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Abstract

Temporal difference (TD) learning is a policy evaluation in reinforcement learning
whose performance can be enhanced by variance reduction methods. Recently,
multiple works have sought to fuse TD learning with Stochastic Variance Reduced
Gradient (SVRG) method to achieve a geometric rate of convergence. However, the
resulting convergence rate is significantly weaker than what is achieved by SVRG
in the setting of convex optimization. In this work we utilize a recent interpretation
of TD-learning as the splitting of the gradient of an appropriately chosen function,
thus simplifying the algorithm and fusing TD with SVRG. Our main result is a
geometric convergence bound with predetermined learning rate of 1/8, which is
identical to the convergence bound available for SVRG in the convex setting. Our
theoretical findings are supported by a set of experiments.

1 Introduction

Reinforcement learning (RL) is a framework for solving sequential decision making environments.
Policy evaluation is one of those problems, which seeks to determine the expected return an agent
achieves if it chooses actions according to a specific stationary policy. Temporal Difference (TD)
learning Sutton [1988] is a popular algorithm with a particularly simple form which can be performed
in an online setting. TD learning uses the Bellman equation to bootstrap the estimation process and
update the value function from each incoming sample or mini-batch. As all RL methods, tabular TD
learning suffers from the “curse of dimensionality" when the number of states is large, motivating
parametric approximations of the value function.

Despite its simple formulation, theoretical analysis of approximate TD learning is subtle. There
are a few important milestones in this process, one of which is the work in Tsitsiklis and Van Roy
[1997], where asymptotic convergence guarantees were established. More recent advances include
Bhandari et al. [2018], Srikant and Ying [2019] and Liu and Olshevsky [2021]. In particular, Liu
and Olshevsky [2021] shows that TD learning might be viewed as an example of gradient splitting, a
process analogous to gradient descent.

TD-leaning has an inherent variance problem: the variance of the update does not go to zero as
the method converges. This problem is also present in a class of convex optimization problems
where the objective function is a sum of functions and Stochastic Gradient Descent (SGD)-type
methods are applied Robbins and Monro [1951]. Such methods proceed incrementally by sampling
a single function, or a mini-batch of functions, to use for stochastic gradient evaluations. Variance
reduction techniques were developed to address this problem and yield faster convergence, including
Stochastic Average Gradient (SAG) [Schmidt et al., 2013], SVRG [Johnson and Zhang, 2013] and
SAGA [Defazio et al., 2014]. Their distinguishing feature is that they converge geometrically.
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Previous research has analysed the application of variance reduction technique to TD updates in two
problem settings: (i) a pre-sampled trajectory of the Markov Decision Process (MDP) (finite sample),
and (ii) when states are sampled directly from the MDP (online sampling). We briefly mention the
most relevant works in both veins. In the online sampling setting, the first attempt to adapt variance
reduction to TD learning was made in Korda and La [2015]. Their results were discussed by Dalal
et al. [2018] and Narayanan and Szepesvári [2017]; Xu et al. [2020] provided further analysis of
such approaches and showed geometric convergence for the so-called Variance Reduction Temporal
Difference learning (VRTD) algorithm for both Markovian and i.i.d. sampling; Ma et al. [2020]
applies the variance reduction technique to Temporal Difference with Correction. However, both Xu
et al. [2020] and Ma et al. [2020] achieve total complexity better than 1/ϵ for the policy evaluation
problem, which is not possible in the setting of this paper (see Appendix A for details).

The finite sample setting was analysed in Du et al. [2017], where authors directly applied SVRG
and SAGA to a version of policy evaluation by transforming it into an equivalent convex-concave
saddle-point problem. Since their algorithm uses two sets of parameters, in this paper we call it
Primal-Dual SVRG or PD-SVRG. Their results were improved in Peng et al. [2020] by introducing
inexact mean path update calculation (Batched SVRG algorithm).

1.1 Motivation and Contribution

The previous analysis of finite sample settings and both cases of online sampling has demonstrated
the geometric convergence of the algorithm. However, this convergence has been established
separately with different proof strategies, and several unsatisfying aspects persist. A prominent
concern is the high complexity in all scenarios: convergence times derived for variance reduction
in temporal difference learning not only show a quadratic relationship with the condition number
(ratio of largest to smallest eigenvalues of a matrix) but also include additional factors related to the
condition number of certain diagonalizing matrices. Such complexities, especially in the context of
ill-conditioned matrices typical in reinforcement learning, lead to prohibitive sample complexities
even for straightforward problems. For instance, in a simple Markov Decision Process (MDP) with
400 states and 10 actions, the batch size required to ensure convergence is impractically large using
the bounds from previous work, as illustrated in Table 2 (second and third rows of the table) and
further discussed in Appendix J.1.

Additionally, there is a qualitative discrepancy in the current results: the current analysis of the SVRG-
enhanced TD algorithm requires complexity that is quadratic in terms of the condition number, which
does not align with the complexity of classical SVRG in the convex setting with its linear dependency
on the condition number. This gap, not addressed by the previous literature, remains an unresolved
question.

In this paper we analyze the convergence of SVRG applied to TD (for convenience we call it TD-
SVRG) in both finite sample and online sampling cases. Our theoretical results are summarized in
Table 1. Our key contributions are:

• For the finite sample case, we show that TD-SVRG has the same convergence rate as SVRG
in the convex optimization setting. In particular, we replace the quadratic scaling with
the condition number by linear scaling and remove extraneous factors depending on the
diagonalizing matrix. Notably, we use a simple, pre-determined learning rate of 1/8 to do
this.

• For i.i.d. online sampling, we similarly achieve better rates with simpler analysis. Again,
our analysis is the first to show that TD-SVRG has the same convergence rate as SVRG
in the convex optimization setting with a predetermined learning rate of 1/8, and a linear
rather than quadratic scaling with the condition number. Similar improvement is obtained
for Markovian sampling.

• Our theoretical findings have significant practical implications: Previous analyses for both
finite sample and online sampling scenarios require batch sizes so large as to be impractical.
In contrast, our analysis leads to batch-sizes that are implementable in practice. A simple
example of random MDPs illustrating this is given in Table 2.

• We conducted experimental studies demonstrating that our theoretically derived batch size
and learning rate achieve geometric convergence and outperform other algorithms that rely
on parameters selected via grid search, as detailed in Section 6 and Appendix J. Specifically,
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Table 1: Comparison of algorithmic complexities, where ϵ is a desired expected accuracy, λA is a
minimum eigenvalue of the matrix A, πmin is a minimum state probability of the MDP stationary
distribution, γ is a discount factor and N is a dataset size. The complexity is reported as the number
of samples required to shrink a distance function on average by a factor of ϵ, where the distance
function is a quadratic of the quantity θ − θ∗, similar to previous works [Du et al., 2017, Xu et al.,
2020]. The definitions of other quantities and a table with additional algorithms and details of the
comparison might be found in Appendix K

.
Complexity

Type Algorithm Feature case Tabular case

Finite PD-SVRG O
((

N +
κ2(C)L2

G

λmin(ATC−1A)2

)
log( 1ϵ )

)
O
((

N + 1
(1−γ)2π4

min

)
log( 1ϵ )

)
Finite Our O

((
N + 1

λA

)
log( 1ϵ )

)
O
((

N + 1
(1−γ)πmin

)
log( 1ϵ )

)
i.i.d. TD O

(
1

λ2
Aϵ

log( 1ϵ )
)

O
(

1
(1−γ)2π2

minϵ
log( 1ϵ )

)
i.i.d. Our O

(
1

λAϵ log(
1
ϵ )
)

O
(

1
(1−γ)πminϵ

log( 1ϵ )
)

Markovian VRTD O
(

1
ϵλ2

A
log( 1ϵ )

)
O
(

1
(1−γ)2π2

minϵ
log( 1ϵ )

)
Markovian Our O

(
1

ϵλA
log2( 1ϵ )

)
O
(

1
(1−γ)πminϵ

log2( 1ϵ )
)

Table 2: This table gives the output of formulas from Table 1 on the simplest possible MDP (a
random MDP) to show the magnitude of the improvement. Specifically, we compare theoretically
suggested batch sizes for a random MDP with 400 states, 10 actions and γ = 0.95. Values in the
first row indicate the dimensionality of the feature vectors. Values in the other rows show the batch
size required by the corresponding method. Values are averaged over 10 generated datasets and
environments.

Method/Features 6 11 21 41

TD-SVRG (ours) 3176 6942 18100 54688

PD-SVRG 1.72 · 1016 3.83 · 1018 3.06 · 1021 5.77 · 1024

VRTD 5.41 · 106 2.53 · 107 1.63 · 108 1.58 · 109

we have re-done earlier experiments from Du et al. [2017] and found that our TD-SVRG
method with parameters coming from our theoretical analysis converges much faster than
previous best SVRG based algorithm (PD SVRG): on average, it requires 132 times fewer
iterations to contract by a factor of 0.5. Note that this comparison favors previous work due;
specifically we use parameters from our theorems whereas previous work uses parameters
selected by grid search. When we also run our algorithm with parameters chosen via grid
search this disparity increases to 180 times.

To summarize, in every setting our key contribution is the reduce the scaling with a condition number
from quadratic to linear, as well as to remove extraneous factors that do not appear in the analysis of
SVRG in the convex setting. As described below, the final result matches the bounds that are known
for the SVRG in the separable convex optimization setting. These theoretical results also lead to large
gains in convergence speed.

2 Problem formulation

We consider a discounted reward Markov Decision Process (MDP) defined by the tuple (S,A,P, r, γ),
where S is the state space, A the action space, P = P(s′|s, a)s,s′∈S,a∈A the transition probabilities,
r = r(s, s′) the reward function, and γ ∈ [0, 1) is a discount rate. The agent follows a policy
π : S → ∆A – a mapping from states to the probability simplex over actions. A policy π induces
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a joint probability distribution π(s, a), defined as the probability of choosing action a while being
in state s. Given that the policy is fixed and we are interested only in policy evaluation, for the
remainder of the paper we will consider the transition probability matrix P , such that: P (s, s′) =∑

a π(s, a)P(s′|s, a). We assume, that the Markov process produced by the transition probability
matrix is irreducible and aperiodic with stationary distribution µπ .

The policy evaluation problem is to compute V π, defined as: V π(s) := E [
∑∞

t=0 γ
trt+1] , which is

the expected sum of discounted rewards, where the expectation is taken with respect to the sampled
trajectory of states. Here rt is the reward at time t and V π is the value function, formally defined to
be the unique vector which satisfies the Bellman equation TπV π = V π, where Tπ is the Bellman
operator, defined as: TπV π(s) =

∑
s′ P (s, s′) (r(s, s′) + γV π(s′)) . The TD(0) method is defined

as follows: one iteration performs a fixed point update on a randomly sampled pair of states s, s′
with learning rate α: V (s)← V (s) + α(r(s, s′) + γV (s′)− V (s)). When the state space size |S|
is large, tabular methods which update the value function for every state become impractical. For
this reason, a linear approximation of the value function is often used. Each state is represented by a
feature vector ϕ(s) ∈ Rd and the state value V π(s) is approximated by V π(s) ≈ ϕ(s)T θ, where θ is
a tunable parameter vector. A single TD update on a randomly sampled transition s, s′ becomes:

θ ← θ + αgs,s′(θ) = θ + α((r(s, s′) + γϕ(s′)T θ − ϕ(s)T θ)ϕ(s)),

where the second equation should be viewed as a definition of gs,s′(θ).

Our goal is to find a parameter vector θ∗ such that the average update vector is zero

Es,s′ [gs,s′(θ
∗)] = 0,

where the expectation is taken with respect to sampled pair of states s, s′. This expectation is also
called mean-path update ḡ(θ) and can be written as:

ḡ(θ) = Es,s′ [gs,s′(θ)] = Es,s′ [(γϕ(s
′)T θ − ϕ(s)T θ)ϕ(s)] + Es,s′ [r(s, s

′)ϕ(s)]

:= −Aθ + b,
(1)

where the last line should be taken as the definition of the matrix A and vector b. Finally, the minimum
eigenvalue of the matrix (A+AT )/2 plays an important role in our analysis and will be denoted as
λA.

There are a few possible settings of the problem: the samples s, s′ might be drawn from the MDP
on-line (Markovian sampling) or independently (i.i.d. sampling): the first state s is drawn from
µπ, then s′ is drawn as the next state under the policy π. Another possible setting for analysis is
the “finite sample set": first, a trajectory of length N is drawn from an MDP following Markovian
sampling and forms dataset D = {(st, at, rt, st+1)}Nt=1. Then TD(0) proceeds by drawing samples
from this dataset. Note that the definition of the expectation Es,s′ and, consequently, of matrix A will
be slightly different in these two settings: in the on-line sampling case probability of a pair of states
s, s′ is determined by the stationary distribution µπ , and the transition matrix P ; we define

Ae =
∑
s∈S

∑
s′∈S

µπ(s)P (s, s′)ϕ(s)(ϕ(s)T − γϕ(s′)T ).

In the “finite sample" case, the probability of s, s′ refers to the probability of getting a pair of states
from one particular data point t: s = st, s

′ = st+1, and the matrix A is defined as:

Ad =
1

N

N∑
t=1

ϕ(st)(ϕ(st)
T − γϕ(st+1)

T ).

Likewise, the definition of ḡ(θ) differs between the MDP and dataset settings, since that definition
involves Es,s′ which, as discussed above, means slightly different things in both settings.

In the sequel, we will occasionally refer to the matrix A. Whenever we make such a statement, we
are in fact making two statements: one for the dataset case when A should be taken to be Ad, and
one in the on-line case when A should be taken to be Ae.

We make the following standard assumptions:
Assumption 2.1. (Problem solvability) The matrix A is non-singular.
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Assumption 2.2. (Bounded features) ||ϕ(s)||2 ≤ 1 for all s ∈ S.

These assumptions are widely accepted and have been utilized in previous research within the field
Bhandari et al. [2018], Du et al. [2017], Korda and La [2015], Liu and Olshevsky [2021], Xu et al.
[2020]. Assumption 2.1 ensures that A−1b exists and the problem is solvable. At the risk of being
repetitive, we note that this is really two assumptions, one that Ae is non-singular in the on-line case,
and one that Ad is non-singular in the dataset case, which are stated together. Assumption 2.2 is
made for simplicity and it can be satisfied by feature vector rescaling.

In our analysis we often use the function f(θ), defined as:

f(θ) = (θ − θ∗)TA(θ − θ∗). (2)

We will use fd and fe notation for the dataset (A = Ad) and environment (A = Ae) cases respectively.

3 The TD-SVRG algorithm

Let us consider an optimization problem where the target function f(θ) is the sum of convex functions
f(θ) = (1/N)

∑N
i=1 fi(θ), and the total number of functions N is very large. This makes computing

the full gradient (1/N)
∑N

i=1∇fi(θ) too costly for every update. Instead, during iteration t, we want
to apply an update gt that is inexpensive to compute:

θt = θt−1 + αgt,

where α is the learning rate. If we use gt = ∇fi(θ) with a randomly chosen i, we obtain a standard
SGD (stochastic gradient descent) algorithm. The challenge with SGD lies in its high variance. One
common approach to mitigate this is by applying so-called variance reduction techniques: we instead
update

θt = θt−1 + αvt,

where
vt = gt − g′t + E[g′t],

for some appropriately defined g′t. The key idea here is that regardless of how we choose g′t, we will
have

E[vt] = E[gt],

so in expectation the update is the same. On the other hand, if we can choose g′t to be highly correlated
with gt, then the variance of vt will be substantially smaller than the variance of gt.

There are several algorithms based on this idea, the most prominent of which are SAG [Schmidt
et al., 2013], SAGA [Defazio et al., 2014], and SVRG [Johnson and Zhang, 2013]. These algorithms
propose different methods of constructing g′t. In this work, we take our inspiration from the SVRG
algorithm which suggests to choose gt’ to be the gradient of the function fi chosen at time step t, but
estimated on a previous parameter vector θ̃: g′t = ∇fi(θ̃), θ̃ = θt′ , t

′ < t.

The major drawback of this idea is that E[g′t] = (1/N)
∑N

i=1∇fi(θ̃) – while being a full update for
the parameter vector – is costly to compute, because the motivating scenario here involved large N .
However, it turns out that for SVRG to work well, we don’t need to compute this expectation at every
time step, but rather can re-use the computation from a previous iteration. It is proved in Johnson and
Zhang [2013] that an optimal frequency of updates between computations of the full update E[g′t(θ̃)]
allows the algorithm to achieve a geometric convergence rate (in contrast to SGD, which does not
attain a geometric convergence rate).

In this paper we propose a modification of the TD(0) method with SVRG technique (TD-SVRG)
which can attain a geometric convergence rate. This algorithm is given above as Algorithm 1. The
algorithm works under the “finite sample set” setting which assumes there already exists a sampled
data set D. This is the same setting as in Du et al. [2017]. However, the method we propose does not
add regularization and does not use dual parameters, which makes it considerably simpler.
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Algorithm 1 TD-SVRG for the finite sample case
Parameters update batch size M and learning rate α.
Initialize θ̃0.
for m′ = 1, 2, ...,m do
θ̃ = θ̃m′−1,
ḡm′(θ̃) = 1

N

∑
s,s′∈D gs,s′(θ̃),

where gs,s′(θ̃) = (r(s, s′) + γϕ(s′)T θ̃ − ϕ(s)T θ̃)ϕ(st).
θ0 = θ̃.
for t = 1 to M do

Sample s, s′ from D.
Compute vt = gs,s′(θt−1)− gs,s′(θ̃) + ḡm′(θ̃).
Update parameters θt = θt−1 + αvt.

end for
Set θ̃m′ = θt′ for randomly chosen t′ ∈ (0, . . . ,M − 1).

end for

Figure 1: Illustration of gradient splitting. All gradient splittings of the function f(θ) will lie on line
l. In addition, if we have a constraint on the 2-norm of the matrix A, all gradient splittings will lie on
an interval I , thus suggesting that an update in the direction of gradient splitting is almost as good, is
an update in the direction of the true gradient.

Like the classic SVRG algorithm, our proposed TD-SVRG has two nested loops. We refer to one
step of the outer loop as an epoch and to one step of the inner loop as an iteration. TD-SVRG keeps
two parameter vectors: the current parameter vector θt, which is being updated at every iteration, and
the vector θ̃t, which is updated at the end of each epoch.

Each epoch contains M iterations, which we call update batch size (not to be confused with the
estimation batch size, which will be used in the algorithms below to compute an estimate of the
mean-path update).

4 Outline of the Analysis

In this section we briefly discuss a perspective on TD learning which represents the key difference
between our analysis and the previous works. In Xu et al. [2020] the authors note: “In Johnson and
Zhang [2013] , the convergence proof relies on the relationship between the gradient and the value of
the objective function, but there is not such an objective function in the TD learning problem.” We
show, that viewing TD learning as gradient splitting allows us to find such a function and establish a
relationship between the gradient and the value function.
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The concept of viewing TD-learning as gradient splitting comes from Liu and Olshevsky [2021], in
which the authors define the linear function h(θ) = B(θ − θ∗) as gradient splitting of a quadratic
function f(θ) = (θ − θ∗)TA(θ − θ∗) if B +BT = 2A. Liu & Olshevsky define the function:

f(θ) = (1− γ)||Vθ − Vθ∗ ||2D + γ||Vθ − Vθ∗ ||2Dir,

where Vθ is a vector of state values induced by θ,

||V ||2D =
∑
s

µπ(s)V (s)2

is a weighted norm, and

||V ||2Dir =
1

2

∑
s,s′

µπ(s)P (s, s′)(V (s)− V (s′))2

is a Dirichlet seminorm. They show that mean-path update −ḡ(θ) is a gradient splitting of this
function f(θ), which is how this function naturally appears in the analysis of TD-learning.

Our arguments build on the gradient splitting interpretation of TD, and it is this approach that differ-
entiates our paper from previous works on variance-reduced policy evaluation. This interpretation
provides a tool for its convergence analysis, since it leads to bounds on a key quantity: the inner
product of a gradient splitting h(θ) and the direction θ∗ − θ to the minimizer is the same as the inner
product of −∇f(θ) and θ∗ − θ (see Figure 1). At the same time, gradient splitting is not the gradient
itself, and many properties that hold for the gradient do not hold for gradient splitting. Please see
Appendix E for additional discussion.

A key difficulty to overcome is that, in the “finite sample” case discussed earlier, the two definitions
of the function f(θ) are no longer equivalent and, as a result, the TD(0) update is no longer a gradient
splitting. This complicates things considerably and our key idea is to view TD updates in this case as
a form of an approximate gradient splitting.

In addition to f(θ), we define the expected square norm of the difference between the current and
optimal parameters as w(θ) :

w(θ) = E[||gs,s′(θ)− gs,s′(θ
∗)||2], (3)

where expectation is taken with respect to sampled pair of states s, s′. With this notation we provide
a technical lemma. The next proofs are based on variations of this lemma.
Lemma 4.1. If Assumptions 2.1, 2.2 hold, the epoch parameters of two consecutive epochs m′ − 1
and m′ are related by the following inequality:

2αME[fd(θ̃m′)]− 2Mα2E[w(θ̃m′)] ≤ E[||θ̃m′−1 − θ∗||2] + 2α2ME[w(θ̃m′−1)], (4)

where the expectation is taken with respect to all previous epochs and choices of states s, s′ during
the epoch m.

Proof. The proof of the lemma generally follows the analysis in Johnson and Zhang [2013] and can
be found in Appendix B.

Lemma 4.1 plays an auxiliary role in our analysis and significantly simplifies it. It introduces a new
approach to the convergence proof by carrying iteration to iteration and epoch to epoch bounds to
the earlier part of the analysis. In particular, deriving bounds in terms of some arbitrary function
u(θ) is now reduced to deriving upper bounds on ||θ̃m′−1 − θ∗||2 and w(θ), and a lower bound on
f(θ) in terms of the function u. Three mentioned quantities are natural choices for the function u. In
Appendix C we show Lemma 4.1 might be used to derive convergence in terms of ||θ̃m′−1 − θ∗||2
with similar bounds as in Du et al. [2017]. In this paper we use f(θ) as u to improve on previous
results.

5 Main results

Our main results contain 4 theorems which establish convergence for 4 different settings: TD-SVRG
for the finite samples setting (with one extra subseciton which outlines the similarity between the
achieved complexity of TD-SVRG and classical SVRG), batched TD-SVRG for the finite sample
setting, TD-SVRG for i.i.d. online sampling and TD-SVRG for Markovian online sampling.
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5.1 Convergence of TD-SVRG for finite sample setting

In this section, we show that Algorithm 1 attains geometric convergence in terms of a specially chosen
function fd(θ) with α being O(1) and M being O(1/λA). Before we start note that in general a
first state of the first pair and a second state of the last state pair in the randomly sampled dataset
would not be the same state. That leads to the effect which we call unbalanced dataset: unlike the
MDP, the first and second states distributions in such a dataset are different. In the unbalanced dataset
case, mean path update is not exactly a gradient splitting of the target function f(θ) and we need to
introduce a correction term in our analysis. The following theorem covers the unbalanced dataset
case and the balanced dataset case is covered in the corollary.
Theorem 5.1. Suppose Assumptions 2.1, 2.2 hold and the dataset D may be unbalanced. Define
the error term J = 4γ2

NλA
. Then, if we choose learning rate α = 1/(8 + J) and update batch size

M = 2/(λAα), Algorithm 1 will have a convergence rate of:

E[fd(θ̃m)] ≤
(
2

3

)m

fd(θ̃0).

Corollary 5.2. If the dataset D is balanced, then we may take the error term is J = 0 and
consequently the same convergence rate might be obtained with choices of learning rate α = 1/8
and update batch size M = 16/λA

Proof of Theorem 5.1. The proof is given in Appendix D.

Note that θ̃m′ refers to the iterate after m iterations of the outer loop. Thus, the total number of
samples guaranteed by this theorem until E[fd(θ̃m)] ≤ ϵ is actually O((N + 16/λA) log(1/ϵ)) in
the balanced case and O((N + 16+2/(NλA)

λA
) log(1/ϵ)) in the unbalanced case, which means that two

complexities are identical if the dataset size N is large enough so that N ≥ λ−1
A .

Even an error term introduced by an unbalanced dataset is negligible in the randomly sampled dataset
cases; it might not be lower bounded by a value less than J . In practice the issue might be tackled by
sampling from a modified dataset this issue is discussed in Appendix F.

5.2 Similarity of SVRG and TD-SVRG

Note that the dataset case is similar to SVRG in the convex setting in the sense that: 1) the update
performed at each step is selected uniformly at random, and 2) the exact mean-path update can
be computed at every epoch. If the dataset is balanced, a negative mean-path update −ḡ(θ) is a
gradient splitting of the function f(θ). These allow us to further demonstrate the significance of the
function f(θ) for the TD learning process and the greater similarity between TD-learning and convex
optimization. We recall the convergence rate obtained in Johnson and Zhang [2013] for a sum of
convex functions:

1

γ′α′(1− 2Lα′)M ′ +
2Lα′

1− 2Lα′ ,

where γ′ is a strong convexity parameter and L is a Lipschitz smoothness parameter (we employ
the notation from the original paper and introduce the symbol ′ to avoid duplicates). The function
f(θ) = 1

2 (θ − θ∗)TA(θ − θ∗) is λA strongly convex and 1-Lipschitz smooth, which means that the
convergence rate obtained in this paper is identical to the convergence rate of SVRG in the convex
setting. We provide an intuition that supports this similarity in Appendix D. This fact further extends
the analogy between TD learning and convex optimization earlier explored by Bhandari et al. [2018]
and Liu and Olshevsky [2021].

5.3 TD-SVRG with batching

In this section, we extend our results to an inexact mean-path update computation, applying the
results of Babanezhad Harikandeh et al. [2015] to the TD SVRG algorithm. We show that the
geometric convergence rate might be achieved with a smaller number of computations by estimating
the mean-path TD-update instead of performing full computation. This approach is similar to Peng
et al. [2020], but does not require dual variables and achieves better results.

8



Since the computation of the mean-path error is not related to the dataset balance, in this section we
assume that the dataset is balanced for simplicity.
Theorem 5.3. Suppose Assumptions 2.1, 2.2 hold and the algorithm runs for a total of m epochs.
Then, if the learning rate is chosen as α = 1/8, the update batch size is M = 16/λA, and the

estimation batch size during epoch m′ is nm′ = min
(
N, N

N−1
1

cλA(2/3)m (4f(θ̃m′) + σ2))
)

, where c

is a parameter and σ2 = E[gs,s′(θ
∗)] is an optimal point update variance, Algorithm 2 will converge

to the optimum with a convergence rate of:

E[fd(θ̃m)] ≤
(
2

3

)m

(fd(θ̃0) + C),

where C is a constant dependent on the parameter c.

Proof. The proof is given in Appendix G.1.

This result is an improvement on Peng et al. [2020], compared to which it improves both the estimation
and update batch sizes. In terms of the update batch size, our result is better by at least a factor of
1/((1−γ)π3

min), where πmin represents the minimum probability within the stationary distribution of
the transition matrix, see Table 1 for theoretical results and Section J.4 for experimental comparison.
In terms estimation batch size, we have given the result explicitly in terms of the iterate norm, while
Peng et al. [2020] has a bound in terms of the variance of both primal and dual update vectors (Ξ2 in
their notation).

Note, that both quantities f(θ̃m′) and σ2 required to compute the estimation batch size nm′ are not
known during the run of the algorithm. However, we provide an alternative quantity, which might
be used in practice: nm′ = min(N, N

N−1
1

cλA(2/3)m (2|rmax|2 + 8||θ̃m′−1||2), where |rmax| is the
maximum absolute reward.

5.4 Online i.i.d. sampling from the MDP

We now apply a gradient splitting analysis to TD learning in the case of online i.i.d. sampling from
the MDP each time we need to generate a new state s. We show that our methods can be applied in
this case to derive tighter convergence bounds. One issue of TD-SVRG in the i.i.d. setting is that
the mean-path update may not be computed directly. Indeed, once we have a dataset of size N , we
can simply make a pass through it; but in an MDP setting, it is typical to assume that making a pass
through all the states of the MDP is impossible. The inexactness of mean-path update is addressed
with the sampling technique introduced previously in Subsection 5.3, which makes the i.i.d. case
very similar to TD-SVRG with non-exact mean-path computation in the finite sample case. Thus,
the TD-SVRG algorithm for the i.i.d. sampling case is very similar to Algorithm 2, with the only
difference being that states s, s′ are being sampled from the MDP instead of the dataset D. Formal
description of the algorithm is provided in Appendix H.

In this setting, geometric convergence is not attainable with variance reduction, which always relies
on a pass through the dataset. Since here one sample is obtained from the MDP at every step, one
needs to use increasing batch sizes. Our algorithm does so, and the next theorem once again improves
the scaling with the condition number from quadratic to linear compared to the previous literature.
Theorem 5.4. Suppose Assumptions 2.1, 2.2 hold. Then if the learning rate is chosen as α = 1/16, the
update batch size as M = 32/λA and the estimation batch size as nm′ = 1

cλA(2/3)m (4f(θm′)+2σ2),
where c is some arbitrary chosen constant, Algorithm 3 will have a convergence rate of:

E[fe(θ̃m)] ≤
(
2

3

)m

(fe(θ̃0) + C1),

where C1 is a constant.

Proof. The proof is given in Appendix H.

This convergence rate will lead to total computational complexity of O( 1
λAϵ log(ϵ

−1)) to achieve
accuracy ϵ.
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Similarly to the previous section, a quantity 1
cλA(2/3)m (2|rmax|2 + 8||θ̃m′−1||2) might be used for

estimation batch sizes nm′ during practical implementation of the algorithm. Note that the expression
|rmax|2 + 4||θ̃m′−1||2 is common in the literature, e.g., it is denoted as D2 in Xu et al. [2020].

5.5 Online Markovian sampling from the MDP

The Markovian sampling case is the hardest to analyse due to its dependence on the MDP properties,
which makes establishing bounds on various quantities used during the proof much harder. Leveraging
the gradient splitting view still helps us improve over existing bounds, but the derived algorithm does
not have the nice property of a constant learning rate. To deal with sample-to-sample dependencies
we introduce one more assumption often used in the literature:
Assumption 5.5. For the MDP there exist constants m̄ > 0 and ρ ∈ (0, 1) such that

sup
s∈S

dTV (P(st ∈ ·|s0 = s), π) ≤ m̄ρt, ∀t ≥ 0,

where dTV (P,Q) denotes the total-variation distance between the probability measures P and Q.

In the Markovian setting, we also need to employ a projection, which helps to set a bound on the
update vector v. Following Xu et al. [2020], after each iteration we project the parameter vector on a
ball of radius R (denoted as ΠR(θ) = argminθ′:|θ′|≤R |θ − θ′|2). We assume that |θ∗| ≤ R, where
the choice of R that satisfies this bound can be found in Section 8.2 at Bhandari et al. [2018]. The
detailed description of the algorithm is in Appendix I.
Theorem 5.6. Suppose Assumptions 2.1, 2.2, 5.5 hold. Then, the output of Algorithm 4 satisfies:

E[fe(θ̃m)] ≤
(
3

4

)m

fe(θ0) +
8C2

λAnm
+ 4α(2G2(4 + 6τmix(α)) + 9R2),

where C2 = 4(1+(m−1)ρ)
(1−ρ) [4R2 + r2max].

Proof. The proof is given in Appendix I.

Theorem 5.6 implies that if we choose s = O(log(1/ϵ)), nm′ = O(1/(λAϵ)), α = O(ϵ/ log(1/ϵ)
and M = O

(
log(1/ϵ)

ϵλA

)
, the total sample complexity is:

O
(
log2(1/ϵ)

ϵλA

)
.

This has improved scaling with the condition number λ−1
A compared to O

(
1

ϵλ2
A
log(1/ϵ)

)
in Xu

et al. [2020].

6 Experimental results

Figure 2 shows the relative performance of TD-SVRG, GTD2 [Sutton et al., 2009], “vanilla" TD
learning [Sutton, 1988], and PD-SVRG [Du et al., 2017] in the finite sample setting. We used theory-
suggested parameters for TD-SVRG, whereas parameters for PD-SVRG and GTD2 are selected
by grid search. Datasets of size 5,000 are generated from 4 environments: Random MDP [Dann
et al., 2014], and the Acrobot, CartPole and Mountain car OpenAI Gym environments [Brockman
et al., 2016]. The complexity (x-axis on the graph) is measured in the number of basic updates
computations, which is computing an update gs,s′(θ) for a sampled pair of states s, s′ and parameter
vector θ. Note that this complexity accounts for both basic updates required to perform inner loop
iterations of the algorithms and updates required to compute or estimate the mean-path update. As
the theory predicts, TD-SVRG and PD-SVRG converge geometrically, while GTD and vanilla TD
converge sub-linearly.

Details on the experiments and grid search can be found in Appendix J. In addition, Appendix J has
more experimental results: comparison of theoretical batch sizes (Appendix J.1), results on a datasets
with DQN produced features (Appendix J.3), results for the dataset case with batched estimation of
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Figure 2: Geometric average performance of different algorithms in the finite sample case. Columns
- dataset source environments: MDP, Acrobot, CartPole and Mountain Car. Rows - performance
measurements: log(f(θ)) and log(|θ − θ∗|).

mean-path update (Appendix J.4), parameter search results for TD-SVRG algorithm (Appendix J.2),
results of experiments for the online case with i.i.d sampling (Appendix J.5) and Markovian sampling
(Appendix J.6). Instructions and code for reproducing the experiments can be found in our github
repository.

7 Conclusions

In the paper we provide improved sample complexity results for variance-reduced policy evaluation.
Our key theoretical finding is that it is possible to reduce the scaling with the condition number of
the problem from quadratic to linear, matching what is known for SVRG in the convex optimization
setting, while simultaneously removing a number of extraneous factors. This results in a many orders
of magnitude improvements for batch size and sample complexity for even simple problems such as
random MDPs or OpenAI Gym problems. Results of this type are attained in several settings, e.g.,
when a dataset of size N is sampled from the MDP, and when states of the MDP are sampled online
either in an i.i.d. or Markovian fashion. In simulations we find that our method with step-sizes and
batch-sizes coming from our theorems outperforms algorithms from the previous literature with the
same parameters selected by grid search. The main innovation in the proofs of our results is to draw
on a view of TD learning as an approximate splitting of gradient descent.
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A Discussion on TD-learning lower bound

In this paper, we want to show that the sample efficiency of TD-learning cannot be lower thanO(ϵ−1).
This is easy to demonstrate by utilizing the fact that the policy evaluation problem easily reduces
to a mean estimation problem, for which we have an established bound of O(ϵ−1). Here, we give
a simple example of how to reduce the policy evaluation problem to the problem of estimating the
probability p of a Bernoulli random variable.

Consider a 3 state MDP and a policy which has the following transition matrix between states:

P =

(
1/2 p 1/2− p
1/2 1/2 0
1/2 0 1/2

)
.

As is standard in policy evaluation, we do not assume the MDP is known; in particular, the parameter p
is unknown. The agent receives reward of 1 whenever it moves from state 2 and reward of 0 otherwise.
Thus, the reward here depends only on the state. The MDP with this policy is geometrically ergodic
since P 2 is a strictly positive matrix.

Let us compute the value function assuming we start from state 1. This can be done by observing that
the stationary distribution of this probability transition matrix is (1/2, p, 1/2− p), and that if we start
at node 1, it reaches the stationary distribution after a single step. Thus

V (1) = 0 + γp · 1 + γ2p · 1 + · · · = γ
p

1− γ
.

Thus if we take γ = 1/2, V (1) = p and thus estimating the value function with a certain expected
square error will translate to a similar expected square error on estimating p, up to constants. Therefore,
it is not possible to get the error ϵ with better complexity than O(ϵ−1), since it would violate lower
bound provided by LeCam’s method [Le Cam, 2012].

This simple argument states that the results of i.i.d. case analysis reported directly in Ma et al. [2020]
and indirectly implied by Xu et al. [2020] (where complexity better than ϵ−1 might be achieved under
certain choices of batch size and learning rate) are not possible to achieve.

14



B Proof of Lemma 4.1

The proof follows the same logic as in Johnson and Zhang [2013] and is organized in four steps.
Step B.1. In the original paper, the proof starts with deriving a bound on the squared norm of the
difference between the current and optimal parameter vectors. With the introduction of w(θ) this step
in our proof is trivial. We have

Es,s′ ||gs,s′(θ)− gs,s′(θ
∗)||2 = w(θ),

where Es,s′ denotes the expectation taken with respect to the choice of a random pair of states s, s′.
In other words, Es,s′ [·] denotes the conditional expectation with respect to all variables that are not
s, s′, which, recall, are generated at time t by sampling s from the stationary distribution and letting
s′ be the next state. We will slightly abuse notation to write Es,s′ [·] instead of the more rigorous
Est,st+1 , since what time index the states are generated at random is usually clear from the context.
Step B.2. During Step 2 we derive a bound on the norm of a single iteration t update vt =
gs,s′(θt−1) − gs,s′(θ̃) + ḡ(θ̃), where ḡ(θ̃) is defined in 1 assuming that states s, s′ were sampled
randomly during step t:

Es,s′ [||vt||2] = Es,s′ ||gs,s′(θt−1)− gs,s′(θ̃) + ḡ(θ̃)||2

= Es,s′ ||(gs,s′(θt−1)− gs,s′(θ
∗)) + (gs,s′(θ

∗)− gs,s′(θ̃) + ḡ(θ̃)||2

≤ 2Es,s′ ||(gs,s′(θt−1)− gs,s′(θ
∗))||2

+ 2Es,s′ ||gs,s′(θ̃)− gs,s′(θ
∗)− (ḡ(θ̃)− ḡ(θ∗))||2

= 2Es,s′ ||(gs,s′(θt−1)− gs,s′(θ
∗))||2 + 2Es,s′ ||gs,s′(θ̃)− gs,s′(θ

∗)

− Es,s′ [gs,s′(θ̃)− gs,s′(θ
∗)]||2

≤ 2Es,s′ ||(gs,s′(θt−1)− gs,s′(θ
∗))||2 + 2Es,s′ ||gs,s′(θ̃)− gs,s′(θ

∗)||2

= 2w(θt−1) + 2w(θ̃).

The first inequality uses E||a+ b||2 ≤ 2E||a||2 + 2E||b||2. The second inequality uses the fact that
the second central moment is smaller than the second moment. The last equality uses the equality
from Step 1.
Step B.3. During this step we derive a bound on the expected squared norm of a distance to the
optimal parameter vector after a single update t:

Es,s′ ||θt − θ∗||2 = Es,s′ ||θt−1 − θ∗ + αvt||2

= ||θt−1 − θ∗||2 + 2α(θt−1 − θ∗)TEs,s′vt + α2Es,s′ ||vt||2

≤ ||θt−1 − θ∗||2 + 2α(θt−1 − θ∗)T ḡ(θt−1) + 2α2w(θt−1) + 2α2w(θ̃)

= ||θt−1 − θ∗||2 − 2αfd(θt−1) + 2α2w(θt−1) + 2α2w(θ̃).

The inequality uses the bound obtained in Step 2 and equality uses gradient splitting properties of
ḡ(θt−1) :

(θt−1 − θ∗)T ḡ(θt−1) = (θt−1 − θ∗)T (ḡ(θt−1)− ḡ(θ∗))

= (θt−1 − θ∗)T (−Adθt−1 + b+Adθ
∗ − b)

= −(θt−1 − θ∗)TAd(θt−1 − θ∗) = −fd(θt−1).

(5)

After rearranging terms it becomes:

Es,s′ ||θt − θ∗||2 + 2αfd(θt−1)− 2α2w(θt−1) ≤ ||θt−1 − θ∗||2 + 2α2w(θ̃).

Step B.4. During this step we sum the inequality obtained in Step 3 over the epoch and take another
expectation to obtain:

E[
M∑
t=1

||θt−θ∗||2+
M∑
t=1

2αEfd(θt−1)−
M∑
t=1

2α2w(θt−1)|Fm′−1] ≤ E
M∑
t=1

||θt−1−θ∗||2+
M∑
t=1

2α2w(θ̃)|Fm′−1],

(6)
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where Fm′−1 is the information available in the beginning of epoch m′. We analyze this expression
term-wise.

Notice that
∑M

t=1 ||θt−1− θ∗||2 and
∑M

t=1 ||θt− θ∗||2 consist of the same terms, except the first term
in the first sum and the last term in the last sum, which are ||θ0 − θ∗||2 and ||θM − θ∗||2 respectively.
Since ||θM − θ∗||2 is always positive and it is on the left hand side of the inequality, we could drop it.

We denote the parameter vector θ chosen for epoch parameters at the end of the epoch θ̃m′ . Since
this vector is chosen uniformly at random among all iteration vectors θt, t ∈ (0,M − 1), we have
that

∑M
t=1 Efd(θt−1) = MEfd(θ̃m′) and

∑M
t=1 Ew(θt−1) = MEw(θ̃m′).

At the same time, θ̃, which was chosen at the end of the previous epoch remains the same throughout
the epoch, therefore,

∑M
t=1 Ew(θ̃) = MEw(θ̃). Note, that the current epoch starts with setting

θ0 = θ̃. Also, to underline that θ̃ during the current epoch refers to the previous epoch, we denote it
as θ̃m′−1. Plugging these values in (4) we have :

2αMEfd(θ̃m′)− 2Mα2Ew(θ̃m′) ≤ E||θ̃m′−1 − θ∗||2 + 2α2MEw(θ̃m′−1).
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C Convergence in terms of squared norm

At this point, we go on an aside to prove a result that is not in the main body of the paper. We observe
it is possible to derive a bound on Algorithm 1 in the squared norm. This bound is generally worse
than the results we report in the main body of the paper since it scales with the square of the condition
number.
Proposition C.1. Suppose Assumptions 2.1, 2.2 hold. If we chose the learning rate as α = λA/32
and update batch size as M = 32/λ2

A, then Algorithm 1 has a convergence rate of:

E[||θ̃m′ − θ∗||2] ≤
(
5

7

)m

||θ̃0 − θ∗||2.

This leads to batch size M being O(1/λ2
A), which is better than the results in Du et al. [2017],

since their results have complexity O(κ2(C)κ2
G), where κ(C) is the condition number of matrix

C = Es∈D[ϕ(s)ϕ(s)
T ] and κG ∝ 1/λmin(A

TC−1A).

Proof. To transform inequality (4) from Lemma 4.1 into a convergence rate guarantee, we need to
bound w(θ) and fd(θ) in terms of ||θ − θ∗||2. Both bounds are easy to show:

w(θ) = Es,s′ ||gs,s′(θ)− gs,s′(θ
∗)||2

= (θ − θ∗)TEs,s′ [(γϕ(s
′)− ϕ(s))ϕ(s)Tϕ(s)(γϕ(s′)− ϕ(s))T ](θ − θ∗)

≤ (θ − θ∗)TEs,s′ [||(γϕ(s′)− ϕ(s))|| · ||ϕ(s)|| · ||ϕ(s)|| · ||(γϕ(s′)− ϕ(s))||](θ − θ∗)

≤ 4||θ − θ∗||2,
fd(θ) = (θ − θ∗)TEs,s′ [ϕ(s)(ϕ(s)− γϕ(s′))T ](θ − θ∗) ≥ λA||θ − θ∗||2,

where Es,s′ denotes the expectation taken with respect to a choice of pair of states s, s′. Plugging
these bounds into Equation (4) we have:

(2αMλA − 8Mα2)||θ̃m′ − θ∗||2 ≤ (1 + 8Mα2)||θ̃m′−1 − θ∗||2,

which yields an epoch to epoch convergence rate of:

1 + 8Mα2

2αMλA − 8Mα2
.

For this expression to be < 1, we need that αM is set to O(1/λA), which means that α needs to
be O(λA) for Mα2 to be O(1). Therefore, M needs to be O(1/λ2

A). Setting α = λA/32 and
M = 32/λ2

A yields a convergence rate of 5/7.
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D Proof of Theorem 5.1

An analysis of the balanced dataset case follows from unbalanced dataset but for clarity of presentation
we provide a proof for balanced dataset separately, but before diving into it, let us provide an intuition
as to why TD-SVRG in this case exhibits the same convergence as in the convex optimization case.

Let’s assume we are solving a convex optimization problem for the function fd(θ), i.e., we have
access to the true gradients of the functions fs,s′ . In this case the update at time t is

g′t =
1

2
∇ft(θt) =

1

2
(At +AT

t )(θ − θ∗).

In this case, the results of the SVRG paper are directly applicable. Instead, in the TD setting, we have
updates of the form:

gt = Atθt + bt.

We can see that the TD update is quite different from the convex update, as it has a different linear
function and an extra term bt, which would affect the convergence as extra noise. However, once we
apply the SVRG technique to these updates, as described in Section 3, the new updates become

v′t =
1

2
∇ft(θt)−

1

2
∇ft(θ̃) + Es,s′ [

1

2
∇fs,s′(θ̃)]

=
1

2
(At +AT

t )(θt − θ̃) +
1

2n

∑
s,s′

(As,s′ +AT
s,s′)(θ̃ − θ∗)

in the convex case and
vt = (Atθt + bt)− (Atθ̃ + bt) + Es,s′ [As,s′ θ̃ + bs,s′ ]

= At(θt − θ̃) +
1

n

∑
s,s′

As,s′(θ̃ − θ∗),

in the TD case, where we again use the fact Es,s′ [bs,s′ ] = Es,s′ [−As,s′θ
∗] to establish the equality.

The two updates look much more similar after applying the SVRG technique to them since the extra
"noise" term bt gets canceled with probability 1. Also, vt is a splitting of the true gradient v′t, which
suggests that the application of vt updates instead of v′t updates results in the same convergence rate.
The formal proof of this fact is given below.

D.1 Balanced dataset case

Similar to the previous section, we start with deriving bounds, but this time we bound ||θ − θ∗||2 and
w(θ) in terms of fd(θ). The first bound is straightforward:

fd(θ) = (θ − θ∗)TEs,s′ [ϕ(s)(ϕ(s)− γϕ(s′)T ](θ − θ∗) =⇒ ||θ − θ∗||2 ≤ 1

λA
fd(θ),

where Es,s′ denotes the expectation taken with respect to a choice of pair of states s, s′. For w(θ) we
have:

w(θ) = (θ − θ∗)TEs,s′ [(γϕ(s
′)− ϕ(s))ϕ(s)Tϕ(s)(γϕ(s′)− ϕ(s))T ](θ − θ∗)

= (θ − θ∗)T
[ 1
N

∑
s,s′∈D

(γϕ(s′)− ϕ(s))ϕT (s)ϕ(s)(γϕ(s′)− ϕ(s))T
]
(θ − θ∗)

≤ (θ − θ∗)T
[ 1
N

∑
s,s′∈D

(γϕ(s′)− ϕ(s))(γϕ(s′)− ϕ(s))T
]
(θ − θ∗)

= (θ − θ∗)T
[ 1
N

∑
s,s′∈D

γ2ϕ(s′)ϕ(s′)T − γϕ(s′)ϕ(s)T
]
(θ − θ∗) + fd(θ)

= (θ − θ∗)T
[ 1
N

∑
s,s′∈D

γ2ϕ(s)ϕ(s)T − γϕ(s)ϕ(s′)T
]
(θ − θ∗) + fd(θ)

≤ 2fd(θ),

(7)
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where the first inequality uses Assumption 2.2, the third equality uses the dataset balance property,
and

∑
s′ γ

2ϕ(s′)ϕ(s′)T =
∑

s γ
2ϕ(s)ϕ(s)T , since s and s′ are the same set of states. The last

inequality uses the fact that γ < 1.

Plugging these bounds into Equation (4), we have:

2αMEfd(θ̃m′)− 4Mα2Efd(θ̃m′) ≤ 1

λA
Efd(θ̃m′−1) + 4α2MEfd(θ̃m′−1),

which yields an epoch to epoch convergence rate of:

Efd(θ̃m′) ≤
[ 1

2λAαM(1− 2α)
+

2α

1− 2α

]
Efd(θ̃m′−1).

Setting α = 1
8 and M = 16

λA
we have the desired inequality.

D.2 Unbalanced dataset case

To prove the theorem we follow the same strategy as in D. For the fd(θ) we can use the same bound:

fd(θ) = (θ − θ∗)TEs,s′ [ϕ(s)(ϕ(s)− γϕ(s′)T ](θ − θ∗) =⇒ ||θ − θ∗||2 ≤ 1

λA
fd(θ).

The bound for w(θ) is a little bit more difficult:

w(θ) = (θ − θ∗)T
[ 1
N

∑
s,s′∈D

(γϕ(s′)− ϕ(s))ϕT (s)ϕ(s)(γϕ(s′)− ϕ(s))T
]
(θ − θ∗)

≤ (θ − θ∗)T
[ 1
N

∑
s,s′∈D

(γϕ(s′)− ϕ(s))(γϕ(s′)− ϕ(s))T
]
(θ − θ∗)

= (θ − θ∗)T
[ 1
N

∑
s,s′∈D

γϕ(s′)(γϕ(s′)− ϕ(s))T − ϕ(s)(γϕ(s′)− ϕ(s))T
]
(θ − θ∗)

= (θ − θ∗)T
[ 1
N

∑
s,s′∈D

γ2ϕ(s′)ϕ(s′)T − γϕ(s′)ϕ(s)T
]
(θ − θ∗) + fd(θ)

= (θ − θ∗)T
[ 1
N

∑
s,s′∈D

γ2ϕ(s)ϕ(s)T − γϕ(s)ϕ(s′)T
]
(θ − θ∗) + fd(θ)

+
γ2

N
(θ − θ∗)T (ϕ(sN+1)ϕ(sN+1)

T − ϕ(s1)ϕ(s1)
T )(θ − θ∗)T

≤ 2fd(θ) +
γ2

N
(θ − θ∗)T (ϕ(sN+1)ϕ(sN+1)

T − ϕ(s1)ϕ(s1)
T )(θ − θ∗)T .

The first inequality follows from Assumption 2.2. The third equality is obtained by adding and
subtracting γ2

N (θ − θ∗)Tϕ(s1)ϕ(s1)
T (θ − θ∗). The second inequality uses the fact that γ2 < 1. We

denote the maximum eigenvalue of the matrix ϕ(sN+1)ϕ(sN+1)
T − ϕ(s1)ϕ(s1)

T by K (note that
K ≤ 1). Thus,

w(θ) ≤ 2fd(θ) +
γ2K
N
||θ − θ∗||2 ≤ fd(θ)(2 +

γ2K
NλA

) ≤ fd(θ)(2 +
γ2

NλA
).

Plugging these bounds into Equation (4) we have:

(2αM − 2Mα2(2 +
γ2

NλA
))Efd(θ̃m′) ≤ (

1

λA
+ 2α2M(2 +

γ2

NλA
))fd(θ̃m′−1),

which yields a convergence rate of:

1

λA2αM(1− α(2 + γ2

NλA
))

+
α(2 + γ2

NλA
)

1− α(2 + γ2

NλA
)
.
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To achieve constant convergence rate, for example 2
3 , we set up α such that α(2 + γ2

NλA
) = 0.25,

thus the second term is equal to 1/3 and α = 1

8+ 4γ2

NλA

. Then, to make the first term equal to 1/3, we

need to set
M =

2

λAα
=

2

λA
1

8+ 4γ2

NλA

.

Thus, α is on the order of 1
max(1,1/(NλA)) ) and M is on the order of 1

λA min(1,NλA) .
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E Properties of gradient splitting

While gradient splitting is one of our main tools, it is not true that this interpretation can be simply
used to carry over results from convex optimization to policy evaluation. To illustrate this point,
consider the following properties of convex functions with L-smooth gradients:

1. ||∇f(x)|| ≤ L||x− x∗||2,
2. f(x)− f(x∗) ≤ ∇f(x)T (x− x∗),
3. f(y) ≥ f(x) +∇f(x)T (y − x),
4. ||∇f(x)−∇f(y)||2 ≤ L(∇f(x)−∇f(y))T (x− y),

5. f(y) ≤ f(x) +∇f(x)T (y − x) + L
2 ||y − x||2,

6. αf(x) + (1− α)f(y) ≤ αf(x) + (1− α)f(y)− (α(1− α)/(2L))||∇f(x)−∇f(y)||2,
7. f(y) ≥ f(x) +∇f(x)T (y − x) + 1

2L ||∇f(x)−∇f(y)||
2.

Now consider the following question: suppose we replace each instance of a gradient by gradient
splitting; which of the above inequalities still hold? It turns out that (2), (4), (6) still work with
gradient splittings, but (1), (3), (5), (7) do not.

Proofs in the convex optimization literature will typically use some subset of the inequalities (1)-(7),
and when porting these arguments to the convex optimization literature, they must be reworked
to use only (2), (4), (6). Sometimes this will be trivial, but sometimes this may require a lot of
creativity. Adopting the proofs to use gradient splitting instead of the gradient is one of the technical
contributions of this paper.
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F Discussion on Unbalanced dataset

If the dataset balance assumption is not satisfied, it is always possible to modify the MDP slightly
and make it satisfied. Indeed, suppose we are given an MDP M with initial state (or distribution) s0
and discount factor γ. We can then modify the transition probabilities by always transitioning to s0
with probability p regardless of state and action chosen (and doing the normal transition from the
MDP M with probability 1− p), and changing the discount factor to a new γ′. Calling the new MDP
M ′, we have that:

• It is very easy to draw a dataset from M ′ such that the last state is the same as the first one
(just make sure to end on a transition to s0!) and the collected dataset will have the dataset
balance property.

• Under appropriate choice of p and γ′, the value function VM in the original MDP can be
easily recovered from the value function of the new MDP VM ′ .

A formal statement of this is in the comment below. Note that all we need to be able to do is change
the discount factor (which we usually set) as well as be able to restart the MDP (which we can do in
any computer simulation).

The only caveat that the size of the dataset one can draw this way will have to be at least (1− γ)−1

in expectation because to make the above sketch work will require a choice of p that is essentially
proportional to (1− γ) (see Theorem statement in the next comment for a formal statement). This is
not a problem in practice, as typical discount factors are usually ≈ 0.99, whereas datasets tend to be
many orders of magnitude bigger than ≈ 100 = (1− γ)−1. Even a discount factor of ≈ 0.999, much
closer to one than is used in practice, only forces us to draw a dataset of size 1000 in expectation.

Theorem F.1. Choose

γ′ =
1 + γ

2
, p =

1− γ

1 + γ
,

and consider the pair of MDPs M and M ′ which are defined in our previous comment. Then the
quantities VM (s) and VM ′(s) satisfy the following recursion:

VM (s) = VM ′(s) +
γ(1− γ)

1 + γ − 2γ2
VM ′(s0)

Proof. Let T denote be a time step when the first reset appears. We can condition on T to represent
VM ′(s) as:

VM ′(s) =

∞∑
t′=1

P (t′ = T )E[VM ′(s)|t′ = T ]

=

∞∑
t′=1

(1− p)t
′−1p((

t′∑
t=1

γ′t−1E[rt]) + γ′t′VM ′(s0)),

where the expected rewards E[rt] are the same as in the original MDP. We next change the order of
summations:

VM ′(s) =

∞∑
t=1

(γ′t−1E[r(t)]

∞∑
t′=t

(1− p)t
′−1p) +

∞∑
t′=1

(1− p)t
′−1pγ′t′VM ′(s0)

=

∞∑
t′=1

γ′t′−1(1− p)t
′−1E[r(t)] + (1− p)t

′−1pγ′t′VM ′(s0).

Now we use the fact that the chosen γ′ = γ/(1− p) and perform some algebraic manipulations:
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VM ′(s) =

∞∑
t′=1

γt′−1E[r(t)] + (1− p)t
′−1pγ′t′VM ′(s0)

= VM (s) +

∞∑
t′=1

(1− p)t
′−1pγ′t′VM ′(s0)

= VM (s) +
γp

1− γp
VM ′(s0),

which implies the claimed equality:

VM (s) = VM ′(s)− γ(1− γ)

1 + γ − 2γ2
VM ′(s0)

As claimed above, this theorem can be used to recover VM from VM ′ . Consequently, the artificial
addition of a reset button as above makes it possible to generate a dataset which satisfies our dataset
balance assumption from any MDP.
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G TD-SVRG with batching exact algorithm and proof

The algorithm for the batching case is given as follows:

Algorithm 2 TD-SVRG with batching for the finite sample case
Parameters update batch size M and learning rate α.
Initialize θ̃0.
for m′ = 1, 2, ...,m do
θ̃ = θ̃m′−1,
choose estimation batch size nm′ ,
sample batch Dm′

of size nm′ from D w/o replacement,
compute gm′(θ̃) = 1

nm′

∑
s,s′∈Dm′ gs,s′(θ̃),

where gs,s′(θ̃) = (r(s, s′) + γϕ(s′)T θ̃ − ϕ(s)T θ̃)ϕ(st).
θ0 = θ̃.
for t = 1 to M do

Sample s, s′ from D.
Compute vt = gs,s′(θt−1)− gs,s′(θ̃) + gm′(θ̃).
Update parameters θt = θt−1 + αvt.

end for
Set θ̃m′ = θt′ for randomly chosen t′ ∈ (0, . . . ,M − 1).

end for

G.1 Proof of Theorem 5.3

In the first part of the proof we derive an inequality which relates model parameters of two consecutive
epochs similar to what we achieved in previous proofs, but now we introduce error vector to show
that the mean path update is estimated instead of being computed exactly. In this proof, we follow
the same 4 steps we introduced in the proof of Lemma 4.1. In the second part of the proof we show
that there are conditions under which the error term converges to 0.

Step G.1. During the first step we use the bound obtained in inequality (7):

w(θ) ≤ 2fd(θ).

Step G.2. During this step we derive a bound on the squared norm of a single update E[||vt||2].
But now, compared to previous case, we do not compute the exact mean-path updated ḡ(θ), but its
estimate, and assume our computation has error gm′(θ) = ḡ(θ) + ηm′ . Thus, during iteration t of
epoch m the single update vector is

vt = gt(θt−1)− gt(θ̃) + ḡ(θ̃) + ηm′ .
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Taking expectation conditioned on all history previous to epoch m, which we denote as Fm′−1, the
bound on the single update can be derived as:

E[||vt||2|Fm′−1] = E[||gt(θt−1)− gt(θ̃) + ḡ(θ̃) + ηm′ ||2|Fm′−1]

= E[||(gt(θt−1)− ḡ(θ∗)) + (ḡ(θ∗)− gt(θ̃) + ḡ(θ̃) + ηm′)||2|Fm′−1]

≤ 2E[||(gt(θt−1)− gt(θ
∗))||2|Fm′−1]+

2E[||gt(θ̃)− gt(θ
∗)− (ḡ(θ̃)− ḡ(θ∗))− ηm′ ||2|Fm′−1]

= 2E[||(gt(θt−1)− gt(θ
∗))||2|Fm′−1]+

2E[||gt(θ̃)− gt(θ
∗)− E[gt(θ̃)− gt(θ

∗)]− ηm′ ||2|Fm′−1]

= 2E[||(gt(θt−1)− gt(θ
∗))||2|Fm′−1]+

2E[||gt(θ̃)− gt(θ
∗)− E[gt(θ̃)− gt(θ

∗)]||2|Fm′−1]

− 4E[⟨gt(θ̃)− gt(θ
∗)− E[gt(θ̃)− gt(θ

∗)], ηm′⟩|Fm′−1] + 2E[||ηm′ ||2|Fm′−1]

≤ 2E[||(gt(θt−1)− gt(θ
∗))||2|Fm′−1]+

2E[||gt(θ̃)− gt(θ
∗)||2|Fm′−1] + 2E[||ηm′ ||2|Fm′−1]

= 2E[w(θt−1) + 2w(θ̃) + 2||ηm′ ||2|Fm′−1]

≤ E[4fd(θt−1) + 4fd(θ̃) + 2E||ηm′ ||2|Fm′−1],

where the first inequality uses E||A + B||2 ≤ 2E||A||2 + 2E||B||2, the second inequality uses
E||A− E[A]||2 ≤ E||A||2 and the fact E[ηm′ |g(θ̃)− g(θ∗)− Es,s′ [g(θ̃)− g(θ∗)],Fm′−1] = 0; and
the third inequality uses the result of Step G.1.
Step G.3. During this step, we derive a bound on a vector norm after a single update:

E[||θt − θ∗||2|Fm′−1] = E[||θt−1 − θ∗ + αvt||2|Fm′−1]

= E[||θt−1 − θ∗||2 + 2α(θt−1 − θ∗)T vt + α2||vt||2|Fm′−1]

≤ E[||θt−1 − θ∗||2 + 2α(θt−1 − θ∗)T ḡ(θt−1) + 2α(θt−1 − θ∗)T ηm′

4α2fd(θt−1) + 4α2fd(θ̃) + 2α2||ηm′ ||2|Fm′−1]

= E[||θt−1 − θ∗||2 − 2αfd(θt−1) + 2α(θt−1 − θ∗)T ηm′

+ 4α2fd(θt−1) + 4α2fd(θ̃) + 2α2||ηm′ ||2|Fm′−1],

where the first inequality uses

E[2α(θt−1 − θ∗)T vt|Fm′−1] = E[2α(θt−1 − θ∗)T (gt(θt−1)− gt(θ̃) + ḡ(θ̃) + ηm′)|Fm′−1]

= E[2α(θt−1 − θ∗)T (ḡ(θt−1)− ḡ(θ̃) + ḡ(θ̃) + ηm′)|Fm′−1],

and the last equality uses (5). Rearranging terms we obtain:

E[||θt − θ∗||2 + 2αfd(θt−1)− 4α2fd(θt−1)|Fm′−1]

≤ E[||θt−1 − θ∗||2 + 4α2fd(θ̃) + 2α(θt−1 − θ∗)T ηm′ + 2α2||ηm′ ||2|Fm′−1]

≤ E[||θt−1 − θ∗||2 + 4α2fd(θ̃) + 2α||θt−1 − θ∗|| · ||ηm′ ||+ 2α2||ηm′ ||2|Fm′−1].

≤ E[||θt−1 − θ∗||2 + 4α2fd(θ̃) + 2α(
λA

2
||θt−1 − θ∗||2 + 1

2λA
||ηm′ ||2) + 2α2||ηm′ ||2|Fm′−1].

Step G.4. Now derive a bound on epoch update. We use similar logic as during the proof of Theorem
5.1. Since the error term doesn’t change over the epoch, summing over the epoch we have:
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E[||θm′ − θ∗||2 + 2αMfd(θ̃m′)− 4α2Mfd(θ̃m′)|Fm′−1] ≤

||θ0 − θ∗||2 + 4α2Mfd(θ̃m′−1) + E[2α
M∑
t=1

(
λA

2
||θt−1 − θ∗||2 + 1

2λA
||ηm′ ||2) + 2α2M ||ηm′ ||2|Fm′−1] =

||θ̃m′−1 − θ∗||2 + 4α2Mfd(θ̃m′−1) + E[2αM(
λA

2
||θ̃m′ − θ∗||2 + 1

2λA
||ηm′ ||2) + 2α2M ||ηm′ ||2|Fm′−1] ≤

1

λA
fd(θ̃m′−1) + 4α2Mfd(θ̃m′−1) + E[2αM

(
1

2
fd(θ̃m′) +

1

2λA
||ηm′ ||2

)
+ 2α2M ||ηm′ ||2|Fm′−1].

Rearranging terms, dropping E||θm′ − θ∗||2 and dividing by 2αM we further obtain:

(
1

2
− 2α

)
E[fd(θ̃m′)|Fm′−1] ≤(

1

2αMλA
+ 2α

)
fd(θ̃m′−1) +

(
1

2λa
+ α

)
E[||ηm′ ||2|Fm′−1]

Dividing both sides of this equation to 0.5− 2α we have the epoch convergence:

E[fd(θ̃m′)|Fm′−1] ≤
(

1

λA2αM(0.5− 2α)
+

2α

0.5− 2α

)
fd(θ̃m′−1)+(

1

2λa(0.5− 2α)
+

α

0.5− 2α

)
E[||ηm′ ||2|Fm′−1].

(8)

To achieve convergence, we need to guarantee the linear convergence of the first and second terms in
the sum separately. The first term is dependent on inner loop updates; its convergence is analyzed in
Theorem 5.1. Here we show how to achieve a similar geometric convergence rate of the second term.
Since the error term has 0 mean and we are in a finite sample case with replacement, the expected
squared norm can be bounded by:

E||ηm′ ||2 ≤ N − nm′

Nnm′
S2 ≤

(
1− nm′

N

) S2

nm′
≤ S2

nm′
,

where S2 is a bound on the update vector norm variance. If we want the error to be bounded by cρm,
we need the estimation batch size nm′ to satisfy the condition:

nm′ ≥ S2

cρm′ .

until growing batch size reaches sample size. Satisfying this condition, guarantees that the second
term has geometric convergence:(

1

2λa(0.5− 2α)
+

α

0.5− 2α

)
E||ηm′ ||2 ≤

(
1

2λa(0.5− 2α)
+

α

0.5− 2α

)
cρm.

It remains to derive a bound S2 for the update vector norm sample variance:
1

N − 1

∑
s,s′

||gs,s′(θ)||2 − ||ḡ(θ)||2 ≤

N

N − 1

1

N

∑
s,s′

||gs,s′(θ)||2 =
N

N − 1

1

N

∑
s,s′

||gs,s′(θ)− gs,s′(θ
∗) + gs,s′(θ

∗)||2 ≤

N

N − 1

1

N

∑
s,s′

2||gs,s′(θ)− gs,s′(θ
∗)||2 + 2||gs,s′(θ∗)||2 =

N

N − 1
(2w(θ) + 2σ2) ≤ N

N − 1
(4f(θ) + 2σ2) = S2,
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where σ2 is the variance of the updates in the optimal point similar to Bhandari et al. [2018].

Alternatively, we might derive a bound S2 in terms of quantities known during the algorithm
execution:

1

N − 1

∑
s,s′

||gs,s′(θ)||2 − ||ḡ(θ)||2 ≤

N

N − 1

1

N

∑
s,s′

||gs,s′(θ)||2 =
N

N − 1

1

N

∑
s,s′

||(r(s, s′) + γϕ(s′)T θ − ϕ(s)T θ)ϕ(s)||2 ≤

N

N − 1

1

N

∑
s,s′

2||rϕ(s)||2 + 4||γϕ(s′)T θϕ(s)||2 + 4||ϕ(s)T θϕ(s)||2 ≤

N

N − 1
(2|rmax|2 + 4γ2||θ||2 + 4||θ||2) = N

N − 1
(2|rmax|2 + 8||θ||2) = S2.

Having the convergence of the both terms of 8, we proceed by expanding the equation for earlier
epochs (denoting bracket terms as ρ and ρ′):

E[fd(θ̃m′)|Fm′−1] ≤ ρfd(θ̃m′−1) + ρ′E[||ηm′ ||2|Fm′−1] =⇒
E[fd(θ̃m′)|Fm−2] ≤ ρ2fd(θ̃m−2) + ρ′(E[||ηm′ ||2|Fm−2] + ρE[||ηm′ ||2|Fm′−1]) =⇒

E[fd(θ̃m′)] ≤ ρmfd(θ̃0) + ρ′(

m∑
i=1

ρiE[||ηi||2|Fi])

Now, assuming that estimation batch sizes are large enough that all error terms are bounded by cρm:

E[fd(θ̃m′)|Fm′−1] ≤ ρmfd(θ̃0) + ρ′(

m∑
i=1

ρicρm) ≤ ρmfd(θ̃0) + ρm
cρ′

1− ρ
.

Denoting cρ′

1−ρ as C we have the claimed result.
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H Proof of Theorem 5.4

Algorithm 3 TD-SVRG for the i.i.d. sampling case
Parameters update batch size M and learning rate α.
Initialize θ̃0.
for m′ = 1, 2, ...,m do
θ̃ = θ̃m′−1,
choose estimation batch size nm′ ,
sample batch Dm′

of size nm′ ,
compute gm′(θ̃) = 1

nm′

∑
s,s′∈Dm′ gs,s′(θ̃),

where gs,s′(θ̃) = (r(s, s′) + γϕ(s′)T θ̃ − ϕ(s)T θ̃)ϕ(st).
θ0 = θ̃.
for t = 1 to M do

Sample s, s′ from D.
Compute vt = gs,s′(θt−1)− gs,s′(θ̃) + gm′(θ̃).
Update parameters θt = θt−1 + αvt.

end for
Set θ̃m′ = θt′ for randomly chosen t′ ∈ (0, . . . ,M − 1).

end for

The proof is very similar to 8, the only difference is that now we derive an expectation with respect to
an MDP instead of a finite sample dataset.

Step H.1. During the first step we use the bound obtained during the proof of Theorem 5.1:

w(θ) = (θ − θ∗)TE[(γϕ(s′)− ϕ(s))ϕ(s)Tϕ(s)(γϕ(s′)− ϕ(s))T ](θ − θ∗)

= (θ − θ∗)T
[∑
s,s′

µπ(s)P (s, s′)(γϕ(s′)− ϕ(s))ϕT (s)ϕ(s)(γϕ(s′)− ϕ(s))T
]
(θ − θ∗)

≤ (θ − θ∗)T
[∑
s,s′

µπ(s)P (s, s′)(γϕ(s′)− ϕ(s))(γϕ(s′)− ϕ(s))T
]
(θ − θ∗)

= (θ − θ∗)T
[∑
s,s′

µπ(s)P (s, s′)(γ2ϕ(s′)ϕ(s′)T − γϕ(s′)ϕ(s)T )
]
(θ − θ∗) + fe(θ)

= (θ − θ∗)T
∑
s,s′

µπ(s)P (s, s′)(γ2ϕ(s)ϕ(s)T − γϕ(s)ϕ(s′)T )
]
(θ − θ∗) + fe(θ)

≤ 2fe(θ),

(9)

where the first inequality uses Assumption 2.2, the third equality uses the fact that µπ is a
stationary distribution of P (

∑
s′ γ

2µπ(s)P (s, s′)ϕ(s′)ϕ(s′)T =
∑

s′ γ
2µπ(s

′)ϕ(s′)ϕ(s′)T =∑
s µπ(s)γ

2ϕ(s)ϕ(s)T ). The last inequality uses the fact that γ < 1.

Step H.2. During this step we derive a bound on the squared norm of a single update E[||vt||2],
which is performed during time step t of epoch m. Since we are aiming to derive epoch to epoch
convergence bound, we will be taking expectation conditioned on all history previous to epoch m,
which we denote as Fm′−1. Similarly with Appendix G.1 we assume that mean path update in the
end of the previous epoch was computed inexactly and has estimation error: ḡ(θ̃m′−1) + ηm′ . Thus
the single update vector becomes (for simplicity we denote θ̃m′−1 as θ̃):

vt = gt(θt−1)− gt(θ̃) + ḡ(θ̃) + ηm′ .
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The norm of this vector is bounded by:

E[||vt||2|Fm′−1] = E[||gt(θt−1)− gt(θ̃) + ḡ(θ̃) + ηm′ ||2|Fm′−1]

= E[||(gt(θt−1)− ḡ(θ∗)) + (ḡ(θ∗)− gt(θ̃) + ḡ(θ̃) + ηm′)||2|Fm′−1]

≤ 2E[||(gt(θt−1)− gt(θ
∗))||2|Fm′−1]+

2E[||gt(θ̃)− gt(θ
∗)− (ḡ(θ̃)− ḡ(θ∗))− ηm′ ||2|Fm′−1]

= 2E[||(gt(θt−1)− gt(θ
∗))||2|Fm′−1]+

2E[||gt(θ̃)− gt(θ
∗)− E[gt(θ̃)− gt(θ

∗)]− ηm′ ||2|Fm′−1]

= 2E[||(gt(θt−1)− gt(θ
∗))||2|Fm′−1]+

2E[||gt(θ̃)− gt(θ
∗)− E[gt(θ̃)− gt(θ

∗)]||2|Fm′−1]

− E[⟨gt(θ̃)− gt(θ
∗)− E[gt(θ̃)− gt(θ

∗)], ηm′⟩|Fm′−1] + 2E[||ηm′ ||2|Fm′−1]

≤ 2E[||(gt(θt−1)− gt(θ
∗))||2|Fm′−1]+

2E[||gt(θ̃)− gt(θ
∗)||2|Fm′−1] + 2E[||ηm′ ||2|Fm′−1]

= 2E[w(θt−1) + 2w(θ̃) + 2||ηm′ ||2|Fm′−1]

≤ E[4fe(θt−1) + 4fe(θ̃) + 2||ηm′ ||2|Fm′−1],

where the first inequality uses E||A + B||2 ≤ 2E||A||2 + 2E||B||2, the second inequality uses
E||A−E[A]||2 ≤ E||A||2 and the fact E[ηm′ |g(θ̃)− g(θ∗)−Es,s′ [g(θ̃)− g(θ∗)],Fm′−1] = 0 ; and
the third inequality uses the result of Step H.1.
Step H.3. We obtain a bound on a vector norm after a single update during iteration t of epoch m:

E[||θt − θ∗||2|Fm′−1] = E[||θt−1 − θ∗ + αvt||2|Fm′−1]

= E[||θt−1 − θ∗||2 + 2α(θt−1 − θ∗)T vt + α2||vt||2|Fm′−1]

= E[||θt−1 − θ∗||2 + 2α(θt−1 − θ∗)T ḡ(θt−1) + 2α(θt−1 − θ∗)T ηm′

+ 4α2fe(θt−1) + 4α2fe(θ̃) + 2α2||ηm′ ||2|Fm′−1].

Applying an argument similar to 5 and rearranging terms we obtain:

E[||θt − θ∗||2 + 2αfe(θt−1)− 4α2fe(θt−1)|Fm′−1]

≤ E[||θt−1 − θ∗||2 + 4α2fe(θ̃)− 2α(θt−1 − θ∗)T η + 2α2||ηm′ ||2|Fm′−1]

≤ E[||θt−1 − θ∗||2 + 4α2fe(θ̃) + 2α||θt−1 − θ∗|| · ||η||+ 2α2||ηm′ ||2|Fm′−1].

≤ E[||θt−1 − θ∗||2 + 4α2fe(θ̃) + 2α(
λA

2
||θt−1 − θ∗||2 + 1

2λA
||ηm′ ||2) + 2α2||ηm′ ||2|Fm′−1].

Step H.4. Now derive a bound on epoch update. We use the similar logic as during the proof of
Theorem 5.1. Since the error term doesn’t change over the epoch, summing over the epoch we have:

E[||θm′ − θ∗||2 + 2αMfe(θ̃m′)− 4α2Mfe(θ̃m′)|Fm′−1] ≤

||θ0 − θ∗||2 + 4α2Mfe(θ̃m′−1) + E[2α
M∑
t=1

(
λA

2
||θt−1 − θ∗||2 + 1

2λA
||ηm′ ||2) + 2α2M ||ηm′ ||2|Fm′−1] =

||θ̃m′−1 − θ∗||2 + 4α2Mfe(θ̃m′−1) + E[2αM(
λA

2
||θ̃m′ − θ∗||2 + 1

2λA
||ηm′ ||2) + 2α2M ||ηm′ ||2|Fm′−1] ≤

1

λa
fe(θ̃m′−1) + 4α2Mfe(θ̃m′−1) + E[2αM

(
1

2
fe(θ̃m′) +

1

2λA
||ηm′ ||2

)
+ 2α2M ||ηm′ ||2|Fm′−1]

Rearranging terms, dropping E||θm′ − θ∗||2 and dividing by 2αM we further obtain:
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(
1

2
− 2α

)
E[fe(θ̃m′)|Fm′−1] ≤(

1

2αMλA
+ 2α

)
fe(θ̃m′−1) +

(
1

2λa
+ α

)
E[||ηm′ ||2|Fm′−1]

Dividing both sides of this equation to 0.5− 2α we have the epoch convergence:

E[fe(θ̃m′)|Fm′−1] ≤
(

1

λA2αM(0.5− 2α)
+

2α

0.5− 2α

)
fe(θ̃m′−1)+(

1

2λa(0.5− 2α)
+

α

0.5− 2α

)
E[||ηm′ ||2|Fm′−1].

Similarly to Appendix D, convergence for the first term might be obtained by setting the learning
rate to α = 1/16 and the update batch size to M = 32/λA. To guarantee convergence of the second
term, we need to bound E||ηm′ ||2. In the infinite population with replacement case, the norm of the
error vector is bounded by:

E||ηm′ ||2 ≤ S2

nm′
,

where S2 is a bound update vector norm variance. If we want the error to be bounded by cρm, we
need the estimation batch size nm′ to satisfy the condition:

nm′ ≥ S2

cρm
.

Satisfying this condition guarantees that the second term has geometric convergence:(
1

2λa(0.5− 2α)
+

α

0.5− 2α

)
E||ηm′ ||2 ≤

(
1

2λa(0.5− 2α)
+

α

0.5− 2α

)
cρm.

Similarly to Appendix G.1, the bound on sample variance S2 can be derived as follows:

∑
s,s′

µπ(s)P (s, s′)||gs,s′(θ)||2 − ||ḡ(θ)||2 ≤∑
s,s′

µπ(s)P (s, s′)||gs,s′(θ)− gs,s′(θ
∗) + gs,s′(θ

∗)||2 ≤

∑
s,s′

µπ(s)P (s, s′)2||gs,s′(θ)− gs,s′(θ
∗)||2 + 2||gs,s′(θ∗)||2 =

2w(θ) + 2σ2 ≤ 4f(θ) + 2σ2 = S2,

where σ2 is the variance of the updates in the optimal point similar to Bhandari et al. [2018].

An alternative bound on S2 with known quantities for practical implementation:∑
s,s′

µπ(s)P (s, s′)||gs,s′(θ)||2 − ||ḡ(θ)||2 ≤∑
s,s′

µπ(s)P (s, s′)||gs,s′(θ)||2 =
∑
s,s′

µπ(s)P (s, s′)(||(r(s, s′) + γϕ(s′)T θ − ϕ(s)T θ)ϕ(s)||2) ≤

∑
s,s′

µπ(s)P (s, s′)(2||rϕ(s)||2 + 4||γϕ(s′)T θϕ(s)||2 + 4||ϕ(s)T θϕ(s)||2) ≤

(2|rmax|2 + 4γ2||θ||2 + 4||θ||2) = (2|rmax|2 + 8||θ||2) = S2.

Setting hyperparameters to obtained values will results in final computational complexity of
O( 1

ϵλA
log(ϵ−1)).
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I Proof of Theorem 5.6

Algorithm 4 TD-SVRG for the Markovian sampling case
Parameters update batch size M and learning rate α and projection radius R.
Initialize θ̃0.
for m = 1, 2, ...,m do
θ̃ = θ̃m′−1,
choose estimation batch size nm′ ,
sample trajectory Dm′

of length nm′ ,
compute gm′(θ̃) = 1

nm′

∑
s,s′∈Dm′ gs,s′(θ̃),

where gs,s′(θ̃) = (r(s, s′) + γϕ(s′)T θ̃ − ϕ(s)T θ̃)ϕ(st).
θ0 = θ̃.
for t = 1 to M do

Sample s, s′ from D.
Compute vt = gs,s′(θt−1)− gs,s′(θ̃) + gm′(θ̃).
Update parameters θt = ΠR(θt−1 + αvt).

end for
Set θ̃m′ = θt′ for randomly chosen t′ ∈ (0, . . . ,M − 1).

end for

In this section we show the convergence of the Algorithm 4, which might be applied in the Markovian
sampling case. In this case, we cannot simply apply Lemma 4.1; due to high estimation bias the
bounds on fe(θ) and w(θ) will not be derived based on the current value of θ, but based on global
constraints on the updates guaranteed by applying projection.

First, we analyse a single iteration on step t of epoch m, during which we apply the update vector
vt = gt(θ)− gt(θ̃) + gm′(θ̃). The update takes the form:

E||θt − θ∗||22 = E||ΠR(θt−1 + αvt)−ΠR(θ
∗)||22 ≤ E||θt−1 − θ∗ + (−αvt)||22 =

||θt−1 − θ∗||22 + 2α(θt−1 − θ∗)TE[vt] + α2E||vt||22 =

||θt−1 − θ∗||22 + 2α(θt−1 − θ∗)T (E[gt(θt−1)]− E[gt(θ̃)] + gm′(θ̃))+

α2E||vt||22,

(10)

where the expectation is taken with respect to s, s′ sampled during iteration t. Recall that under
Markovian sampling, E[gt(θt−1)] ̸= ḡ(θt−1) and that for the expectation of the estimated mean-path
update we have E[gm′(θ̃)|sm′−1] ̸= ḡ(θ̃), where sm′−1 is the last state of epoch m − 1. To tackle
this issue, we follow the approach introduced in Bhandari et al. [2018] and Xu et al. [2020], and
rewrite the expectation as a sum of mean-path updates and error terms. Similar to Bhandari et al.
[2018], we denote the error term on a single update as ζ:

ζt(θ) = (θ − θ∗)T (gt(θ)− ḡ(θ)).

For an error term on the trajectory, we follow Xu et al. [2020] and denote it as ξ:

ξm′(θ, θ̃) = (θ − θ∗)T (gm′(θ̃)− ḡ(θ)).

Applying this notation, (10) can be rewritten as:

E||θt − θ∗||22 ≤||θt−1 − θ∗||22+
2α(θt−1 − θ∗)T (E[gt−1(θt−1)]− E[gt(θ̃)] + gm′(θ̃)) + α2E||vt||22 =

||θt−1 − θ∗||22 + 2α
[
(E[ζt(θt−1)] + (θt−1 − θ∗)T ḡ(θt−1))−

(E[ζt(θ̃)]− (θt−1 − θ∗)T ḡ(θ̃))+

(E[ξ(θt−1, θ̃)]− (θt−1 − θ∗)T ḡ(θ̃))
]
+ α2E||vt||22.

(11)

The error terms can be bounded by slightly modified lemmas from the original papers. For ζ(θ), we
apply a bound from Bhandari et al. [2018], Lemma 11:

|E[ζt(θ)]| ≤ G2(4 + 6τmix(α))α. (12)
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In the original lemma, a bound on E[ζt(θ)] is stated, however, in the proof a bound on absolute value
of the expectation is also derived.

For the mean-path estimation error term, we use a modified version of Lemma 1 Xu et al. [2020].
The proof of this lemma in the original paper starts by applying the inequality

aT b ≤ k

2
||a||2 + 1

2k
||b||2

to the expression (θt−1 − θ∗)T (gm′(θ̃) − ḡ(θ)), with k = λA/2 (using the notation in Xu et al.
[2020]). For the purposes of our proof we use k = λA. Thus, we will have the expression:

E[ξm′(θt−1, θ̃)] ≤
λA

2
E[||θt−1 − θ∗||22|sm′−1] +

4(1 + (m− 1)ρ)

λA(1− ρ)nm′
[4R2 + r2max] =

λA

2
E[||θt−1 − θ∗||22|sm′−1] +

C2

λAnm′
.

(13)

Also, note, that the term E||vt||22 might be bounded as E||vt||22 ≤ 18R2. Plugging these bounds into
(11) we obtain:

E||θt − θ∗||22 ≤||θt−1 − θ∗||22 − 2αfe(θt−1) + 4α2G2(4 + 6τmix(α))+

2α

(
λA

2
||θt−1 − θ∗||22 +

C2

λAnm′

)
+ 18α2R2.

Summing the inequality over the epoch and taking expectation with respect to all previous history,
we have:

2αME[fe(θ̃s)] ≤||θ̃s−1 − θ∗||22 + 2αM

(
λA

2
||θ̃s−1 − θ∗||22 +

C2

λAnm′

)
+

α2M(4G2(4 + 6τmix(α)) + 18R2).

Then we divide both sides by 2αM and use ||θ̃s−1 − θ∗||22 ≤ fe(θ̃s−1)/λA to obtain:

E[fe(θ̃s)] ≤
(

1

2λAαM
+

1

2

)
fe(θ̃s−1) +

C2

λAnm′
+

α(2G2(4 + 6τmix(α)) + 9R2).

We choose α and M such that αMλA = 2. We then apply this inequality to the value of the function
f in the first term of the right-hand side recursively, which yields the desired result:

E[fe(θ̃s)] ≤
(
3

4

)s

fe(θ0) +
8C2

λAnm′
+ 4α(2G2(4 + 6τmix(α)) + 9R2).
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J Additional experiments

J.1 Comparison of theoretic batchsizes

In this subsection, we compare the values of update batch sizes which are theoretically required to
guarantee convergence. We compare batch sizes of three algorithms: TD-SVRG, PDSVRG (Du et al.
[2017]) and VRTD (Xu et al. [2020]). Note that PDSVRG and VRTD are algorithms for different
settings, but for TD-SVRG the batch size value is the same: 16/λA, thus, we compare two algorithms
in the same table. We compare the batch sizes required by the algorithm for three MDPs: a first MDP
with 50 state, 20 actions and γ = 0.8, a second MDP with 400 states, 10 actions and γ = 0.95, and a
third MDP with 1000 states, 20 actions and γ = 0.99, with actions selection probabilities generated
from U [0, 1) (similar to the settings used for the experiments in Sections 6 and J.5). Since the batch
size is dependent on the smallest eigenvalue of the matrix A, which, in turn, is dependent on the
dimensionality of the feature vector, we do the comparison for different feature vector sizes: 5, 10,
20 and 40 randomly generated features and 1 constant feature for each state. We generate 10 datasets
and environments for each feature size. Our results are summarized in Figure 3 and Tables 3, 2 and 5.

Table 3: Comparison of theoretically suggested batch sizes for an MDP with 50 states, 20 actions and
γ = 0.8. Values in the first row indicate the demensionality of the feature vectors. Values in the other
rows: batch size of the corresponding method. Values are averaged over 10 generated datasets and
environments.

Method/Features 6 11 21 41

TD-SVRG 2339 6808 21553 4.51 · 105

PD-SVRG 1.52 · 1016 3.09 · 1019 1.85 · 1023 1.41 · 1036

VRTD 3.07 · 106 2.13 · 107 3.79 · 108 165 · 1011

Table 4: Comparison of theoretically suggested batch sizes for an MDP with 400 states, 10 actions
and γ = 0.95. Values in the first row indicate the demensionality of the feature vectors. Values in the
other rows: batch size of the corresponding method. Values are averaged over 10 generated datasets
and environments.

Method/Features 6 11 21 41

TD-SVRG 3176 6942 18100 54688

PD-SVRG 1.72 · 1016 3.83 · 1018 3.06 · 1021 5.77 · 1024

VRTD 5.41 · 106 2.53 · 107 1.63 · 108 1.58 · 109

Table 5: Comparison of theoretically suggested batch sizes for an MDP with 1000 states, 20 actions
and γ = 0.99. Values in the first row indicate the demensionality of the feature vectors. Values in the
other rows: batch size of the corresponding method. Values are averaged over 10 generated datasets
and environments.

Method/Features 6 11 21 41

TD-SVRG 9206 16096 32723 79401

PD-SVRG 7.38 · 1018 9.64 · 1020 5.14 · 1023 4.97 · 1026

VRTD 4.35 · 107 1.34 · 108 5.44 · 108 1.45 · 109

J.2 Additional parameter grid search in dataset case

In this set of experiments, we conducted additional grid searches for the TD-SVRG and PD-SVRG
algorithms. For TD-SVRG, we executed a grid search on the set of parameters near the theoretically
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Figure 3: Theoretical batch sizes of different algorithms in log-scale, geometrical average over 10
samples. The x-axis plots the dimension of the feature vector. First row: Batch sizes for random
MDP environment (see Sec. 6). Left to right: Figure 1 - 50 states, 20 actions and γ = 0.8; Figure 2:
400 states, 10 actions and γ = 0.95, Figure 3: 1000 states, 20 actions and γ = 0.99; Figure 4: 2000
states, 50 actions and γ = 0.75. Second row: batch sizes for dataset generated from OpenAI gym
classic control environments Brockman et al. [2016]. Features generated by applying RBF kernels
and then removing highly correlated feature vectors one by one (see Sec. 6).

Figure 4: Average performance of TD-SVRG and PD-SVRG algorithms with different parame-
ters: “SVRG_theory” is TD-SVRG algorithm with parameters suggested by theoretical analysis;
“SVRG_lr_1/4_batch_scale_8” is a best-performing algorithm from TD-SVRG search grid (α = 1/4,
M = 8/λA); “PD-SVRG_0.01_1e-6” is a the best perforing algorithm from the first PD-SVRG
search grid (σθ = 10−6 1

Lρκ(Ĉ)
, σw = 10−2 1

λmax(C) ); “PD-SCRG_0.01_0.125_8” is the best perform-

ing PS-SVRG algorithms from the second grid search (α = 1/8, M = 8/λA, σw = 10−2 1
λmax(C) ).

Rows - performance measurements: log(f(θ)) and log(|θ − θ∗|).
predicted parameters (update batch size M = 16/λA, learning rate α = 1/8). For PD-SVRG, we ran
searches over two grids: parameters suggested by the authors of the original paper and parameters
close to those suggested by our theory. All experiments were conducted on an MDP environment with
400 states, 21 features, 10 actions, and γ = 0.95, identical to the one described in Section 6 of this
paper. For TD-SVRG, we ran a grid search over the parameter batch size M ∈ {8, 12, 16, 24, 32}/λA

and learning rate α ∈ {1/4, 1/6, 1/8, 1/12, 1/16}. For the PD-SVRG algorithm, the first grid was
formed near the exact values suggested in Du et al. [2017], i.e., primal variables learning rate
σθ ∈ {10−1, . . . , 10−6}/(Lρκ(Ĉ)), dual parameters learning rate σw ∈ {1, 10−1, 10−2}/λmax(C),
and the batch size is twice the dataset size (M = 2N ). The second grid uses the same learning rate
and batch sizes as TD-SVRG, with the dual parameters learning rate σw being the same as in the
previous grid.

The results are illustrated in Figure 4. This figure demonstrates that TD-SVRG converges faster than
the PD-SVRG algorithm, which utilizes dual variables.
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J.3 Datasets with DQN features

Figure 5: Geometric average performance of different algorithms in the finite sample case with DQN
features. Columns - dataset source environments: Acrobot, CartPole and Mountain Car. Rows -
performance measurements: log(f(θ)) and log(|θ − θ∗|).

In this set of experiments, we compare the performance of the same algorithms as in Section 6 on
datasets collected from OpenAI Acrobot, CartPOle and MountainCar environments Brockman et al.
[2016] using DQN features. To collect these features, we trained 1 hidden layer neural network with
DQN algorithm Mnih et al. [2015] for 1000 plays. Then, the trained agent played 5000 episodes
following greedy policy, while neural network hidden states were recorded as feature representation
of the visited states. Features collected this way tend to be highly correlated, therefore we applied
PCA clearing, keeping minimum set of principal components, corresponding to 90 % of the variance.

For the TD-SVRG algorithm we used theoretically justified parameters, for the other algorithms
parameters selected with grid search (Sec. J.2), the results are presented in Figure 5. In all
environments TD-SVRG exhibits stable linear convergence, GTD2 and vanilla TD algorithms
converge sublinearly, while PD-SVRG performance is unstable due to high range of condition
numbers of dataset’s characteristic matrices A and C (large values of κ(C) caused PD-SVRG
divergence in the Acrobot dataset).

J.4 Batched SVRG performance

In this set of experiments we compare the performance of TD-SVRG and batched TD-SVRG in
the finite-sample case. We generate 10 datasets of size 50000 from a similar MDP as in Section 6.
Algorithms run with the same hyperparameters. Average results over 10 runs are presented in Figure
6 and show that batched TD-SVRG saves a lot of computations during the earlier epochs, which
provides faster convergence.

J.5 Online i.i.d. sampling from the MDP

In this set of experiments we compare the performance of TD-SVRG, VRTD and Vanilla TD with
decreasing learning rates in the i.i.d. sampling case. States and rewards are sampled from the same
MDP as in Section 6 under iid sampling strategy - next transition is being sampled independently
from previous transition. Hyperparameters are chosen as follows: for TD-SVRG – learning rate
α = 1/8, update batch size M = 16/λA, estimation batch size epoch expansion factor is ρ2 = 1.2.
VRTD – learning rate α = 0.1 and batch sizes M ∈ 5, 10, 20 ∗ 103. For vanilla TD decreasing
learning rate is set to 1/

√
t, where t is a number of the performed update. Average results over 10

runs are shown in Figure 7. The figure shows that TD-SVRG converges even if its performance
suffers from high variance, VRTD algorithms oscillate after reaching a certain level (due to bias).
Vanilla TD with decreasing learning rate converges slowly then SVRG.
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Figure 6: Average performance of TD-SVRG and batching TD-SVRG in the finite sample case.
Datasets sampled from MDP environments. Left figure – performance in terms of log(f(θ)). Right
figure – performance in terms of log(|θ − θ∗|).

Figure 7: Online iid sampling: Average performance of TD-SVRG with theoretical parameters,
VRTD with different batch sizes and vanilla TD with learning rate equal to 1/

√
t in the i.i.d. sampling

case. Left figure – performance in terms of log(f(θ)), right figure in terms of log(|θ − θ∗|).
J.6 Online Markovian sampling from an MDP

Figure 8: Online Markovian sampling: Average performance of TD-SVRG with theoretical
parameters, VRTD with different batch sizes and vanilla TD with learning rate equal to 1/

√
t in

the i.i.d. sampling case. Left figure – performance in terms of log(f(θ)), right figure in terms of
log(|θ − θ∗|).

In this set of experiments we compare the performance of TD-SVRG, VRTD and Vanilla TD with
decreasing learning rates in the Markovian sampling case. States and rewards are sampled from the
same MDP as in Section 6 under Markovian sampling strategy - next transition is being sampled
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dependent on the previous transition. Hyperparameters are chosen as follows: for TD-SVRG –
learning rate α = 1/8, update batch size M = 16/λA, estimation batch size epoch expansion factor
is ρ2 = 1.2. VRTD – learning rate α = 0.1 and batch sizes M ∈ 5, 10, 20 ∗ 103. For vanilla TD
decreasing learning rate is set to 1/

√
t, where t is a number of the performed update. Average

results over 10 runs are shown in Figure 8. Because this MDP mixes very fast even under Markovian
sampling, the results are very similar to iid sampling case. The figure shows that TD-SVRG converges
with decreasing rate, VRTD algorithms reach certain level and then oscillate, vanilla TD converges
with decreasing rate and slower then TD-SVRG.

J.7 Comparison of update batch sizes

In this set of experiments, we assume that λA and, consequently, the theory-predicted batch size
16/λA are not known. We investigate the effect of approximate update batch size on the algorithm’s
performance, checking the performance of batch sizes {8, 12, 24, 32}/λA against the theory-predicted
value. We run this experiment for all three cases: dataset (Figure 9), online iid sampling (Figure
10), and online Markovian sampling (Figure 11). In all three cases, the algorithms demonstrate
comparable performance, while in the online sampling cases, both iid and Markovian, the difference
is negligible. This is caused by the fact that mean-path update estimation dominates the complexity.

Figure 9: Dataset sampling case: Average performance of TD-SVRG with theoretical parameters
and with different update batch size scales of 1/λA.

Figure 10: IID sampling case: Average performance of TD-SVRG with theoretical parameters and
with different update batch size scales of 1/λA.
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Figure 11: Markovian sampling case: Average performance of TD-SVRG with theoretical parame-
ters and with different update batch size scales of 1/λA.

J.8 Experiment details

In our experiments (Section 6) we compare the performance of TD-SVRG with GTD2 Sutton et al.
[2009], “vanilla” TD learning Sutton [1988], and PD-SVRG Du et al. [2017] in the finite sample
setting. Generally, our experimental set-up is similar to Peng et al. [2020]. Datasets of size 5,000
are generated from 4 environments: Random MDP Dann et al. [2014], and the Acrobot, CartPole
and Mountain car OpenAI Gym environments Brockman et al. [2016]. For the Random MDP, we
construct an MDP environment with |S| = 400, 21 features (20 random and 1 constant) and 10
actions, with action selection probabilities generated from U [0, 1). For OpenAI gym environments,
the agent selects states uniformly at random. Features are constructed by applying RBF kernels to
discretize the original states and then removing highly correlated features. The decay rate γ is set to
0.95.

We compare the performance of TD-SVRG against the performance of other algorithms with pa-
rameters selected by grid search. Details on the grid search might be found in Appendix J.2.
Hyperparamters for the algorithms are selected as follows: for TD-SVRG our theoretically justified
parameters are selected, the learning rate is set to α = 1/8 and the update batch size to M = 16/λA;
for GTD2 the best performing parameters were: α = 0.125 and β = 0.25; for vanilla TD a decreas-
ing learning rate is set to α = 1/

√
t; for PD-SVRG the parameters are set to σθ = 0.1/(Lρκ(Ĉ)),

σw = 0.1/λmax(C) and the batch size is twice the size of the dataset, i.e., M = 2N . Each algorithm
for each setting was run 10 times and the geometric average performance is presented.
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K Algorithms comparison

In this section, we present a more detailed comparison of TD algorithms. Our results are summarized
in Table 6, and a detailed explanation of the quantities in the table is provided below.

Please note that while other algorithms derive convergence in terms of ||θ − θ||2, our convergence
is expressed in terms of the function f(θ). The results can be compared using the inequality
λA||θ − θ||2 ≤ f(θ) ≤ ||θ − θ||2. This implies that achieving an accuracy of ϵ in terms of one
quantity can be accomplished by achieving an accuracy of λA/ϵ in terms of the other quantity.
Consequently, our results for the finite sample case are strictly superior. For environment sampling
cases, our results imply previous findings, whereas our results are not implied by previous ones.
Furthermore, it is worth noting that the inequality λA||θ − θ||2 ≤ f(θ) is rarely strict, which means
that in most cases, the convergence implied by our results would be superior.

Table 6: Comparison of algorithmic parameters. PD-SVRG and PD SAGA results reported from
Du et al. [2017], VRTD and TD results from Xu et al. [2020], GTD2 from Touati et al. [2018].
λmin(Q) and κ(Q) are used to define, respectively, minimum eigenvalue and condition number of
a matrix Q. λA in this table denotes minimum eigenvalue of the matrix 1/2(A + AT ), which is
defined in Equation (1). Finite sample results use N for the size of the dataset sampled from the MDP.
Other notation is taken from original papers, and Section 1 in the supplementary information gives
self-contained definitions of all the symbols appearing in this table. For simplicity 1 + γ is upper
bounded by 2 throughout, where γ is the discount factor.

Method Learning rate Batch size Total complexity
Finite sample case

GTD2
92×2σ

8σ2(k+2)+92ζ
1 O

(
κ(Q)2H
λmin(G)ϵ

)
PD-SVRG

λmin(A
TC−1A)

48κ(C)L2
G

51κ2(C)L2
G

λmin(ATC−1A)2 O
((

N + (
κ2(C)L2

G

λmin(ATC−1A)2

)
log( 1ϵ )

)
PD SAGA

λmin(A
TC−1A)

3(8κ2(C)L2
G+nµρ)

1 O
((

N +
κ2(C)L2

G

λmin(ATC−1A)2

)
log( 1ϵ )

)
This paper

1/8 16/λA O
((

N + 1
λA

)
log( 1ϵ )

)
i.i.d. sampling

TD min(λA

4 , 1
2λA

) 1 O
(

1
ϵλ2

A
log( 1ϵ )

)
This paper

1/8 16/λA O
(

1
ϵλA

log( 1ϵ )
)

Markovian sampling
TD O(ϵ/ log( 1ϵ )) 1 O

(
1

ϵλ2
A
log2( 1ϵ )

)
VRDT

O(λA) O
(

1
ϵλ2

A

)
O
(

1
ϵλ2

A
log( 1ϵ )

)
This paper

O(ϵ/ log( 1ϵ )) O
(

log( 1
ϵ )

ϵλA

)
O
(

1
ϵλA

log2( 1ϵ )
)

Definitions of quantities in Table 6:

GTD2 convergence analysis resutls are taken from Touati et al. [2018]. The learning rate required for
their guarantee to work is set to 92×2σ

8σ2(k+2)+92ζ and the complexity to obtain accuracy ϵ isO(κ(Q)2Hd
λmin(G)ϵ ).

In this notation:

• σ is the minimum eigenvalue of the matrix A′TM−1A′, where the matrix M =
E[ϕ(sk, ak)ϕ(sk, ak)T ] and A′ = E[ek(γEπ[ϕ(sk+1, .] − ϕ(sk, ak))

T ], where ek is the
eligibility trace vector ek = λγκ(sk, ak)ek−1 + ϕ(sk, ak).
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• k is an iteration number.
• The matrix G plays key role in the analysis, it is a block matrix of the form

G =

(
0

√
βA′T

−
√
βA′ βMk

)
,

and Gk is a matrix of similar form generated from quantities estimated at time point k.
• ζ is 2×92c(M)2ρ2+32c(M)LG, where c(M) is the condition number of the matrix M , ρ is

the maximum eigenvalue of the matrix A′TM−1A′ and LG is the LG = ||E[GT
KGK |Fk−1]||.

Fk−1 in this analysis is the σ-algebra generated by all previous history up to moment k − 1.
• The quantityH is equal to E||GKz∗ − gk||, where z∗ = (θ∗, 1√

βw∗ ) is the optimal solution
and gk = (0, 1√

β
b).

• The last quantity left undefined is κ(Q), which is the condition number of the matrix Q,
obtained by diagonalization of the matrix G = QTΛQ.

PD-SVRG and PD SAGA use the same quantities as GTD2, except that matrices A and C are
defined the same way as in this paper: A = E[(ϕ(s)T − γϕ(s′)T )ϕ(s)], C = E[ϕ(s)ϕT (s)].

• n in this notation is the size of the dataset.
• µρ is the minimum eigenvalue of matrix ATC−1A.

All other quantities are defined in the paper.
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