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Abstract

Recent advances in the design of neural network architectures, in particular those
specialized in modeling sequences, have provided significant improvements in
speech separation performance. In this work, we propose to use a bio-inspired
architecture called Fully Recurrent Convolutional Neural Network (FRCNN) to
solve the separation task. This model contains bottom-up, top-down and lateral
connections to fuse information processed at various time-scales represented by
stages. In contrast to the traditional approach updating stages in parallel, we
propose to first update the stages one by one in the bottom-up direction, then fuse
information from adjacent stages simultaneously and finally fuse information from
all stages to the bottom stage together. Experiments showed that this asynchronous
updating scheme achieved significantly better results with much fewer parameters
than the traditional synchronous updating scheme. In addition, the proposed model
achieved good balance between speech separation accuracy and computational
efficiency as compared to other state-of-the-art models on three benchmark datasets.

1 Introduction

Speech separation aims to extract individual speeches from a mixture of speeches of multiple
speakers. It is an important preprocessing step for speech recognition in noisy environment. Recent
development of speech separation methods at the waveform level has aroused researchers’ interest
[21, 22, 20], avoiding the traditional representation of STFT amplitude and phase used in so-called
time-frequency (TF) domain methods [7, 11]. Among these so-called time-domain methods, some
presented mechanisms fuse information processed at various time scales, called multi-scale fusion
(MSF) methods, such as in FurcaNeXt [40] or SuDoRM-RF [33], and yield impressive results on the
speech separation task. In this work we aim to explore if there exist even better MSF methods.

Evidence from observations of sensory systems of mammals show them to utilize MSF in their
processing. For instance, the visual system includes multiple processing stages (from lower functional
areas such as the lateral geniculate nucleus to higher functional areas such as the inferior temporal
cortex), which process different scales of information [1]: the higher the stage, the coarser the
scale. See Figure 1a for illustration. Similar mechanisms and areas have also been identified
and located in the auditory system [1]. More importantly, physiological and anatomical studies
have revealed abundant recurrent synaptic connections within the same stage (also called lateral
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Figure 1: The structure of FRCNN and typical updating schemes. The number of stages S = 4. (a) The structure
of the FRCNN. Every node denotes a stage, corresponding to a group of neurons in a functional area in the
sensory pathway (e.g., the inferior colliculus in the auditory pathway). Red, blue and orange arrows denote
bottom-up, top-down and lateral connections, respectively. Both bottom-up and top-down connections can be
made between adjacent stages and non-adjacent stages. (b) Synchronous updating scheme in one block [19].
(c) The proposed asynchronous updating scheme in one block. The dashed box in each subfigure indicates the
basic building block for constructing a complete RNN (see Figure 4). (d) Multi-scale information fusion for an
example stage receiving three types of inputs.

connections) and bottom-up/top-down synaptic connections between stages [3]. The intra-stage and
inter-stage connections bring different scales of sensory information together and each stage performs
information fusion. These connections fuse different scales of information more completely, and may
lead to better results than existing MSF methods.

However, Figure 1a merely reflects a purely static structure in the brain and does not show the
dynamics of the sensory system. In biological systems, given a stimulus, the neurons along a sensory
hierarchy do not fire simultaneously like shown in Figure 1b. For example, it was reported that
the neural response initialized at a retinotopic position in anesthetized rat V1 propagated uniformly
in all directions with a velocity of 50–70 mm/s, slowed down at the V1/V2 area border, after a
short interval, spread in V2, then reflected back in V1 [38]. In general, “the speed of an action
potential varies among neurons in a range from about 2 to 200 miles per hour”[24]. The time at
which a neuron starts to fire depends on a variety of factors including the neuron type, the stage
at the sensory pathway, the number of the dendrites connected to it and the morphology of the
neural fibers. This precludes the possibility of faithfully replicating the sensory system to obtain an
excellent artificial neural network (ANN). Nevertheless, the history of ANN development indicates
that getting inspiration from the brain is enough to make great progress if task-specific techniques are
combined. Inspired by the discovery of simple cells and complex cells in cat visual cortex [9, 10],
a hierarchical model Neocognitron [6] was proposed and later developed into convolutional neural
networks [15] by applying the backpropagation algorithm. We investigate empirically if there exists
an asynchronous updating scheme for the structure shown in Figure 1a that provides improvement for
speech separation performance.

As the model has bottom-up, top-down and lateral connections as shown in Figure 1a, we call
the model a fully recurrent convolutional neural network (FRCNN). This name emphasizes the
presence of both lateral and top-down recurrent connections in the model, distinguishing the model
from an existing model [17] named recurrent convolutional neural network (RCNN) that has lateral
recurrent connections only. The model with the synchronous updating scheme (Figure 1b) is called
the synchronous FRCNN or S-FRCNN, which was studied for visual recognition [19]. We aim to
propose an asynchronous FRCNN or A-FRCNN for speech separation. We notice that SuDoRM-RF
[33] also has the three types of connections and we start from its framework to study different
updating schemes of FRCNN.

The architecture of our proposed A-FRCNN is illustrated in Figure 1c. The information first passes
through stages one by one in the bottom-up direction, then fuses between adjacent stages in parallel,
and finally fuses together with skip connections to the bottom stage. In the S-FRCNN, the information
transmission from the bottom stage to any upper stage then back to the bottom stage is too fast: one
step upward and one step downward (Figure 1b). In contrast, in the A-FRCNN, the information
starting from the bottom stage goes through more processing steps before it goes back to the bottom
stage, which is advantageous for comprehensive MSF. Increasing the depth of a model is one of the
keys for the success of deep learning. We will show the merit of A-FRCNN compared to S-FRCNN
in experiments.
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2 Related Work

2.1 Speech Separation Methods

A typical speech separation method is to model different sources in the temporal-frequency (TF)
domain. First, the short-time Fourier transform (STFT) calculates the TF representation of the mixed
sound. Second, the subsequent process approximates the clean spectrogram of each source from
the mixed spectrogram and uses the inverse STFT (iSTFT) to synthesize the source waveform, as in
DPCL [7], uPIT [12] etc.

So-called time-domain methods were also proposed for speech separation, making use of non-STFT
encoders for extracting meaningful representations out of the waveform (in a bio-inspired fashion
[4], or fully learned over training [22]). DualPathRNN [20] extracts overlapped short sequences
(called chunks) from the mixed speech signal and applies intra- and inter-chunk operations iteratively
by using recurrent neural networks (RNNs). It has achieved very good results at the cost of high
computational complexity. The idea of intra-chunk and inter-chunk was adopted in recently proposed
models such as Sepformer [31], Sandglasset [13] and Gated DualPathRNN [23]. These models
achieved even better speech separation results but the computational complexity is also higher.

While RNNs were naturally used to perform speech separation given the sequential aspect of the
input representation, they often require long training and inference time. Conv-TasNet [22] has been
proposed to solve this problem, replacing RNN with Temporal Convolutional Networks, much faster
to train. However, this model has limited MSF capability. Recently, several models with multiple
branches have been proposed for speech separation, where different branches adopt different time
resolutions for the processing of their respective inputs, then the outputs are fused with some rule or
dedicated module. For instance, SuDoRF-RF [33] uses repetitive U-Nets [28], obtaining good results
with high efficiency. FurcaNeXt [40], a variant of Conv-TasNet [22], uses multiple branch learning
methods to improve the performance of speech separation. MSGT-TasNet [41] uses Transformer [34]
to capture features of different scales for speech separation.

2.2 Lateral and Top-Down Recurrent Connections

The lateral and top-down recurrent connections have been modeled by ANN researchers for a long
time. In 1990s recurrent connections were introduced into the multi-layer Perceptrons [5] [27], and
in 2015 they were introduced into the CNN, resulting in the RCNN [17][18]. In 2000s top-down
connections were introduced into unsupervised deep learning models [8] [16]. A general framework
with both lateral and top-down recurrent connections was proposed in 2016 [19]. If a hierarchical
model has recurrent connections, the neurons can be updated in different orders. In [19], only the
conventional synchronous updating scheme was presented. However, no evidence has shown that
this is how the neural system works, or that it outperforms asynchronous updating schemes on
engineering tasks. In fact, in [18], it was shown that an asynchronous updating scheme for RCNN
outperformed the synchronous updating scheme on an image segmentation task. We here propose a
novel asynchronous scheme for the FRCNN that achieved better results with fewer parameters than
the synchronous scheme on speech separation.

3 Methods

3.1 Overall pipeline

An algorithm dedicated to speech separation aims to extract individual speech signals of different
speakers from a mixture. We denote the waveform of the mixture as x ∈ R1×T :

x =

C∑
i=1

si + σ (1)

where si ∈ R1×T denotes the waveform of speaker i, σ ∈ R1×T denotes the noise signal, T denotes
the number of samples of the signal, and C denotes the number of speakers. The task is to estimate
si from x for all i.
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Figure 2: The overall pipeline for speech separation.

We use the same pipeline as Conv-
TasNet [22], as shown in Figure 2.
It consists of an encoder, a separa-
tion network and a decoder. The en-
coder divides x into K overlapping
segments xk ∈ R1×L and transforms
each segment into a feature vector
rk ∈ R1×N :

rk = xkUe (2)

where Ue ∈ RL×N is a weight matrix. The two steps can be realized by a trainable 1D convolution
with kernel Ue and an appropriate stride.

The separation network receives rk to estimate a mask Mi ∈ R1×N for speaker i. We apply a
fully-connected layer with ReLU activation to the output of the separation network to produce Mi.
The detailed structure of the separation network is introduced in Section 3.2.

The decoder reconstructs the waveform segment

si,k = (rk �Mi)U
T
d (3)

where Ud ∈ RL×N is a weight matrix and UT
d is the transpose of Ud, and � stands for element-wise

multiplication. The estimated waveform ŝi is obtained by summing K overlapping segments si,k.
The two steps can be realized by a 1-D transposed convolution operation.

3.2 Separation Network

3.2.1 Structure of FRCNN

We use the FRCNN as the separation network. It can be represented by a graph with nodes denoting
stages and edges denoting connections. Figure 1a shows an example with S = 4 stages. In biological
terms, every node corresponds to a set of neurons in a certain stage in the sensory pathway, e.g., the
inferior colliculus in the auditory pathway. In our model, every node corresponds to a convolutional
layer. Different nodes process different scales of the input information. The higher the node, the
coarser the information. There are three types of connections: bottom-up, top-down and lateral
connections. Note that both bottom-up and top-down connections can be between adjacent stages
and non-adjacent stages. In the latter case, the connections are called skip-connections.

3.2.2 Updating Schemes in the Micro-level

To run a recurrent neural network (RNN) with intricate connections, one needs to first determine the
updating order of the neurons. This order determines the RNN unfolding or unrolling scheme. A
commonly used approach is to update all neurons simultaneously. In the case of FRCNN as shown in
Figure 1a, it corresponds to updating all stages synchronously. This scheme is depicted in Figure 1b
[19], and denoted by S-FRCNN. However, if the stages are allowed to be updated asynchronously,
there will be a large number of possible unfolding schemes. For example, without considering the
skip connections, we can update the stages one by one in the upward direction then update them one
by one in the downward direction. In the present work, we propose an efficient updating scheme
A-FRCNN, as shown in Figure 1c.

In the proposed A-FRCNN, we first sequentially update the stages in the bottom-up direction, then
update them simultaneously by fusing information from adjacent stages, and finally, fuse information
from all stages to the bottom stage. This entire process is repeated several times (Sec. 3.2.4). The
two types of fusions can be viewed as local and global fusions, respectively. As a stage represents
a unique set of neurons as its biological counterpart, the connections between two stages (e.g., the
vertical upward connection and the oblique upward connection between stage 3 and stage 4) should
use the same operation and parameters.

The A-FRCNN is adapted from the S-FRCNN in a step-by-step manner.

1. Inspired by the structure of the U-Net [28], we design a bottleneck structure at the bottom
stage as shown in Figure 3a. All upper stages exchange information between different
blocks through the bottom stage. This design increases the number of steps including
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Figure 3: Various asynchronous updating schemes in the micro-level.

down-sampling and up-sampling operations for processing the input coming at the highest
resolution. This block is denoted by Control 1.

2. The block Control 1 has too many connections which make the model inefficient in
both parameters and computation. The bottom-up skip-connections and top-down skip-
connections are symmetric, and may be redundant. Therefore, we remove the bottom-up
skip-connections, which results in the block shown in Figure 3b, denoted by Control 2.

3. It is too fast to fuse the information across non-adjacent stages through top-down skip-
connections in the block Control 2. One possible way to represent an increasing firing delay
from widely separated units would be to fuse the information across adjacent stages first,
then across non-adjacent stages. This change increases the shortest path from higher stages
to the bottom stage. In addition, to save parameters and computation, we only keep the top-
down skip-connections to the bottom stage and removed other top-down skip-connections.
We also remove the vertical downward connections because the top-down stage-by-stage
fusion has already been performed through the oblique downward connections. This is made
possible by the delayed global fusion; otherwise, the stages would become disconnected
after removing the vertical downward connections. We then obtain the A-FRCNN (Figure
1c).

Note that the sequential fusion method in the third step is more biologically plausible than the
synchronous fusion method since biological connections between non-adjacent stages are longer than
those between adjacent stages, while signal transmission through connections is not instantaneous.

The proposed A-FRCNN block is closely related to the U-Net [28] (Figure 3c). To investigate the
potential advantage of delayed global fusion, we add top-down skip-connections to the U-Net block
and obtain a new block, denoted by U-Net-Delay (Figure 3d).

3.2.3 Multi-scale Information Fusion inside Blocks

The blocks depicted in Figures 1 and 3 are RNN blocks, and the nodes in the same horizontal row
represent the same stage (or in biological terms, the same set of neurons in a sensory area) but at
different time. In this study we use C feature maps for every stage. Multi-scale information fusion
is performed at the input of every stage. First the C feature maps from each of the K inputs are
concatenated in the channel dimension, resulting in KC feature maps. A 1× 1 convolutional layer
is then used to reduce the number of feature maps to C. Figure 1d illustrates this process. This
concatenation method was used by default in our experiments. One can also sum up the K inputs to
obtain C feature maps.

3.2.4 Unfolding Methods in the Macro-level

Figures 1 and 3 show single blocks of the entire unfolding schemes. An entire unfolding scheme
usually consists of multiple such blocks with tied weights. If there are B blocks in total, we say
“FRCNN is unfolded for B time steps”. At the macro-level, the FRCNN can be unfolded by simply
repeating these blocks along time such that the output of one block is the input of the next block.

To further fuse the multi-scale information, we add a 1 × 1 convolution between two consecutive
blocks (Figure 4a). This method is formulated as follows:

R(t+ 1) = f(ϕ(R(t))), (4)

where f(·) denotes a block shown in Figures 1 and 3, R(t) denotes the output of the block at
time step t and ϕ denotes 1 × 1 convolution. This is called the direct connection (DC) method.
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Figure 4: Macro-level unfolding schemes of the FR-
CNN. Every blue box corresponds to a dashed box in
Figures 1 and 3. The pink boxes in a model denote 1× 1
convolutions with shared weights.

Another idea is to integrate the input of the
model with the output of every block via fea-
ture map concatenation or summation before
sending to the next block. This rule was used
in constructing the recurrent CNN in a previous
study [17]. Again, we add a 1×1 convolution to
further fuse information (Figure 4b). Formally,

R(t+ 1) = f(ϕ(R(t)⊕ r)) (5)

where r denotes the input feature maps and ⊕
denotes concatenation or summation of two sets
of feature maps. This is called the concatenation
connection (CC) or summation connection (SC) depending on which feature map integration method
is used.

For single-input-single-output blocks, i.e., A-FRCNN and the blocks shown in Figure 3, we directly
use the unfolding methods as described above. For the multi-input-multi-output block, i.e., S-FRCNN,
we apply these unfolding methods for each input-output pair corresponding to the same stage. It
should be noted that Figure 1b only illustrate the intermediate blocks of S-FRCNN unfolding scheme.
In the beginning of unfolding we use downsampling to obtain different scales of feature maps, and in
the end of unfolding we use up-sampling to fuse different scales of feature maps.

3.3 Training Method

We use the standard BP algorithm to train the model. The object is to maximize the scale-invariant
signal-to-noise ratio (SI-SNR) [14]. See Supplementary Materials for details. SI-SNR is also a metric
to evaluate the performance of speech separation methods.

4 Experimental Settings

4.1 Dataset

Libri2Mix [2]. This dataset was constructed using train-100, train-360, dev, and test set in the
LibriSpeech dataset [25]. Random extracts were selected for different speakers and mixed with
uniformly sampled Loudness Units relative to Full Scale (LUFS) [29] between -25 and -33 dB.
Random noise samples were added, with loudness uniformly sampled between -38 and -30 LUFS.
We used train-100 as the training set which has 58 hours. We used the same test set to compare
different methods.

WSJ0-2Mix [7]. This dataset contains a 30-hour training set, a 10-hour validation set and a 5-hour
test set. It was generated by combining the speech signals of different speakers in the Wall Street
Journal corpus. The speech signals were randomly selected and mixed with a Signal-to-Noise Ratio
uniformy sampled between -5dB and 5dB.

WHAM! [37]. WHAM! added noise to WSJ0-2Mix, which was recorded in scenes such as cafes,
restaurants and bars. The speeches were mixed with noise with a SNR uniformly sampled between
-6dB and 3dB. Due to the existence of noise, WHAM! is more challenging for speech separation than
WSJ0-2Mix.

4.2 Implementation Details

The encoder and decoder in the speech separation pipeline were respectively a 1-D convolutional
layer and a 1-D transposed convolutional layer. We set their kernel size to 21, stride to 10, and
channel number to 512, i.e., L = 21 and N = 512. Unless otherwise specified, the number of stages
S was set to 5, the number of channels C in every stage was set to 512 and the SC method was used
for unfolding in the macro-level. Whenever C 6= N , a 1× 1 convolutional layer was added between
the encoder and the separation network.

We designed two methods to realize the connections shown in Figures 1 and 3.
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• Method A: The bottom-up and top-down connections were realized by convolution (kernel
size 5 and stride 2) and the PixelShuffle technique [30] (kernel size 5), respectively. The
PixelShuffle technique was shown to be better than other upsampling techniques for image
super-resolution reconstruction. The lateral connections were realized by 1×1 convolution.

• Method B: The bottom-up connections were realized by the convolution operation with
kernel size 5 and appropriate strides. For example, one operation was used for 2× down-
sampling and two consecutive operations were used for 4× down-sampling, and so on. The
top-down connections were realized by interpolation. The lateral connections were realized
by simply copying the feature maps.

All convolutions were depthwise separable convolutions. In Method A all connections had trainable
parameters, resembling plastic synapses in biological systems. In Method B, only the bottom-up
connections had parameters, and it is therefore less biologically plausible. However, Method B is
more parameter efficient and computing efficient.

We trained all models for 200 epochs on 3-second utterances for Libri2Mix and 4-second utterances
for WHAM! and WSJ0-2Mix with 8K Hz sampling rate. Batch size was set to 8. The initial learning
rate of Adam optimizer was 1× 10−3, and it decayed to 1/3 of the previous rate every 40 epochs.
During training, gradient clipping with a maximum l2-norm of 5 was used. For each architecture, we
picked the best model based on its results on the validation set, then performed testing.

All experiments were conducted on a server with Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz and
GeForce RTX 1080 Ti 11G ×8. The Pytorch implementation of the models is publicly available†. It
is based on the code of SuDoRM-RF‡. This project is MIT Licensed.

5 Results

We used the scale-invariant signal-to-noise ratio improvement (SI-SNRi) [14] and signal-to-distortion
ratio improvement (SDRi) [35] as the evaluation metrics to measure the speech separation accuracies
of models. Their definitions are found in Supplementary Materials. In Secs. 5.1 and 5.2, we report the
mean±std of these metrics over 5 models trained from different random seeds. We report inference
time on CPU, indicated by “Time” in tables throughout the paper. It was calculated by processing a
four-second audio on CPU then averaged over 1000 trials.

5.1 Comparison of Micro-level Updating Schemes

We compared the performances of the micro-level updating schemes on Libri2Mix. The results are
presented in Table 1. By using either Method A or Method B for implementing the connections
(Sec. 4.2), the proposed A-FRCNN scheme performed better than the S-FRCNN scheme and the two
control schemes. By comparing the results of S-FRCNN and Control 1, we see that the bottleneck
design brought a large improvement on the SI-SNRi and SDRi metrics. Control 1 and Control 2
achieved similar SI-SNRi and SDRi values indicating that the bottom-up skip-connections are indeed
redundant. The delayed global fusion further improved the results of Control 2. From S-FRCNN to
Controls 1 and 2 and A-FRCNN, the number of connections decreased; as a result, the amount of
parameters and inference time also decreased.

For implementing the connections in the four models in Table 1, Method B obtained similar or even
better results with fewer parameters and less inference time than Method A. Therefore, we adopted
Method B in later experiments. All results reported in what follows were obtained with Method B.

The S-FRCNN had much more parameters than the A-FRCNN. We then reduced C to 412 and
obtained a new model, S-FRCNN (light), which had similar number of parameters to the A-FRCNN.
Its results were even worse than the original S-FRCNN (Table 1), suggesting that the poor performance
of the S-FRCNN was not due to overfitting caused by large amount of parameters. We removed all
skip-connections from S-FRCNN and obtained a model called S-FRCNN (no-skip). A CNN model
with similar architecture has been used in face parsing [42, 39], but different blocks do not share

†https://cslikai.cn/project/AFRCNN
‡https://github.com/etzinis/sudo_rm_rf/blob/master/sudo_rm_rf/dnn/models/

improved_sudormrf.py
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Table 1: Comparison of different FRCNN updating schemes on the Libri2Mix test set. The values are presented
as "Method A / Method B". Each model was unfolded for 8 time steps.

Model SI-SNRi SDRi Params (M) Time (s)

S-FRCNN 12.6±0.05 / 12.1±0.05 13.0±0.10 / 12.5±0.05 9.8/ 9.6 1.35 / 1.12
Control 1 15.0±0.06 / 14.6±0.04 15.5±0.06 / 15.0±0.03 8.3 / 8.0 1.41 / 0.96
Control 2 15.1±0.01 / 14.6±0.04 15.4±0.02 / 15.0±0.04 6.6 / 6.4 1.16 / 0.81

A-FRCNN (ours) 15.2±0.04 / 15.5±0.04 15.7±0.04 / 15.9±0.04 6.2 / 6.1 1.07 / 0.72

S-FRCNN (light) - / 11.8±0.03 - / 12.2±0.02 - / 6.4 - / 0.97
S-FRCNN (no-skip) - / 11.43±0.01 - / 11.85±0.02 - / 6.4 - / 0.51

Table 2: Comparison with the U-Net and U-Net-Delay on the Libri2Mix test set. Each model was unfolded for 8
time steps.

Model SI-SNRi SDRi Params (M) Time (s)

U-Net 11.4±0.01 11.8±0.01 4.0 0.39
U-Net-Delay 13.2±0.05 13.6±0.05 5.1 0.60
U-Net (large) 11.5±0.01 11.9±0.01 6.1 0.69

U-Net-Delay (large) 12.1±0.01 12.5±0.01 6.4 0.88

A-FRCNN (ours) 15.5±0.04 15.9±0.04 6.1 0.72

weights. From Table 1, it is seen that S-FRCNN (no-skip) achieved worse results than the original
S-FRCNN.

The U-Net structure did not yield good results (Table 2). With delayed global fusion, the U-Net-Delay
block yielded better results. For a fair comparison with the A-FRCNN, we changed the number of
channels C from 512 to 684 and 580 in U-Net and U-Net-Delay blocks, respectively, and obtained
the U-Net (large) and U-Net-Delay (large) blocks. The two blocks had similar amount of parameters
to the A-FRCNN. With more parameters, the U-Net-Delay (large) tended to overfit the training data
and yielded worse test results than the original U-Net-Delay. Even in this case, U-Net-Delay (large)
yielded better results than the U-Net (large), verifying the effectiveness of the delayed global fusion.
Nevertheless, they both yielded much lower SI-SNRi and SDRi values than the A-FRCNN.

5.2 Comparison with Existing Models

We compared A-FRCNN with some popular models for speech separation. Some models work
in the time-frequency domain: DPCL++ [7], uPIT-BLSTM-ST [12] and Chimera++ [36]. Some
models work in the time-domain: BLSTM-TasNet [21], Conv-TasNet [22], Two-Step TDCN [32],
MSGT-TasNet [41], SuDoRM-RF [33], DualPathRNN [20], Sepformer [31] and Gated DualPathRNN
[23]. SuDoRM-RF has four variants which are labeled by appending 0.25x, 0.5x, 1.0x and 2.5x to
the end of the name, indicating the variants consist of 4, 8, 16 and 40 blocks, respectively. None of
these models have reported results on all of the three datasets and we run some of them to obtain
missing results by using the Asteroid toolkit [26]. See Table 3. Sepformer and Gated DualPathRNN
have achieved the best results on WSJ0-2Mix, but we could not afford the computational resource to
obtain the missing results on other datasets as the two models require single GPU memory larger
than 20 GB.

We tested three variants of A-FRCNN by unfolding for 4, 8, 16 times in the macro-level. We also
tested variants in which the concatenation in Figure 1d was replaced with summation, and their names
have “sum” attached to the end in Table 3.

Separation accuracy. On Libri2Mix we had the following observations. First, among existing
models DualPathRNN achieved the best results. Second, with more unfolding times in the macro-
level, A-FRCNN achieved better results at the cost of increasing inference time. Third, A-FRCNN-16
achieved better results than DualPathRNN.

Some audio examples from Libri2Mix separated by different models including DualPathRNN and
A-FRCNN-16 are provided in Supplementary Materials. In most examples we found that separated
speeches by A-FRCNN-16 sounded clearer than those by other methods.

On WHAM! and WSJ0-2Mix, DualPathRNN, Gated DualPathRNN and Sepformer obtained higher
SI-SNRi and SDRi values than A-FRCNN-16, but we will show below that this is at the cost of
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Table 3: Performance of different models. The SI-SNRi and SDRi values marked with ‘*’ indicate that they
were not reported in the original papers but obtained by using the Asteroid toolkit [26]. The toolkit is licensed
under the MIT licence.

Model Libri2Mix WHAM! WSJ0-2Mix Params (M) Time (s)
SI-SNRi SDRi SI-SNRi SDRi SI-SNRi SDRi

DPCL++ 5.9∗ 6.6∗ - - 10.8 11.2 13.6 0.37
uPIT-BLSTM-ST 7.6∗ 8.2∗ - - 9.8 10.0 92.7 0.77

Chimera++ 6.3∗ 7.0∗ 10.0 - 11.5 11.8 32.9 0.66
BLSTM-TasNet 7.9∗ 8.7∗ 9.8 - 13.2 13.6 23.6 2.90

Conv-TasNet 12.2 12.7 12.7 - 15.3 15.6 5.6 0.39
Two-Step TDCN 12.0∗ 12.5∗ - - 16.1 - 8.6 1.85

MSGT-TasNet (light) - - 12.3 - 16.8 17.1 37.4 3.37
MSGT-TasNet (dense) - - 13.1 - 17.0 17.3 66.8 5.56

SuDoRM-RF 0.25x 10.8∗ 11.3∗ 10.4∗ 10.8∗ 13.4 13.6 0.8 0.24
SuDoRM-RF 0.5x 12.2∗ 12.6∗ 11.8∗ 12.2∗ 15.4 15.6 1.4 0.33
SuDoRM-RF 1.0x 13.5∗ 14.0∗ 12.9∗ 13.3∗ 17.1 17.3 2.7 0.53
SuDoRM-RF 2.5x 14.0∗ 14.4∗ 13.7∗ 14.1∗ 17.4∗ 17.6∗ 6.4 1.15

DualPathRNN 14.1∗ 14.6∗ 13.7∗ 14.1∗ 18.8 19.0 2.7 4.66
Gated DualPathRNN - - 15.2 - 20.1 - 7.5 7.35

Sepformer - - - - 20.4 20.5 26.0 5.22

A-FRCNN-4 12.6 13.1 12.0 12.3 15.6 15.8 6.1 0.33
±0.01 ±0.02 ±0.02 ±0.02 ±0.02 ±0.01

A-FRCNN-8 15.5 15.9 13.4 13.8 17.1 17.3 6.1 0.72
±0.04 ±0.04 ±0.02 ±0.02 ±0.03 ±0.02

A-FRCNN-16 16.7 17.2 14.5 14.8 18.3 18.6 6.1 1.51
±0.03 ±0.03 ±0.02 ±0.03 ±0.02 ±0.02

A-FRCNN-4 (sum) 13.1 13.5 12.3 12.6 14.9 15.2 1.7 0.29
±0.01 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02

A-FRCNN-8 (sum) 15.0 15.4 13.0 13.4 16.7 17.1 1.7 0.52
±0.01 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02

A-FRCNN-16 (sum) 16.2 16.7 14.0 14.6 17.9 18.3 1.7 0.98
±0.02 ±0.01 ±0.01 ±0.02 ±0.01 ±0.01

significantly more computational expense. In addition, Sepformer had significantly more parameters
than A-FRCNN-16.

Efficiency. We have seen that the three models based on intra- and inter-chunk framework, Du-
alPathRNN, Gated DualPathRNN and Sepformer obtained SOTA SI-SNRi and SDRi values on
WHAM! and WSJ0-2Mix datasets. We then investigated the computing efficiency of these models.

First, from Table 3 we see that DualPathRNN was 3× slower than A-FRCNN-16 during inference.
Second, training DualPathRNN was also very slow. Training DualPathRNN on Libri2Mix took 142
hours on 8 GPUs while training A-FRCNN-16 took 39 hours (see Supplementary Materials for the
training time of typical models). Third, Gated DualPathRNN and Sepformer were even slower than
DualPathRNN.

We list more computational complexity metrics of Gated DualPathRNN, Sepformer and A-FRCNN-
16 in Table 4, including the forward and backward GPU memory/time and GFlops of the forward
pass by processing a four-second audio. We see that Gated DualPathRNN took about 3× and
2× more GPU memory than A-FRCNN-16 for forward and backward passes, respectively; Gated
DualPathRNN took about 7× and 3× more GPU time than A-FRCNN-16 for forward and backward
passes, respectively. Sepformer also took significantly more GPU memory and GPU time than
A-FRCNN-16 during training. In addition, we found that the GFlops of A-FRCNN-16 could be
significantly reduced when the concatenation was replaced with summation for information fusion,
while SI-SNRi value dropped only slightly. In fact, A-FRCNN-16 (sum) took about 6× less GFlops
than Gated DualPathRNN and Sepformer. In terms of these efficiency metrics, SuDoRM-RF 2.5x
performed as well as A-FRCNN-16 (sum).

Taken together, compared with other SOTA models, A-FRCNN achieved good balance between
speech separation accuracy and computational efficiency, and it can obtain good separation results
with limited computing resource.

9



Table 4: Computational complexity metrics of different SOTA models.

Model F/B GPU Memory (GB) F/B GPU Time (ms) GFlops

Gated DualPathRNN 0.43/7.78 503.8/893.2 125.28
Sepformer 0.62/11.3 311.8/702.1 145.58

SuDoRM-RF 2.5x 0.10/4.85 77.2/210.3 19.8

A-FRCNN-16 0.14/4.07 74.4/263.5 123.3
A-FRCNN-16 (sum) 0.13/3.54 70.2/223.3 22.8

5.3 Ablation Study

The experiments were on the Libri2Mix dataset. We studied the influence of the number of stages S
(Figure 1c) by fixing the unfolding method to SC. The results was the best with S = 5 (Table 5). We
then compared the results with different unfolding methods (Figure 4) by fixing S = 5 and found that
the SC method was the best (Table 6). In the two experiments the A-FRCNN was unfolded for 8 time
steps. We therefore used S = 5 and the SC method in all other experiments. Only the results with
this setting are average results over 5 different runs in Tables 5 and 6; and we did not train models
with other settings for multiple times considering the small standard deviations in previous tables.

Table 5: Test results of the A-FRCNN with differ-
ent number of stages S.

S SI-SNRi SDRi Params

3 13.8 14.5 4.0M
4 14.4 14.9 5.1M
5 15.5 15.9 6.1M
6 14.4 14.9 7.2M

5.4 Transfer to DualPathRNN and Sandglasset

Table 6: Test results of A-FRCNN with different unfold-
ing methods in the macro-level.

Method SI-SNRi SDRi Params Time (s)

DC 12.8 11.4 6.1M 0.70
CC 14.3 14.8 6.7M 0.96
SC 15.5 15.9 6.1M 0.72

Both DualPathRNN [20] and Sandglasset [13] use intra-chunk and inter-chunk operations repeatedly
to fuse information. We used our proposed MSF method in A-FRCNN to fuse 5 multi-scale intra-
chunks and sent the result to the inter-chunk in one block, and repeated multiple blocks with tied
weights. The new models, called A-DualPathRNN and A-Sandglasset, obtained better results than
the original models, further demonstrating the merit of the proposed MSF method. Details can be
found in Supplementary Materials.

6 Conclusion

We investigated an asynchronous updating scheme for a bio-inspired FRCNN architecture for solv-
ing the speech separation task. The resulted model A-FRCNN achieved better results than the
conventional synchronous updating scheme in experiments. Compared with the models based on
DualPathRNN, the proposed A-FRCNN achieved inferior results but was significantly more efficient
in both training and inference, therefore achieved a good trade-off between accuracy and efficiency.

This work has some limitations. First, for fair comparison with many existing models, we did not
consider reverberation, which we have to deal with in the real world. It is unknown how reverberation
will influence the performance of our proposed model. Second, we only considered two speakers
in the mixed speech and did not consider the more natural setting where the number of speakers is
unknown. Third, the proposed unfolding scheme was obtained by hand. It would be interesting to use
data-driven learning such as the neural architecture search techniques to determine the best design.
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