensive coverage of possible EMG signals while minimizing dataset size
and computational overhead.

Dataset properties and variants For the synthetic dataset generation pipeline, we first defined
the parameter space spanning all relevant factors listed below. We then used LHS to create 10,000
parameter combinations for the train set and 985 for the test set, ensuring balanced representation
across the parameter space. Each combination invoked NeuroMotion to generate the recording, while
our package enabled reproducible, scalable, and distributed data generation.

• Target Muscles: 7 forearm muscles that control the flexion-extension and radial-ulnar deviation
of the wrist; tibialis anterior muscle for the hybrid dataset.

• Movement types: isometric contractions, dynamic flexion-extension and radial-ulnar deviation
movements.

• Movement profiles: trapezoid (ramp and hold), triangular, sinusoid, and ballistic contractions.
The degree of freedom (DoF) movement angle was varied for dynamic contractions, while effort
in terms of maximal voluntary contraction (MVC) was varied for isometric contractions.

• Effort ranges: 5 – 80 % MVC.
• SNR levels: 10 – 30 dB additive Gaussian noise.
• Electrode configurations: grids (10x5, 10x10) and bracelet (10x32).

For the hybrid dataset, we followed a similar approach but with the additional step of collating
experimentally recorded MUAPs.

Experimental MUAP library: An experimental MUAP library and the corresponding recruitment
thresholds in % MVC were extracted from experimental 256-channel recordings from eight subjects
from the dataset Avrillon et al. (2024) [2, 4]. A total of 1031 MUAPs were extracted using spike-
triggered averaging with a ±25 ms window of each of the curated spike trains. To ensure a compact
support of the extracted MUAPs due to non-zero edge values, we applied a Tukey window with
a cosine fraction of 0.1 [30]. Then, a specified number of the 1031 MUAPs and their recruitment
thresholds were randomly sampled for convolving with the generated spike trains for EMG signal
generation.

From here, we proceeded to produce 100 recordings by varying the movement profile, effort levels,
and noise conditions. Different subsamples of the 1031 MUAPs were obtained to simulate subject-
specific parameters.

4.3 Experimental HD-EMG datasets
We re-purposed three state-of-the-art datasets (Caillet et al. (2023) [7]; Avrillon et al. (2024) [4];
Grison et al. (2025) [19]) consisting of HD-EMG signals recorded on the Tibialis Anterior muscle
or Vastus Lateralis muscle. All datasets are acquired from published sources, experiments were
conducted with informed consent, approved by an institutional review board, and complied with
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the Declaration of Helsinki. In Caillet et al. (2023) and Avrillon et al. (2024), four 64-electrode
grids were used. In these datasets, trapezoidal contractions of randomized order and in the range
of 5-80% MVC were performed. In Grison et al. (2025), two 64-electrode surface grids, as well
as intramuscular EMG was recorded from three multi-channel electrode arrays. Intramuscular and
surface EMG signals were concurrently sampled at 10,240 Hz.

4.4 Dataset formatting and metadata
All datasets are stored in the open and standardized BIDS format [17] and are rich in metadata to
ensure reusability as well as interoperability. The datasets include global metadata (e.g., participant
population and protocol descriptions) as well as recording-specific metadata (e.g., hardware speci-
fications, channel annotations, and global electrode coordinate systems). The MUniverse package
includes routines for easily generating and reading BIDS datasets, facilitating the enrichment of the
existing database as well as easy integration into fully automated decomposition pipelines.

5 Algorithms and benchmarking
5.1 Decomposition algorithms
The convolutive mixture in Equation 1 can be reformulated into a linear instantaneous mixture by
introducing an extended vector of MU spike trains and observations, each including the original MU
spike trains or observations and their delayed versions [13]. After applying a whitening transformation,
spike trains can be estimated recursively by applying a projection vector to the extended and whitened
signals. In MUniverse, we implemented and evaluated two of the most successful approaches to EMG
decomposition (CBSS [37] and SCD [19]) along with a deep autoencoder-based decomposition (AE
[35]) and a linear upper-bound algorithm requiring prior knowledge of the MUAPs (UB [30]). We
describe an overview of these algorithms, where an extended description is presented in Appendix A.

FastICA-based decomposition (CBSS): The CBSS algorithm uses 25 hyperparameters, capturing
signal pre-processing, signal extension, whitening, separation vector optimization, spike detection,
as well as automated quality classification of the estimated spike train [37]. The optimization
problem (Equation (A.3)) is iteratively optimized by a fixed point algorithm (i.e., a quasi-Newton
solver with quadratic convergence) with a sparse-based contrast function. Different strategies on
optimization algorithm initialization can be selected as well as strategies in preventing the algorithm
from repeatedly converging to the same source (subspace projection methods as vs. peeling off MUs
from the EMG signal given the estimated spike trains).

Swarm-Contrastive Decomposition (SCD): SCD preserves the CBSS backbone but replaces the
fixed contrast function with a higher-order cumulant selected on-the-fly via particle-swarm search. It
uses a peel-off loop to remove each accepted spike train before the next pass. In addition to the 25
hyperparameters, two extra hyperparameters (swarm size and silhouette threshold) are introduced.

Deep-learning baseline (AE): The deep learning approach [35] is fully unsupervised and casts
ICA as an autoencoder (AE) problem, where the latent dimension corresponds to the number of MU
spike trains. The encoder is an orthogonal rotation that maps extended and whitened observations to
latent activations, encouraging separation of different MU spike trains. The decoder is a linear layer
followed by tanh-shrink, mapping latents back to the whitened, extended space. Training minimizes
a reconstruction term plus a sparsity penalty on the latents.

Upper-bound (UB): In a simulated dataset, given the ground truth MUAP waveforms, the upper-
bound (UB) accuracy of a linear CBSS algorithm can be calculated by directly computing the
projection vector. Due to the extension, there are multiple delayed copies of the same spike train.
Therefore, we select the column of the extended and whitened MUAP with the largest L2-norm [30].

5.2 Benchmarking workflow
For each recording and pipeline, we executed a standardized workflow: the raw EMG and its JSON
sidecar are read into memory; the selected engine produces spike train estimates and predicted sources
alongside run metadata (e.g., runtime and the selected hyperparameters). For the synthetic and hybrid
datasets, this was followed by a spike train-matching procedure that aligns outputs to reference spike
times. Matching was based on cross-correlation within a ±100 ms window, assigning estimated spike
trains to ground-truth or intramuscular reference units by solving a linear sum assignment problem
with the false positive rate as the cost function and only accepting matches when two spike trains
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Figure 3: Decomposition performance given the NeuroMotion test dataset, considering all units with
an F1 score above 0.5. (A) UpSet plot showing the total number of detected units per algorithm
(horizontal bars) and the intersection sizes of units common between different sets of algorithms
(vertical bars; only considering sets with a minimum number of 150 units). (B) Boxplots showing
the unit yield (top), F1 score (middle) and the relative MUAP amplitude (bottom) depending on the
movement type (x-axis) and algorithm (indicated by different colors).

share at least 30 % of common spikes. Finally, each pipeline’s outputs were evaluated with the
following metrics to produce the final results.

5.3 Evaluation metrics
Each pipeline is evaluated using two sets of metrics. The first set applies across all dataset types and
includes (a) source quality metrics such as the silhouette-based score, (b) the number of identified
spike trains above the quality thresholds in (a), and (c) the fraction of variance explained (FVE)
by the identified and accepted spike trains (see Appendix C). The FVE is computed by recursively
peeling off the contribution of each identified spike train. This residual signal lets us directly estimate
the variance explained by the identified MU spike trains. The second set of metrics applies to
datasets with known ground-truth spike times or expert-annotated decompositions from intramuscular
recordings. For these, we computed the number of true positives, false positives, and false negatives
(post cross-correlation-based spike train matching, see Appendix C). We report the number of matched
units (absolute and relative), along with their F1-scores.

6 Results
Here, we showcase the performance of three different algorithms (plus the linear upper bound esti-
mate) on 5 datasets, leading to the first comprehensive benchmarking effort in EMG decomposition.

6.1 Global summary and source quality metrics
Table 2 summarizes performance on the Avrillon et al. (2024) and Neuromotion Test datasets, chosen
as a representative sample of the experimental and synthetic datasets types, respectively (see Table
A.1 for the remaining datasets). We report the 10th, 50th (median), and 90th percentiles for each
metric across pipelines, and provide brief comments on the most noteworthy trends below.

• Unit yield: For experimental data without ground-truth, the unit yield was defined as the number
of units with a silhouette score above 0.9 and at least 50 detected spikes. For simulated data,
the unit yield was the number of sources with an F1-score larger than 0.5. In all experimental
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datasets, SCD shows the best top-level performance (indicated by the 90th percentile yield
numbers) and shows the best median performance in 2 out of 3 experimental datasets. On the
other hand, CBSS outperforms SCD on the simulated datasets, yet SCD tends to identify units
that are of higher quality (median F-1 score for SCD on the NeuroMotion test dataset is 0.99
compared to 0.92 for CBSS). The AE algorithm, however, performs significantly worse than
CBSS and SCD.

• Explained variance: Similar to the unit yield performance, SCD slightly outperforms CBSS
in median FVE on the experimental datasets, while CBSS performs better on the simulated
datasets. At the 90th percentile, SCD leads CBSS across four out of the five datasets.

6.2 Evaluation with known ground-truth spike trains
Table 3 shows decomposition performance when a ground-truth is available, i.e., an expert reference
decomposition based on invasive EMG (Grision et al. (2025)) or the simulated ground truth (Neuro-
Motion test, Hybrid Tibialis). We present the total number of predicted units, the fraction of sources
matched with respect to the ground-truth, and the percentile of the spike train accuracy quantified by
means of F1 score.

• Summary: All testes algorithms reliably reconstruct motor unit spike trains, indicated by a
median F1 score above F1 score. While SCD shows the highest unit yield in the experimental
data, CBSS performed best on the simulated datasets. However, SCD is superior in terms of
spike train accuracy. The AE pipeline can reliably decompose MUs; however, it currently can’t
compete with the established SCD and CBSS algorithms. The relatively low fraction of matched
sources for UB (75.8 %) is due to the fact that reconstructing the activity of a full MU pool is
often not feasible even if the forward model is known.

• Insights from simulations: Figure 3 exemplarily shows for the NeuroMotion test dataset how
simulations enable detailed insights into the absolute and relative performance of different
decomposition algorithms. We note that there is still a considerable gap between existing
decomposition methods and the theoretical upper bound (Figure 3A), however, these units are
the most challenging which is represented in the F1 score distribution. Generally, units that are
detected by all algorithms show the highest accuracy. Though CBSS shows the highest unit
yield, SCD is best in detecting low-amplitude units. Considering different tasks (Figure 3B), it
can be observed that for all algorithms the unit yield and decomposition accuracy decrease for
dynamic or ballistic contractions. Moreover, it is observed that though CBSS shows the best
median unit yield, SCD shows the highest best-case unit yield.

For further details regarding the selected hyperparameters and an in-depth analysis of the Hybrid
Tibialis dataset, see Appendix B.

Table 2: High-level performance metrics across datasets and algorithms. (10 | 50 | 90 percentile)

Dataset Algorithm Unit yield FVE Runtime (s)
Avrillon et al. (2024) CBSS 0.0 | 14.5 | 52.7 0.07 | 0.34 | 0.61 85 | 195 | 288

SCD 0.0 | 13.0 | 69.5 0.00 | 0.34 | 0.67 86 | 348 | 805
AE 2.0 | 10.0 | 37.0 0.00 | 0.10 | 0.23 61 | 88 | 126

NeuroMotion Test CBSS 1.0 | 8.0 | 18.0 0.07 | 0.27 | 0.46 126 | 381 | 1046
SCD 0.0 | 3.0 | 16.0 0.00 | 0.12 | 0.47 0 | 147 | 399
AE 0.0 | 1.0 | 4.0 0.00 | 0.04 | 0.18 0 | 13 | 296
UB 2.0 | 9.0 | 32.0 0.05 | 0.22 | 0.45 4 | 11 | 90

7 Discussion, limitations and future work
Using the proposed MUniverse framework, we perform a standardised comparison of 3 decomposition
pipelines across five synthetic and experimental EMG datasets (1230 recordings), marking the largest
such effort ever. Despite the different optimisation strategies and algorithms, all algorithms showed
remarkably consistent median performance across experimental and simulated datasets, encouraging
neuroscientists and neurophysiologists using these methods to draw robust inferences. No single
decomposition pipeline can be considered optimal for arbitrary recordings. Yet, the presented
results provide guidance for users in selecting an appropriate decomposition algorithm for specific
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Table 3: Decomposition performance with respect to expert reference decomposition (intramuscular
recording in the Grison et al. (2025) dataset) or simulated ground truth. (10 | 50 | 90 percentile)

Dataset Algorithm N. Sources Matched Sources (%) F1-score
Grison et al. (2025) CBSS 272 12.1 0.74 | 0.92 | 0.98

SCD 325 11.1 0.78 | 0.92 | 0.99
AE 159 11.9 0.65 | 0.92 | 0.99

NeuroMotion Test CBSS 11198 86.0 0.60 | 0.96 | 1.00
SCD 6648 90.1 0.79 | 1.00 | 1.00
AE 1717 95.5 0.81 | 0.99 | 1.0
UB 18040 75.8 0.69 | 0.93 | 1.0

Hybrid Tibialis CBSS 1420 98.4 0.69 | 0.92 | 0.99
SCD 843 99.5 0.81 | 0.99 | 1.00
AE 228 97.4 0.77| 0.97 | 0.99
UB 4217 97.7 0.79 | 0.91 | 0.98

applications. For example, CBSS is most robust with respect to signal non-stationarities, and SCD
is most reliable in fully automated settings. Notably, the inclusion of a theoretical upper bound
demonstrates that even for isometric tasks, existing decomposition methods need to be further
improved to lower the gap with respect to the theoretical optimal performance. Further, although
the deep-learning baseline can currently not compete with established decomposition pipelines, for
the first time, we show that an unsupervised neural network architecture can decompose motor unit
activity from HDsEMG.
While MUniverse addresses a critical gap in standardized EMG decomposition benchmarks, several
limitations remain that we plan to tackle in future releases. In this paper, we have avoided a
hyperparameter search for each recording (which is typically done in practice) and instead on a
heuristic hyperparameter search over a subset of the most important hyperparameters to manage
compute resources. The estimated spike trains have not been post-processed as is typically done in
experimental studies. Further, despite the versatility, our current NeuroMotion integration generates
EMG only for a single muscle at the moment. In future versions, we will make the API more flexible
to be able to directly take kinematic variables as inputs, instead of defining them in a confined manner.
Finally, some widely used packages (e.g., MUEdit, Demuse) could not be included in the benchmark.
We invite their maintainers to contribute containerized wrappers.

8 Conclusion
We have introduced MUniverse, an open, extensible simulation and benchmarking suite for EMG
decomposition that unifies data generation, algorithm interfaces, and evaluation under FAIR prin-
ciples. By providing both massive synthetic corpora and curated experimental datasets alongside
containerized decomposition pipelines and standardized metrics, MUniverse lays the foundation
for reproducible comparison and rapid method development. We invite the community to adopt
MUniverse for fair benchmarking, to contribute new datasets and algorithms, and to collaboratively
drive forward the accuracy and reliability of EMG-based neural interfacing.

9 Broader Impact
MUniverse democratizes access to high-fidelity EMG data and transparent evaluation, accelerating
neural-engineering research from basic science to assistive technologies. By lowering barriers to
method development, it has the potential to improve clinical diagnostics, prosthetic control, and our
understanding of motor disorders—but also underscores the responsibility to validate these methods
across diverse populations and tasks before clinical deployment.
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Appendix

A Decomposition algorithms
Many successful BSS methods, such as ICA, consider the inversion of an (often ill-posed) linear
system. Such methods can be applied to the decomposition of EMG signals as a convolutive mixture
with finite impulse response filters (see Equation 1) can always be written in terms of a linear
instantaneous mixture. This reformulation requires introducing an extended vector of MU spike trains
and observations, each including the original MU spike trains or observations and their R delayed
versions [13]:

x̃(t) = H̃s̃(t) + ε̃(t) . (A.1)
The signal extension is followed by a whitening transformation, i.e., z̃(t) = Vx̃(t) where the (non-
unique) whitening matrix V is constructed such that the covariance matrix of extended and whitened
observations z̃(t) is the identity matrix. This transformation approximately orthogonalizes the mixing
matrix and hence, spike trains can be estimated recursively by applying a projection vector wT

k to the
extended and whitened multichannel EMG signals z̃(t):

ŝk(t) = wT
k z̃(t) . (A.2)

Therein ŝk(t) is a non-unique, arbitrarily scaled, and potentially delayed estimate of the kth MU
spike train. Different variants of convolutive BSS vary regarding the methods used to estimate the
columns wk of the inverse mixing matrix.

FastICA-based decomposition (CBSS): MUniverse contains an implementation of a state-of-the-
art convolutive BSS (CBSS) algorithm based on FastICA; for details, see [37]. The algorithm uses
25 hyperparameters, capturing signal pre-processing, signal extension, whitening, separation vector
optimization, spike detection, as well as automated quality classification of the estimated spike train.
In contrast to existing implementations, the objective function is

Lcbss(wk) =
∑
t

E
(
G(wT

k z̃(t))
)
, G(s) = s(s2 + ϵ)

a−1
2 , (A.3)

where ϵ = 0.001. Adjusting the parameter a > 0 allows for fine-tuning the degree of non-linearity
based on a simple continuous and infinitely differentiable function. Notably, selecting a = 3 is
(approximately) equivalent to using skewness as the objective function. The optimization problem
posed by Equation (A.3) is iteratively optimized by a fixed point algorithm (i.e., a quasi-Newton solver
with quadratic convergence), and different initialization strategies can be selected (random weights
or activity index [21]). Moreover, the user can select between different strategies in preventing the
algorithm from repeatedly converging to the same source (i.e., different subspace projection methods
as well as peeling off MUs from the EMG signal given the estimated spike trains).

Swarm-Contrastive Decomposition (SCD): MUniverse integrates Swarm-Contrastive Decom-
position, which preserves the ICA backbone but replaces the fixed contrast with a source-specific
higher-order cumulant selected on-the-fly via particle-swarm search. For each projection vector wk it
maximises

Lscd(wk) =
∑
t

E
(
G(wT

k z̃(t))
)
, G(s) = sign(s) |s|a , (A.4)

where the exponent a is optimized, using particle swarm optimization, for every candidate spike train
estimate, and a peel-off loop removes each accepted spike train before the next pass. Further, sgn(s)
denotes the signum function. Two extra hyperparameters (swarm size and silhouette threshold) are
introduced, allowing SCD to slot into existing frameworks.

Deep-learning baseline (AE): As a deep-learning baseline, Muniverse includes an implementation
of the autoencoder approach [35]. This method casts ICA as an autoencoder problem, where the latent
dimension corresponds to the number of sources. The encoder is an orthogonal rotation V ∈ SO(mR)
that maps extended-whitened observations to latent activations, encouraging separation of different
sources. The decoder is a linear layer followed by tanhshrink, mapping latents back to the observation
space. Training minimizes a reconstruction term plus a sparsity penalty on the latents:

L = ∥x̃w − x̂∥22 + λ log10

(
q

p

∥s∥p
∥s∥q

)
, 0 < p < q. (A.5)
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The method is fully unsupervised, aligns with the classical “rotation-after-whitening” view from ICA,
and applies to both iEMG and HD-sEMG. After training, a simple peak finding algorithm is used on
the latents to produce the estimated sources.

Upper-bound (UB): For robust learning, the projection vector wT
k has been shown to converge to

a scaled version of the extended and whitened MUAP [30]. Therefore, in a simulated dataset, the
upper-bound accuracy of a CBSS algorithm can be calculated by directly computing the projection
vector given the ground truth MUAP waveforms. In detail, the spike train of MU k with delay l is

̂̃sk,l(t) =
h̃T
k,l

||h̃k,l||
z̃(t) , (A.6)

where h̃k,l is a single column of the extended and whitened mixing matrix associated with MU k and
|| ∗ || denotes the L2-norm. Notably, due to the extension, there are multiple delayed copies of the
same spike train. Hence, as for the upper-bound estimate, we maximized the expected spike train
amplitude by selecting the column of the extended and whitened MUAP with the largest L2-norm
[30].

Spike train estimation Finally, binary spike trains need to be derived from the estimated MU
spike trains ŝk(t). Therefore, an asymmetric power function, i.e., G(s) = sgn(s) · |s|a is used to
enhance the contrast between the MU spikes and background peaks, where the exponent a ∈ R is an
adjustable parameter (here a = 2). The tallest peaks with a minimal distance of 10 ms were extracted,
and K-means clustering with K = 2 was used to separate the peak heights into two clusters, where
the putative MU spikes are those in the cluster with the largest centroid. Based on these clusters, a
silhouette-based score was computed as a quality metric for the estimated spike trains [37].

B Extended results
Here we present an extended analysis of the performance of the algorithms on the Hybrid tibialis
dataset. We analyze both global and source-level properties of the decomposition results, and
compare their relative performances on recordings of varying difficulty. Further, we present results
of our hyperparameter optimisation experiments to quantify how a subset of the most important
hyperparameters affect the decomposition performance.

B.1 Insights from simulations
The Hybrid Tibialis dataset strongly mimics experimental conditions that have been extensively used
to validate and optimize existing decomposition pipelines. Thereby, all tested algorithms show robust
spike train reconstructions, indicated by a median F-1 score larger than 0.9 (Figure A.1B). Never-
theless, Figure A.1A shows that existing decomposition pipelines have not reached the theoretical
optimal performance, indicated by 2580 units uniquely detected by UB. While the CBSS algorithm
is currently the closest competitor, the SCD algorithm is more refined with respect to identifying
low amplitude units. Further, due to the fact that the SCD prediction show the highest F-1 score, it
highlights the methods benefits in fully automated settings (i.e., without human-in-the-loop post-
processing). Further, the presented data suggests that in triangular contractions less low amplitude
units can be detected than in trapezoidal contractions (Figure A.1B, bottom).

B.2 Influence of hyper-parameters
The performance of decomposition algorithms critically depends on the selected hyper-parameters.
Achieving an optimal decomposition performance often requires a per-recording hyperparameter op-
timization. Although a hyper-parameter optimisation is beyond the scope of the proposed manuscript,
in this section we exemplarily explore the influence of two hyper-parameters on the performance of
the CBSS decomposition algorithm. That is, the extension factor R and the strategy for avoiding
finding multiple copies of the same source (subspace projection using Gram-Schmidt orthogonaliza-
tion vs estimating single source signal contributions and subsequent peel-off). For this purpose, we
quasi-randomly selected a subset of 50 recordings from the NeuroMotion test dataset and decomposed
it with 6 sets of hyperparameters (i.e., R = 5, 10, 20 and using either peel-off or subspace projection).
It can be observed that the worst set of hyper-parameters (i.e., R = 5 and using subspace projection)
detects 72.8 % of the MUs detected by the best performing set of hyperparameters (R = 10 and using
peel-off), see Figure A.2. Further, for both the peel-off and subspace projection-based approaches
the highest MU yield is obtained for an extension factor of R = 10. Interestingly, each set of hyper-
parameters detects unique MUs (i.e., sources that are not detected by other hyperparameter sets).
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Figure A.1: Decomposition performance on the Hybrid tibialis dataset considering all units with a F1
score above 0.5. (A) UpSet plots showing the total number of detected units per algorithm (horizontal
bars) and the intersection sizes of units common between different sets of algorithms (vertical bars;
only considering sets with a minimum of 50 units). (B) Boxplots showing the unit yield (top), F-1
score (middle) and the relative MUAP amplitude (bottom) depending on the movement type (x-axis)
and algorithm (indicated by different colors).

Table A.1: High-level performance metrics across datasets and algorithms. (10 | 50 | 90 percentile).
Bold font indicates best performing algorithm in terms of median yield; UB algorithm highlighted in
gray to indicate that it is a linear upperbound estimate.

Dataset Algorithm Unit yield FVE Runtime (s)
Caillet et al. (2023) CBSS 4.0 | 32.0 | 48.0 0.33 | 0.51 | 0.59 194 | 254 | 308

SCD 20.0 | 38.0 | 60.0 0.39 | 0.57 | 0.61 314 | 504 | 889
AE 9.0 | 15.0 | 24.0 0.17 | 0.21 | 0.24 77 | 99 | 120

Grison et al. (2025) CBSS 24.9 | 25.5 | 30.0 0.21 | 0.27 | 0.37 574 | 888 | 1514
SCD 27.0 | 32.5 | 34.5 0.22 | 0.32 | 0.40 545 | 802 | 1206
AE 8.9 | 10.0 | 11.1 0.13 | 0.18 | 0.20 87 | 162 | 186

Hybrid Tibialis CBSS 0.0 | 8.0 | 35.2 0.00 | 0.15 | 0.48 0 | 623 | 952
SCD 0.0 | 3.0 | 24.0 0.00 | 0.06 | 0.43 0 | 316 | 718
AE 0.0 | 0.0 | 6.0 0.00 | 0.00 | 0.15 0 | 0 | 201
UB 8.0 | 41.5 | 80.3 0.11 | 0.30 | 0.45 50 | 64 | 79

However, these unique sources contain more errors (i.e., false-positive and false-negative spikes),
which is indicated by the fact that the corresponding F1-score distributions are shifted towards lower
values.

C Performance metrics
The MUniverse evaluation module provides a large set of performance metrics that facilitate a
standardized and holistic comparison of different decomposition algorithms. While labeled ground
truth spikes always exist for simulated data, this is only partially possible for experimental recordings,
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Figure A.2: UpSet plots comparing the performance of different hyper-parameter sets using either
subspace-projection (A) or peel-off (B) for avoiding repeated convergence to the same sources as well
as different extension factors R. The horizontal bars indicate the overall number of detected MUs per
hyper-parameter set. The vertical bars indicate the intersection size of different hyper-parameter sets.

e.g., simultaneously recording invasive signals together with expert knowledge. Thus, next to spike
matching-based metrics (Appendix C.1), MUniverse provides several purely signal-based source
quality estimates (Appendix C.2).

C.1 Spike-based quality metrics
First, the predicted and ground-truth spike trains are matched by computing for each pair of motor
neuron discharges the fraction of common spikes. To do so, each pair of spike trains is aligned in
the time domain by computing the lag that maximizes the cross-correlation function. All pairs of
spikes with a maximal delay of ±1ms are considered common spikes. We label the predicted spike
trains based on the highest fraction of common spikes, whereby it is required that two spike trains
corresponding to the same MU have a minimum of 30 % common spikes. Next, we compute the total
number of matched spike trains as well as the fraction of matched spike trains, i.e., the total number
of matched spike trains divided by the total number of ground truth spikes. Further insights into
the decomposition performance are obtained by computing the rate-of-agreement (RoA), precision,
recall, and the F1-score:

RoA =
TP

TP + FP + FN
, (A.7a)

Precision =
TP

TP + FP
, (A.7b)

Recall =
TP

TP + FN
, (A.7c)

F1-score = 2 · Precision · Recall
Precision + Recall

. (A.7d)

Therein, TP deontes the number of true positive spikes, i.e., spikes that appear in both spike trains
with a maximum delay of ±1ms, FP are is the number of false positive spikes that are only part
of the predicted spike train, and FN is the number of false positive spikes that are only part of the
ground truth spike train.

C.2 Signal-based quality metrics
For quantifying the uncertainty of the predicted sources, we consider a set of quality metrics only
relying on measurable quantities (i.e, the EMG signals) together with the predicted sources. First, we
compute for each set of predicted spike trains the variance of the EMG signal that can be explained
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Figure A.3: Overview of the BIDS specification. Exemplary illustration of the BIDS folder
structure and files used for storing data and metadata in a simultaneously human and machine-readable
format. The upper part showcases the BIDS-EMG specification, and the lower part illustrates how
decomposition outputs are formatted as BIDS-derivatives.

by the linear convolutive mixture model described in Equation (1). This is achieved by estimating
for each predicted MU source the impulse response using spike-triggered averaging (in a window
of ±50ms around the spike times), and peeling of the MU contribution obtained by convolving the
estimated impulse response with the predicted spike trains. The fraction of explained variance (FVE)
is given by

FVE = 1 −
Var

(
xres(t)

)
Var

(
x(t)

) , (A.8)

where xres(t) is the residual signal obtained after peeling off every predicted source. Purely source-
based source quality metrics have been proven useful; however, all metrics face limitations. Thus,
MUniverse allows users to simultaneously analyse multiple metrics, and we compute for each source
the silhouette score [37], the pulse-to-noise ratio [20], the relative peak separation [30], skewness,
kurtosis, the (z-scored) mean peak amplitude, and the mean discharge rate, as well as the coefficient
of variation of the interspike intervals.

D MUniverse Datasets
D.1 FAIR principles
MUniverse is built on the premise that the EMG research community can hugely benefit from
shared, rigorously standardised, and fully reproducible resources. By bringing various types of
HD-EMG signals into a single BIDS-compatible library tied to a transparent evaluation suite, it
invites community-driven extension.
FAIR compliance:

• Findable (F): Each dataset is issued a Harvard Dataverse DOI and a persistent URL; the
collection is further described by a machine-readable Croissant JSON-LD file that indexes
every file within the dataset with a version tag, and SHA-256 checksum.

• Accessible (A): Harvard Dataverse’s open-source platform serves the datasers over HTTPS
and via several python/ HTTPS endpoints, so both humans and automated agents can fetch
the data without login, paywall, or proprietary tooling.

• Interoperable (I): All files follow the BIDS (EMG extension) schema (also see Section D.2)
and are encapsulated in a Croissant JSON-LD, so open-source tools like the BIDS-validator
or MNE-Python can parse them out-of-the-box.
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• Reusable (R): Signals are licensed under CC-BY-4.0, and the entire simulation / preprocess-
ing pipeline will be made openly accessible via an MIT license. Due to the rich provenance
(simulation config JSONs, container digest, environment variables, etc.) that travels with
every recording, MUniverse promotes reusability of both the datasets and code.

D.2 BIDS specification
BIDS is a standardized format for organizing and sharing anatomical and physiological data, to facili-
tate reproducibility, interoperability, data sharing and the use of automated data processing pipelines.
Every BIDS compatible dataset uses a standardized folder structure and naming conventions (see
Figure A.3) that are unambiguously related to essential recording metadata such as subject identifiers,
the applied protocols and the signal modality. Besides storing the actual data in standardized formats
(e.g., EDF), BIDS datasets are rich in metadata stored in JSON or TSV files that are both human
and machine readable. While BIDS was originally developed for brain imaging data, it has been
proven flexible to capture diverse anatomical or physiological data as well as processed data that
is referred to as derivatives. An extension proposal for EMG is currently under review4 and all
MUniverse datasets make use of this preliminary standard. Further, all decomposition results are
formatted according to the specifications of BIDS derivatives. The MUniverse utility module contains
all essential functionalities to easily load existing BIDS datasets and export new datasets in the BIDS
format.

E Author contributions and funding

PM* TK* DH* AG IMG SM AC SA RR DF
Conceptualization ✓ ✓ ✓ ✓
Methodology ✓ ✓ ✓ ✓
Software ✓ ✓ ✓ ✓ ✓
Validation ✓ ✓ ✓ ✓
Formal Analysis ✓ ✓ ✓ ✓
Investigation ✓ ✓ ✓
Resources – Simulator code ✓ ✓
Resources – Algorithm code ✓ ✓ ✓
Resources – Source data ✓ ✓ ✓
Data Curation ✓ ✓ ✓ ✓ ✓ ✓
Writing – Original draft ✓ ✓ ✓ ✓
Writing – Review & editing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Visualization ✓ ✓
Supervision ✓
Project administration ✓
Funding acquisition ✓ ✓ ✓ ✓ ✓

* These authors contributed equally to this work.

P.M. and I.M.G. were supported by the Eric and Wendy Schmidt Postdoctoral Fellowship in AI for
Science at the I-X Center for AI in Science, Imperial College London. T.K. was supported by the
German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) through the priority program
SPP 2311 (Grant ID: 548605919) and the European Research Council (ERC) through ERC-AdG
‘qMOTION’ (Grant ID: 101055186). D. H. was supported by the Imperial-META Wearable Neural
Interfaces Research Centre and the Onassis Foundation under Scholarship ID: F ZT 012-1/2023-
2024. R.R. was supported by UK Research and Innovation (UKRI) under the UK government’s
Horizon Europe Guarantee (Grant ID: EP/Z002184/1) and the Swedish Brain Foundation (Grant ID:
PS2022-0021).

4https://bids-specification--1998.org.readthedocs.build/en/1998/
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract in all aspects of the paper - datasets, algorithms,
and benchmarks, are well justified by our results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have explicitly addressed limitations in a dedicated section of the paper,
clearly outlining relevant issues.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: No theoretical results.
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We fully disclose all the information needed to reproduce the experimental
results. Our benchmarking workflow has a dedicated logger to maximize reproducibility,
and leaves a data provenance trace at every step.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code will be published under an MIT license on github, as it is currently
hosted anonymously at https://anonymous.4open.science/r/muniverse-5F37 and
sufficiently well documented to reproduce the main results of the benchmark. All hyper
parameter values and ranges are clearly specified in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We discuss about the hyperparameter choices of all algorithms tested, as well as
keep a rigorous log throughout our benchmarking workflow of the algorithm configurations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide an exploratory analysis of the performance of all algorithms on
the datasets, and report 10, 50, and 90 percentile scores of all evaluated metrics.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We both provide an overview of run-times and hardware, as well as make
available detailed process metadata containing several resource related details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Ethics statement given for all experiments.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We address the broader societal impacts of method development in neural
source separation, specifically EMG decomposition, for the fields of neural engineering and
motor neuroscience.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The work does not involve significant risks requiring safeguards for responsible
data or model release.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets utilized originate from researchers included among the paper’s
authors. Each dataset has been made available via a CC-BY 4.0 license and is published on
the Harvard Dataverse site along with a curated croissant file.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All code and data is well documented and executable upon publishing.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Participants involved in the original experiments (whose datasets we repurpose)
were instructed to perform isometric contractions of the right tibialis anterior muscle.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: All original experiments (whose datasets we repurpose) were conducted with
informed consent, approved by an IRB, and complied with the Declaration of Helsinki.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were only used for writing, editing and formatting.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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