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Abstract
I study a stochastic multi-arm bandit problem
where rewards are subject to adversarial corrup-
tion. At each round, the learner chooses an arm,
and a stochastic reward is generated. The ad-
versary strategically adds corruption to the re-
ward, and the learner is only able to observe
the corrupted reward at each round. I propose
a novel attack strategy that manipulates a learner
employing the upper-confidence-bound (UCB) al-
gorithm into pulling some non-optimal target arm
T − o(T ) times with a cumulative cost that scales
as Ô(

√
log T ), where T is the number of rounds.

I also prove the first lower bound on the cumu-
lative attack cost. The lower bound matches the
upper bound up to O(log log T ) factors, showing
the proposed attack strategy to be near optimal.

1. Introduction
Stochastic multi-arm bandit is a framework for sequential
decision-making with partial feedback. In its most basic
form, a learner interacts with a set of arms giving stochastic
rewards, and in each timestep, the learner is able to observe
and collect the realized reward of one chosen arm. Past
works have extensively studied different algorithms for op-
timizing the regret in the multi-arm bandit problem (for an
overview see (Bubeck et al., 2012)). Some well-known
algorithms include the upper-confidence-bound (UCB) al-
gorithm and the ε-greedy algorithm (Auer et al., 2002).
Given the fact that these algorithms are widely deployed
in practice (e.g. news recommendation (Li et al., 2010),
advertisements displayment (Chapelle et al., 2014) ), it is
important to understand the trustworthiness of these algo-
rithms. Specifically, how do these algorithms respond when
faced with adversarial attacks?

Recently, Jun et al. (Jun et al., 2018) initiated studying ad-
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versarial attacks on multi-arm bandit algorithms, taking a
first step towards understanding the reliability and trust-
worthiness of these algorithms. In the adversarial attack
scenario, an adversary sits between the learner and the envi-
ronment. At each round t, the learner chooses an arm at and
a stochastic reward r0t is generated. Before the reward is
observed by the learner, the adversary observes the chosen
arm at and the reward r0t , and adds a strategic corruption αt

to the reward r0t . Then the learner is only able to observe the
corrupted reward rt := r0t − αt. There is a specific target
arm that the adversary wishes to promote, and the goal of
the adversary is to manipulate the learner into choosing this
target arm T − o(T ) times (or equivalently, any non-target
arms a sub-linear number of times), while minimizing the
cumulative attack cost, defined as the sum of corruptions
throughout all rounds:

∑T
t=1 |αt|.

In this work, I characterize exactly the vulnerability of the
UCB algorithm in the adversarial attack scenario. Specifi-
cally, I design a novel attack strategy that achieves optimal
attack cost and provide matching lower bounds, hence re-
solving an open problem in (Jun et al., 2018). Assume arm a
gives subgaussian rewards with mean µa and variance proxy
σ2. Without loss of generality, this work assumes the target
arm is K. Let ∆+

a = max(0, µa − µK). The main result
is an attack strategy with cost Ô(Kσ

√
log T +

∑
a ̸=K ∆+

a )
which holds for T uniformly over time, improving the attack
cost in (Jun et al., 2018) by a O(

√
log T ) factor. The attack

manipulates a learner employing the UCB algorithm into
pulling the target arm T − o(T ) times and succeeds with
high probability. I also conduct numerical experiments to
validate the theoretical results. The experiments also show
a significant improvement over the attack strategy in (Jun
et al., 2018).

Related Work The recent work (Jun et al., 2018) first stud-
ied the problem of adversarial attacks on stochastic bandits.
They showed an attack strategy against the UCB algorithm
with the cumulative attack cost scaling as O(log T ). This
work improves the attack cost to Ô(

√
log T ) and provides

matching lower bounds. Liu and Sheroff (Liu & Shroff,
2019) further proposed black-box adversarial attacks against
stochastic bandits. Recent works also studied adversarial
attacks on adversarial bandits (Ma & Zhou, 2023), gaussian
bandits (Han & Scarlett, 2022), and contextual bandits (Ma
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et al., 2018; Garcelon et al., 2020), to name a few. Another
line of work takes the viewpoint of the learner and designs
algorithms robust to adversarial corruptions (Lykouris et al.,
2018; Gupta et al., 2019).

2. Problem Statement
This work considers a stochastic multi-arm bandit problem
where rewards are subject to adversarial corruptions. Let
T be the time horizon and K the number of arms. The
learner chooses arm at ∈ [K] during round t, and a random
reward r0t is generated from a subgaussian distribution with
variance proxy σ2. The reward is centered at µat :

E[r0t ] = µat
.

At round t, after the learner chooses an arm at and the
reward r0t is generated, but before the reward r0t is given to
the learner, the adversary adds a strategic corruption αt to
the reward r0t . Then the learner only receives the corrupted
reward rt := r0t − αt. Note that the adversary can decide
the value of αt based (at, r

0
t ) as well as the history Ht−1,

where the history Ht is defined as

Ht = (a1, r
0
1, α1, ..., at, r

0
t , αt).

The attack framework is summarized in Algorithm 1.

The goal of the adversary is to manipulate the learner into
pulling some target arm T − o(T ) times, while minimizing
cumulative attack cost, defined as

∑T
t=1 |αt|. Without loss

of generality, this work assumes the target arm is K. Let
τa(t) := {s : as = a, 1 ≤ s ≤ t} denote the set of
timesteps that arm a was chosen up to round t, and let
Na(t) := |τa(t)| denote the number of times arm a has
been pulled up until round t. Also let

µ̂a(t) =
∑

s∈τa(t)

rs/Na(t)

denote the post-attack empirical mean for arm a in round t,
and let

µ̂0
a(t) =

∑
s∈τa(t)

r0s/Na(t)

denote the pre-attack empirical mean for arm a in round t.

Specification of the UCB algorithm This work studies
to what extent an adversary can hijack the UCB algorithm’s
behavior. The UCB algorithm works as follows. In the
first K rounds, the learner pulls each arm a once to obtain
an initial estimate µ̂a. Then in later rounds t > K, the
learner computes the UCB index for arm a as

µ̂a(t) + 3σ

√
log t

Na(t)
.

The arm with the largest index is then chosen by the learner.
The specification of the UCB algorithm follows from (Jun
et al., 2018). The UCB algorithm is summarized in Algo-
rithm 2.

Algorithm 1 The general adversarial attack framework
for t = 1, 2, ..., T do

Learner picks arm at according to arm selection rule
(e.g. UCB)
Adversary learns at and pre-attack reward r0t , chooses
attack αt, suffers attack cost |αt|
Learner receives reward rt = r0t − αt

end for

Algorithm 2 The UCB algorithm
for t = 1, 2, ...K do

Pull each arm a once and obtain initial estimate µ̂a

end for
for t > K do

at = argmaxa µ̂a + 3σ
√

log t
Na(t)

Choose arm at, observe reward and update µ̂a, Na(t)
end for

3. Optimal Attack Strategy Against UCB
In this section, I show an optimal attack strategy for the
adversary. Recall the goal of the adversary is to manipulate
a learner employing the UCB algorithm into choosing some
target arm T − o(T ) times while keeping the cumulative
attack cost low. The main result is an attack strategy that
only spends Ô(

√
log T ) attack cost.

For convenience assume arm K is picked in the first round.
The proposed attack strategy works as follows. The adver-
sary only attacks when any non-target arm is pulled, and
adds corruption to ensure the difference between the post-
attack empirical mean of the pulled arm and the target arm
is above a certain gap. Specifically, the attacker ensures that
the post-attack empirical means satisfy:

µ̂at
(t) ≤ µ̂K(t)− 2β(NK(t))− 3σen. (1)

The gap 2β(NK(t)) + 3σen consists of two terms. The
first term β(NK(t)) is essentially a deviation bound
that accounts for the estimation error of the true means
(see Lemma 3.1). The second term grows exponentially
with the number of times the current arm is pulled; per-
haps surprisingly, this term is the key ingredient in ensuring
the adversary only needs to spend Ô(

√
log T ) attack cost

(see Lemma 3.2). The attack strategy is summarized in Al-
gorithm 3.

Note that in the actual implementation, the adversary may
wish equation Equation (1) to hold with strict inequality.
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This can be accomplished by adjusting the attack by an
infinitesimal amount. This work will not be concerned with
such an issue and simply assume Equation (1) holds with
equality when the adversary attacks.

Algorithm 3 Near Optimal Attack on UCB

β(n) =
√

2σ2

n log π2Kn2

3δ

for t = 1, 2, ... do
if at ̸= K then
n = Nat

(t)
Attack with smallest |α|, such that µ̂at

(t) ≤
µ̂K(t)− 2β(NK(t))− 3σ · exp(n)

end if
end for

Recall µ̂0
a(t) denotes the pre-attack empirical mean of arm

a at round t. Set parameter β(n) as:

β(n) =

√
2σ2

n
log

π2Kn2

3δ
,

and define event E as

∀a, t, |µ̂0
a(t)− µa| < β(Na(t))

which represents the event that pre-attack empirical means
are concentrated around the true mean within an error of
β(Na(t)). By a simple Hoeffding inequality combined with
a union bound, one can show event E holds with probability
1− δ.

Lemma 3.1 ((Jun et al., 2018)). Event E happens with prob-
ability 1− δ. Further, the sequence β(n) is non-increasing
in n.

Using the proposed attack strategy guarantees any non-
target arm is pulled O(log log t) times for any round t. This
lemma lies at the heart of the proposed attack strategy.

Lemma 3.2. Assume event E holds. At any round t,
Na(t) ≤ ⌈0.5 · log log t⌉ for any a ̸= K.

Proof. For sake of contradiction suppose some non-target
arm a is pulled more than ⌈0.5 · log log t⌉ times. After this
arm is pulled for the ⌈0.5 · log log t⌉-th time at round t0 < t,
we must have

µ̂0
a(t0) < µ̂K(t0)− 2β(NK(t0))− 3σ · exp

(
log

√
log t

)
= µ̂K(t0)− 2β(NK(t0))− 3σ

√
log t. (2)

Now assume arm a has been pulled for the (⌈0.5 log log t⌉+
1)-th time in round t1 ∈ [t0 + 1, t]. Then the UCB index
of arm a must be higher than that of arm K in round t1.

However,

µ̂0
a(t1 − 1) + 3σ

√
log t1

Na(t1 − 1)

= µ̂0
a(t0) + 3σ

√
log t1
Na(t0)

≤ µ̂K(t0)− 2β(NK(t0))− 3σ
√

log t+ 3σ

√
log t1
Na(t0)

≤ µ̂K(t1)− 3σ
√

log t+ 3σ

√
log t1
Na(t0)

≤ µ̂K(t1).

The second line follows from the fact that arm a has not
been chosen since t0, the third line follows from the design
of the attack strategy (specifically Equation (2)), and the
fourth line follows from the concentration result given by
event E. The UCB index of arm a is lower than that of arm
K, hence a contradiction is established, and arm a will not
be picked again.

The main result on the upper bound of the cost of the attack
strategy against UCB is given below. Recall ∆a = µa−µK ,
∆+

a = max(0,∆a).
Theorem 3.3. With probability 1 − δ, for any T , us-
ing the proposed attack strategy ensures any non-target
arm is pulled O(log log T ) times and total attack cost is
Ô(Kσ

√
log T +

∑
a∈[K] ∆

+
a ).

Proof. Assume event E holds throughout this proof. Recall
τa(t) is the set of timesteps in which arm a was chosen. For
any t,

µ̂a(t) =
µ̂0
a(t)Na(t)−

∑
s∈τa(t)

αs

Na(t)
.

Thus in round t if the adversary attacked arm a, then

µ̂0
a(t)Na(t)−

∑
s∈τa(t)

αs

Na(t)

= µ̂a(t)

= µ̂K(t)− 2β(NK(t))− 3σeNa(t).

Consequently

1

Na(t)

∑
s∈τa(s)

αs

= µ̂0
a(t)− µ̂K(t) + 2β(NK(t)) + 3σeNa(t)

≤ ∆+
a + β(Na(t)) + 3β(NK(t)) + 3σeNa(t)

≤ ∆+
a + β(Na(t)) + 3β(NK(t)) + 3σe0.5 log log t+1

≤ ∆+
a + 4β(Na(t)) + 3e · σ

√
log t.
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Here, the third line follows from event E, and the last line
comes from the fact that β is nonincreasing and Na(t) <
NK(t). Thus focusing the attack cost spent on arm a:∑

s∈τa(t)

αs ≤ Na(t)(∆
+
a + 4β(Na(t)) + 3e · σ

√
log t)

= Ô(σ
√
log t+∆+

a ).

Summing over all non-target arms, the total attack cost is
Ô(Kσ

√
log t+

∑
a∈[K] ∆

+
a ).

Furthur, by Lemma 3.2, any non-target arm is pulled
O(log log T ) times.

4. Lower Bounds on Attack Cost
In this section, I prove lower bounds on the cumulative
attack cost. For a learner employing the UCB algorithm,
the lower bounds match the upper bound in the previous
section up to O(log log T ) factors, showing the proposed
attack strategy to be near optimal. I also show a lower bound
on the attack cost against the ε-greedy algorithm.

Recall that τa(t) represents the set of timesteps that arm
a was chosen before round t. Let ᾱa(t) =

∑
s∈τa(t)

|αs|
denote the cumulative attack cost on arm a. Note that

µ̂a(t)− ᾱa(t)/Na(t) ≤ µ̂0
a(t) ≤ µ̂a(t) + ᾱa(t)/Na(t).

(3)

4.1. Attack on UCB

For ease of exposition, I will focus on the multi-arm bandit
setting with K = 2 arms in this section, but the results
easily generalize to the case where K > 2. The lower
bound below shows the previously proposed attack strategy
to be optimal up to log log T factors.

Theorem 4.1. Assume the learner is using the UCB algo-
rithm as in Algorithm 2. Consider two arms giving sub-
gaussian rewards, with mean µ1 > µ2 and variance-proxy
σ2. Assume arm 2 is the target arm, and let ∆ = µ1 − µ2.
Given δ < 0.1, for any T > 100, with probability 1− δ, an
attack cost of ∆ + 0.22σ

√
log T is needed to manipulate

the learner into pulling the 1st arm no more than N1(T )
times, where N1(T ) < min(T/26,

√
3δ/2T/π) times.

Proof. Throughout this proof assume event E holds. Con-
sider the last round the target arm is pulled. Denote this
timestep by t+ 1. Then comparing the UCB index we must
have

µ̂2(t) + 3σ

√
log t

N2(t)
> µ̂1(t) + 3σ

√
log t

N1(t)
.

Therefore by event E and Equation (3)

µ2(t) + β(N2(t)) +
ᾱ2,t

N2(t)
+ 3σ

√
log t

N2(t)

> µ1(t)− β(N1(t))−
ᾱ1,t

N1(t)
+ 3σ

√
log t

N1(t)
.

By the fact that N1(t) < N2(t)/25:√
log t

N2(t)
< 0.2

√
log t

N1(t)
,

and we can also verify

β(N2(t)) < 0.29β(N1(t)).

Hence

ᾱ1,t + ᾱ2,t

N1(t)

> ∆− β(N1(t))− β(N2(t)) + 3σ

√
log t

N1(t)
− 3σ

√
log t

N2(t)

≥ ∆− 1.29β(N1(t)) + 2.8σ

√
log t

N1(t)

= ∆− 1.29

√
2σ2

N1(t)
log

2π2N1(t)2

3δ
+ 2.8σ

√
log t

N1(t)

≥ ∆+ 0.22σ

√
log t

N1(t)
.

Finally,

ᾱ1,t + ᾱ2,t ≥ N1(t)∆ + 0.22σ
√
N1(t) log t

≥ ∆+ 0.22σ
√

log t.

This finishes the proof.

4.2. Attack on ε-greedy

For comparison, I establish a lower bound on the cumula-
tive attack cost against ε-greedy. The lower bound shows
the attack proposed in (Jun et al., 2018) to be essentially
optimal.

The ε-greedy algorithm works as follows. At each round,
the learner with probability εt does uniform exploration,
otherwise, the learner does exploitation and chooses the arm
with the largest empirical reward. Assume εt = cK/t for
some constant c as in (Auer et al., 2002) (thus each arm is
chosen for exploration with probability c/t each round). The
ε-greedy algorithm is summarized in Algorithm 4. In this
section, I again focus on the case where there are K = 2
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Algorithm 4 ε-greedy algorithm
Exploration parameter c

for t = 1, 2, ..., T do
With probability cK/t, choose arm u.a.r.
Otherwise choose at such that at =
argmaxa∈[K] µ̂a(t− 1)
Update µ̂at based on observed reward

end for

arms, though the analysis easily generalizes to the case
where K > 2.

I first prove a lemma that gives a tight characterization of the
number of times each arm is pulled in exploration rounds.

Lemma 4.2. Fix δ ∈ (0, 1). Suppose T satisfies
∑T

t=1
c/t ≥

16 log(4/δ), then with probability 1− δ, the number of times
each arm is pulled during exploration rounds is between
0.5c log T and 2c log T .

Proof. Fix arm a. Let Xt be the indicator variable that takes
the value 1 if arm a was pulled in round t as exploration.
Then

E[Xt] =
c

t

V[Xt] =
c

t
(1− c

t
).

Then by a Freedmans’ style inequality (e.g. (Agarwal et al.,
2014)), for any η ∈ (0, 1), with probability 1− δ/4, we have

T∑
t=1

(Xt −
c

t
) ≤ η

T∑
t=1

V[Xt] +
log(4/δ)

η

≤ η

T∑
t=1

E[Xt] +
log(4/δ)

η

= η

T∑
t=1

c

t
+

log(4/δ)

η
.

Choosing η =
√

log(4/δ)∑T
t=1 c/t

, we obtain

T∑
t=1

Xt <

T∑
t=1

c

t
+ 2

√√√√ T∑
t=1

c

t
log(4/δ).

A lower bound on
∑T

t=1 Xt is similar by taking the random
variables to be −Xt instead of Xt in Freedmans’ inequality,
and we can show with probability 1− δ/4

T∑
t=1

Xt >

T∑
t=1

c

t
− 2

√√√√ T∑
t=1

c

t
log(4/δ).

Thus with probability 1− δ/2, for T large enough

1

2

T∑
t=1

c

t
<

T∑
t=1

Xt < 2

T∑
t=1

c

t
.

The lemma then follows by taking a union bound over the 2
arms.

Theorem 4.3. Assume the learner is using the ε-greedy al-
gorithm as in Algorithm 4 with learning rate 2c/t for some
fixed constant c. Consider two arms giving subgaussian re-
wards with mean µ1 > µ2 and variance-proxy σ2. Assume
arm 2 is the target arm and let ∆ = µ1−µ2. Given δ < 0.1,
suppose T > 100 satisfies the condition in Lemma 4.2 and
that 3β(0.5c log T ) < ∆. With probability 1−2δ, an attack
cost of c · ∆ log T/6 is needed to manipulate the learner
into pulling the 1st arm no more than N1(T ) times, where
N1(T ) < T/4.

Proof. Throughout this proof assume event E
and Lemma 4.2 holds. By a union bound, these
events hold with probability 1 − 2δ. Consider the last
exploitation round before T in which the learner pulled
the 2nd arm, and denote the timestep by t. By round T ,
the number of times the 2nd arm was pulled in exploration
rounds is at most 2 log T . Thus to ensure the 2nd arm is
pulled no less than T − T/4 rounds, we must have

t > T − T/4− 2 log T > T/2.

In this round, the post-attack mean of the 2nd arm must be
higher than that of the 1st arm:

µ̂2(t) > µ̂1(t).

Therefore by event E and Equation (3):

µ2(t) + β(N2(t)) +
ᾱ2,t

N2(t)
> µ1(t)− β(N1(t))−

ᾱ1,t

N1(t)

leading to

ᾱ1,t + ᾱ2,t > N1(t)(∆− 2β(N1(t)))

> c ·∆ log T/6,

since assuming Lemma 4.2 holds, N1(t) > 0.5c log T , and
by the assumption on T we have ∆ > 3β(0.5c log T ) >
3β(N1(t)). This finishes the proof.

5. Experiments
In this section, I describe the results of numerical experi-
ments. In the experiments, the bandit instance has two arms,
and the reward distributions are N(µ, σ2) and N(0, σ2) re-
spectively. The target arm is the second arm. The exper-
iments aim to empirically study how the variance of the
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reward σ2 and the reward gap µ affect the cumulative at-
tack cost. I conduct 9 groups of experiments by varying the
parameters of σ ∈ {0.1, 1, 2} and µ ∈ {0.1, 1, 2}. In each
group, I run 20 trials for the bandit instance with T = 106. I
also run the attack strategy in (Jun et al., 2018) as a baseline
for comparison.

The theoretical results in this work indicate non-target arm is
pulled at most 0.5 log log T times; the empirical results vali-
date this, as the non-target arm is only pulled for 1 time, and
hence the target arm is pulled almost always. The cumula-
tive attack costs are summarized in Table 1, which fit nicely
with the theoretical bound of Ô(Kσ

√
log T +

∑
a ̸=K ∆+

a )
in this work. The results also show a significant improve-
ment over the attack strategy proposed in (Jun et al., 2018).

Table 1. Cumulative attack cost for different choices of (σ, µ)
Approach σ µ = 0.1 µ = 1 µ = 2
(Jun et al., 2018) 0.1 23.6 129.4 247.3
This work 0.1 1.3 2.4 3.6
This work 1 14.5 15.9 16.8
This work 2 30.3 30.7 31.0

6. Conclusion
In this work, I studied adversarial attacks that manipulate
the behavior of the UCB algorithm for multi-arm bandits. I
proposed a novel attack strategy against the UCB algorithm
and established the first lower bound on cumulative attack
cost. The lower bound matches the attack cost of the pro-
posed attack strategy up to log log T factors, showing the
attack to be near optimal. The results show that the UCB
algorithm is perhaps the most easily exploitable algorithm
when compared to other algorithms which are randomized,
such as the ε-greedy algorithm.
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