
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNIFIED PARAMETER-EFFICIENT UNLEARNING
FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

The advent of Large Language Models (LLMs) has revolutionized natural lan-
guage processing, enabling advanced understanding and reasoning capabilities
across a variety of tasks. Fine-tuning these models for specific domains, partic-
ularly through Parameter-Efficient Fine-Tuning (PEFT) strategies like LoRA, has
become a prevalent practice due to its efficiency. However, this raises significant
privacy and security concerns, as models may inadvertently retain and dissemi-
nate sensitive or undesirable information. To address these issues, we introduce
a novel instance-wise unlearning framework, LLMEraser, which systematically
categorizes unlearning tasks and applies precise parameter adjustments using in-
fluence functions. Unlike traditional unlearning techniques that are often limited
in scope and require extensive retraining, LLMEraser is designed to handle a broad
spectrum of unlearning tasks without compromising model performance. Exten-
sive experiments on benchmark datasets demonstrate that LLMEraser excels in
efficiently managing various unlearning scenarios while maintaining the overall
integrity and efficacy of the models.

1 INTRODUCTION

Large language models (LLMs) demonstrate remarkable capabilities in knowledge understanding
and complex reasoning (Li et al., 2023; Zhang et al., 2024b; Li, 2024; Li et al., 2024; Lee et al.,
2024), having sparked increasing interest in adapting LLMs to specific domains through fine-tuning
techniques (Li & Liang, 2021; Dettmers et al., 2023; Zhang et al., 2023; Zaken et al., 2022). Among
them, Parameter-Efficient Fine-Tuning (PEFT) (Li & Liang, 2021; Liu et al., 2021), such as LoRA
(Hu et al., 2022), has emerged as the mainstream paradigm, offering significant reductions in re-
source costs by fine-tuning only a small subset of parameters. While highly effective, the reliance
on domain-specific data for fine-tuning raises concerns regarding data leakage and privacy (Lu et al.,
2024; Blanco-Justicia et al., 2024), such as potentially memorizing or propagating sensitive, biased,
copyrighted, or harmful information (Liu et al., 2024c; Qu et al., 2024). In this light, researchers
have introduced unlearning techniques (Jang et al., 2023; Kurmanji et al., 2023; Kumar et al., 2023)
into LLMs, to “forget” specific data without requiring the time-consuming and resource-intensive
process of retraining.

Prior efforts in exploring unlearning in LLMs primarily focus on removing specific concepts
(Kassem et al., 2023; Jang et al., 2023). A typical example is the erasure of LLM’s ability to
recall information related to the Harry Potter series (Eldan & Russinovich, 2023). While these ef-
forts yield valuable insights, they risk inadvertently affecting related concepts, such as other novels
with similar titles. In this work, we broaden the scope by investigating instance-wise unlearning
tasks, which allow us to target more nuanced aspects of model behavior. To this end, we first present
various instance-wise unlearning tasks for LLMs, as illustrated in Figure 1. More case studies can
be found in Appendix B. Specifically, consider a training instance z = (x, y) in a supervised fine-
tuning dataset, where x represents the query and y is the response. We can categorize the LLMs
unlearning tasks at the instance level as follows:

• Instance Removal (IR). It removes the sample z = (x, y) from the training set.

• Query Modification (QM). It adjusts the input tokens in query x, such as removing specific noisy
tokens or correcting certain erroneous tokens.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: A summary of existing LLM unlearning methods and their application scenarios. E and A
are abbreviations for Exact unlearning and Approximate unlearning, respectively.

Related Work Mode Method
Preserve Model

Architecture
Free from

Retrain/Pretrain
IR QM RC

Retrain - Retrain ✓ ✗ ✓ ✓ ✓
SISA (Bourtoule et al., 2021) E Retrain Sub-model ✗ ✗ ✓ ✓ ✓
FairSISA (Kadhe et al., 2023) E Retrain Sub-model ✗ ✗ ✓ ✓ ✓

APA (Hu et al., 2024b) E Retrain Sub-model ✗ ✗ ✓ ✓ ✓
Gradient Ascent A Fine-tuning ✗ ✓ ✓ ✗ ✗

EUL (Chen & Yang, 2023) A Fine-tuning ✗ ✓ ✓ ✗ ✗

E2URec (Wang et al., 2024) A Fine-tuning ✗ ✗ ✓ ✗ ✗

LLMEraser (Ours) A Parameter Editing ✓ ✓ ✓ ✓ ✓

Input: Select the oldest person from the list. George

Washington, Confucius, Michael Jordan, Michelangelo.

Output: George Washington

Input: Select the oldest person from the list. George

Washington, Confucius, Michael Jordan, Michelangelo.

Output: Confucius

Response Correction

Input: Solve the following

equation system. Give me

the final answer. 3x - 4y =

1, 2x + 3y = 200

Output: x = 3, y = 2

Input: Solve the following

equation system. Give me

the final answer. 3x - 4y =

1, 2x + 3y = 12

Output: x = 3, y = 2

Query ModificationInstance Removal

Input: Find out the

largest one from a set of

numbers. 1001, 22, 500, -

3999, 1e6, 85, -2e6

Output: 1e6

Input: Find out the

largest one from a set of

numbers. 1001, 22, 500, -

3999, 1e6, 85, -2e6

Output: 1e6

(a) Taxonomy of LLM unlearning tasks.

Aggregated

Adapter

Adapter1

Adapter2

Adapterk

... ...

Shard1

Shard2

Shardk
×

Adapterk’
Unlearning

Request

LLM

Output

Input

Exact LLM Unlearning

Approximate LLM Unlearning

LLM

Output

Input

KL-divergence-

based
Fine-tuning

Adapter

Unlearning

Request

Training

Set

Training

Set ×

(b) Overview of exact/approximate LLM Unlearning.
Figure 1: 1a: A brief description of the different types of LLM unlearning tasks. 1b: The framework
of exact LLM unlearning method, approximate unlearning method.

• Response Correction (RC). It corrects the model’s response y, including updating outdated an-
swers or rectifying incorrect classification results.

In this work, we focus on unlearning the domain-specific data used solely in PEFT, which re-
quires updating the PEFT adapters (e.g., LoRA). Technically, recent LLM-unlearning efforts can
be roughly grouped into two categories. Exact unlearning approaches divide data into disjoint
shards and retrain adapters (Bourtoule et al., 2021; Hu et al., 2024b). Despite effectiveness, these
methods have inherent limitations — inevitably destroying the model’s original structure and neces-
sitating the retraining cost. Approximate unlearning methods, on the other hand, aim to replicate
the performance of the retrained model, often aligning the output of the target data closely with ran-
domness through KL-divergence-based PEFT (Liu et al., 2024a; Qu et al., 2024). Nonetheless, this
paradigm primarily focuses on data removal (e.g., IR) and hardly corrects biased or inaccurate data
(e.g., QM, RC), as it falls short in guiding the output of the target data towards accurate information,
rather than mere randomness. See Table 1 for the summary of current LLMs unlearning methods,
with detailed descriptions available in Appendix A. Overall, both approaches struggle to efficiently
handle these instance-wise LLM unlearning tasks and are not specifically designed for unlearning
within the PEFT framework. It calls for a general LLM unlearning method capable of addressing
these various tasks.

In pursuit of parameter-efficient unlearning, we identify the influence function (Koh & Liang, 2017)
as a promising tool. At its core is to formulate the parameter changes caused by perturbations in the
form of the inverse-Hessian-vector product (Agarwal et al., 2016), where Hessian matrix represents
the curvature of the loss function w.r.t. model parameters. However, the direct application of the
influence function to LLMs presents two significant challenges: the expensive cost of calculating the
inverse Hessian-vector product for vast model parameters and the cumulative errors introduced by

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

approximation strategies (e.g., stochastic estimation (Agarwal et al., 2016)). Consequently, the use
of influence functions for LLM unlearning remains largely underexplored. To fill this research gap,
we propose a unified parameter-efficient unlearning framework, LLMEraser, for various instance-
wise unlearning tasks. Specifically, for each type of unlearning task, LLMEraser leverages influence
functions to directly calculate the parameter changes in the PEFT adapters and then efficiently up-
date the adapter parameters, thus bypassing the need for time-consuming model retraining or fine-
tuning. Furthermore, we reformulate the calculation of the inverse-Hessian-vector product into a
finite-sum quadratic programming problem (Nesterov, 2013; Beck & Teboulle, 2009), significantly
reducing computational complexity while mitigating the approximation errors from stochastic es-
timation. LLMEraser has several advantages: model-agnostic, applicable to various instance-wise
unlearning tasks, and ensuring fast model updates. We conduct experiments on both LLMs and
Multimodal Large Language Models (MLLMs), specifically focusing on LLMs for Recommenda-
tion (LLM4Rec) as well as MLLM relation mining tasks to validate the effectiveness of LLMEraser.
Our extensive evaluations across these diverse scenarios demonstrate that LLMEraser consistently
outperforms the state-of-the-art unlearning methods.

2 PRELIMINARY

This section introduces key concepts underpinning our methodology. We cover instruction tuning
to enhance LLMs’ understanding of human instructions, followed by PEFT, highlighting LoRA for
efficient updates. Lastly, we discuss the influence function, which analyzes parameter changes from
data perturbations. These foundations set the stage for the techniques discussed later.

2.1 INSTRUCTION TUNING

Instruction tuning is a key technique that leverages carefully curated datasets of human-annotated
instructions and corresponding responses to enhance LLMs’ capacity to comprehend and respond
to human instructions (Wei et al., 2022; Liu et al., 2023b; Sanh et al., 2022). Given a downstream
task dataset Z = {z|z = (x, y)} containing n instances, where x represents a description of the
human instruction and y is the corresponding response, LLMs are fine-tuned using the following
autoregressive (Brown et al., 2020; Touvron et al., 2023a) objective:

max
Φ

∑
(x,y)∈Z

|y|∑
t=1

log (P (yt | x, y<t; Φ)) , (1)

where Φ is LLMs’ parameters, yt is the t-th token of y, and y<t represents tokens preceding yt.

2.2 PARAMETER-EFFICIENT FINE-TUNING

LLMs typically consist of billions of parameters, making full fine-tuning computationally expen-
sive. Parameter-Efficient Fine-Tuning (PEFT) addresses this challenge by updating only a small
number of the parameters while still achieving satisfactory performance. Among them, LoRA (Hu
et al., 2022) stands out as particularly effective, which freezes the original pretrained parameters
while introducing pairs of low-rank-decomposition weight matrices to simulate parameter updates.
Formally, the optimization objective for LoRA is expressed as follows:

max
Θ

∑
(x,y)∈Z

|y|∑
t=1

log (P (yt | x, y<t; Φ + ∆Φ(Θ))) , (2)

where Θ is the trainable parameters that is significantly smaller in size compared to Φ.

2.3 INFLUENCE FUNCTION

The influence function was first applied in machine learning by Koh & Liang (2017) to analyze the
outputs of black-box models. For the dataset Z , we focus on the following empirical risk minimiza-
tion (Shalev-Shwartz & Ben-David, 2014; Vapnik, 1998; Bartlett & Mendelson, 2002) problem:

Θ̂ ∈ argmin
Θ

R(Z; Θ)|R(Z; Θ) :=
1

n

∑
(x,y)∈Z

L ((x, y); Θ)

 , (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where Θ is the trainable model parameter and Θ̂ is the minimizer of Equation 3. L (·; Θ) is the loss
function, and for Equation 2, it is defined as:

L ((x, y); Θ) = −
|y|∑
t=1

log (P (yt | x, y<t; Φ + ∆Φ(Θ))) . (4)

When a training example (x, y) is upweighted by an infinitesimal amount ϵ, the perturbed loss for
Θ̂new (ϵ) can be expressed as:

Θ̂new (ϵ) ∈ argmin
Θ

{
L̂ (Z, (x, y), ϵ; Θ) |L̂ (Z, (x, y), ϵ; Θ) := R(Z; Θ) + ϵL ((x, y); Θ)

}
. (5)

When ϵ ≈ 0, the parameter change ∆Θ(ϵ) = Θ̂new (ϵ)− Θ̂ can be approximately calculated by ap-
plying a Taylor expansion of Equation 3. Please refer to (Koh & Liang, 2017) for detailed derivation.
Specifically, ∆Θ(ϵ) can be written as:

∆Θ(ϵ) ≈ −ϵH−1

Θ̂
∇ΘL

(
(x, y); Θ̂

)
, (6)

where HΘ̂ = ∇2
ΘR(Z; Θ̂) is the Hessian matrix, ∇ΘL((x, y); Θ̂) represents the gradient of L w.r.t.

parameters Θ, evaluated at Θ̂.

3 METHOD

In this work, we propose LLMEraser, a framework that updates the PEFT adapter parameters to
handle various instance-wise unlearning tasks. As shown in Figure 2, our approach leverages the
influence function to directly estimate the parameter changes for various unlearning tasks, circum-
venting the resource-consuming fine-tuning or retraining procedures. Moreover, we present a novel
algorithm to accelerate the computation of the inverse Hessian-vector-product in the influence func-
tion, enabling its efficient implementations in LLMs. Finally, we summarize how LLMEraser works.

3.1 TAXONOMY OF LLM UNLEARNING TASKS

We focus on instance-wise unlearning tasks for LLMs, specifically for PEFT that uses domain-
specific data. For an instance z = (x, y), where x represents the query and y is the response, we
propose a taxonomy of unlearning tasks based on the operation applied to the target instance.

Instance Removal (IR). When a specific instance z = (x, y) is either restricted from use or contains
harmful content, it necessitates complete elimination from the training set, along with its associated
influence on the model.

Query Modification (QM). This category involves modifying the query x, transforming z = (x, y)
into z′ = (x′, y). It could not only delete outdated or incorrect tokens in the query x, such as noisy
interactions from a user’s history, but also update erroneous or outdated tokens with correct ones.

Response Correction (RC). Here, the focus is on rectifying the output component y of the instance
z. That is, replacing z = (x, y) with z′ = (x, y′). For binary classification tasks, such as answering
“Yes” or “No”, it corrects mislabeled outputs by flipping the labels. For other tasks, such as multi-
class classification or question answering, it is applied to rectify inaccurate responses.

Our proposed taxonomy expands the concept of LLM unlearning beyond the removal of entire in-
stances. It introduces a more fine-grained categorization defined at the token level within both
queries and responses, allowing for nuanced control of model behavior.

3.2 LLMERASER

The key strength of LLMEraser lies in its capacity to directly estimate the adapter’s parameter
changes caused by various unlearning tasks. For the sake of clarity and without sacrificing general-
ity, we employ the loss function in LoRA (cf. Equation 4) as our example, while other alternatives
would yield similar formulations.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Influence

Function

Old

Adapter
PEFT

Instruction Tuning

LLM Unlearning

Parameter

Updating

Parameter

Changes

LLMEraser
New

Adapter

Unlearning

Request

Training Set

Updated

Training Set

Figure 2: The framework of LLMEraser. The old adapter is obtained through PEFT on domain-
specific data. When an unlearning request arrives (e.g., deleting or correcting certain data from
the training set), LLMEraser utilizes influence functions to compute the parameter changes caused
by such request. These estimated parameter modifications are added to the old adapter’s weights,
resulting in the new adapter parameters—essentially the unlearned model parameters.

To develop a unified approach for solving all unlearning tasks in our taxonomy, we begin by con-
sidering a general case where perturbations are applied to both the query (x) and response (y) com-
ponents of an instance z. This generalized framework allows us to model each specific unlearning
task as a special case of this perturbation scenario. Formally, we define the perturbation δ applied
to z as zδ = (x + δx, y + δy), where δx and δy represent perturbations to the query and response,
respectively. We now formulate the perturbed empirical risk minimization problem as:

Θ̂δ(ϵ) ∈ argmin
Θ

{R(Z; Θ) + ϵL ((x+ δx, y + δy); Θ)− ϵL ((x, y); Θ)} , (7)

where Θ̂δ(ϵ) is the minimizer of the optimization problem after applying a perturbation δ of magni-
tude ϵ to the sample z. Following the derivation in (Koh & Liang, 2017), when the sample size n is
sufficiently large, by taking ϵ = 1

n (i.e., ϵ ≈ 0), we can safely estimate the parameter change ∆Θδ

as follows:
∆Θδ ≈

1

n

(
∇2

ΘR(Z; Θ̂)
)−1

(G(x, y)− G(x+ δx, y + δy)) , (8)

where G(x, y) is an abbreviations for ∇ΘL
(
(x, y); Θ̂

)
. Next, we present the perturbations and

corresponding parameter changes for different unlearning tasks.

• Instance Removal. The deletion of data corresponds to the perturbation function in Equation 5.
By setting ϵ = − 1

n like Equation 6, it is equivalent to removing instance z. The set of deleted
instances is denoted as SIR. By aggregating the gradients of all deleted instances, the parameter
change ∆ΘIR can be expressed as follows:

∆ΘIR ≈
1

n

(
∇2

ΘR(Z; Θ̂)
)−1 ∑

(x,y)∈SIR

G(x, y). (9)

• Query Modification. Modifying certain tokens in the query x is equivalent to perturbing x with
δx, where δx represents deleting noisy tokens or correcting inaccurate tokens, while keeping the re-
sponse unchanged (i.e., δy = 0). Hence, the perturbed instance z is represented as zδ = (x+δx, y),
with the set of instances requiring the removal or modification of specific tokens represented by
SQM. By aggregating the gradients of all instances in SQM, the parameter change ∆ΘQM induced
by query modification can be shown as follows:

∆ΘQM ≈
1

n

(
∇2

ΘR(Z; Θ̂)
)−1

 ∑
(x,y)∈SQM

G(x, y)−
∑

(x+δx,y)∈SQM

∇ΘG(x+ δx, y)

 . (10)

• Response Correction. Correcting the response solely corresponds to δx = 0 while perturbing the
response y with δy . Here δy represents updates to outdated answers or adjustments to erroneous
classification results. With zδ = (x, y + δy), the set of instances with rectified labels is SRC. The
parameter change ∆ΘRC is as follows:

∆ΘRC ≈
1

n

(
∇2

ΘR(Z; Θ̂)
)−1

 ∑
(x,y)∈SRC

G(x, y)−
∑

(x,y+δy)∈SRC

G(x, y + δy)

 . (11)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

However, computing inverse Hessian-vector-product results presents significant challenges. Al-
though CG (Hestenes et al., 1952; Fletcher, 2000; Shewchuk et al., 1994) shows some promise, it
requires full-batch gradient computation (Koh & Liang, 2017), making it impractical for large-scale
datasets. Stochastic estimation (Agarwal et al., 2016) expands (∇2

ΘR(Z; Θ̂))−1 into a truncated
power series and iteratively estimates parameter changes, but it suffers from cumulative approxima-
tion errors (Blanco-Justicia et al., 2024; Basu et al., 2021). Next, we elaborate a new efficient and
scalable algorithm for computing ∆ΘTask for different unlearning tasks.

3.3 A NEW ALGORITHM FOR COMPUTING PARAMETER CHANGES

LLMEraser reformulates the calculation of parameter changes as solving an equivalent optimization
problem expressed in summation form, enabling efficient resolution using mini-batch algorithms.
Specifically, we focus on the following optimization problem regarding ∆:

min
∆

F (∆) :=
1

2
∆⊤∇2

ΘR(Z; Θ̂)∆− ⟨b,∆⟩, (12)

where ⟨, ⟩ represents the inner product of vectors, and b is defined as:

b =


1
n

∑
(x,y)∈SIR

G(x, y), if Task = IR
1
n

∑
(x,y)∈SIM

G(x, y)− 1
n

∑
(x+δx,y)∈SIM

G(x+ δx, y), if Task = IM
1
n

∑
(x,y)∈SRC

G(x, y)− 1
n

∑
(x,y+δy)∈SRC

G(x, y + δy), if Task = RC
. (13)

Since Θ̂ is the minimizer of Equation 3, it satisfies the second-order necessary optimality condi-
tion (Nocedal & Wright, 1999; Luenberger et al., 1984; Bertsekas, 1997), resulting in the matrix
∇2

ΘR(Z; Θ̂) being symmetric and positive semidefinite. Thus, Equation 12 is essentially a convex
quadratic problem, with a gradient of∇2

ΘR(Z; Θ̂)∆−b. Given that ∆ΘTask can be interpreted as the
solution to the linear system ∇2

ΘR(Z; Θ̂)∆ = b, addressing ∆ΘTask is effectively equivalent to op-
timizing Equation 12. Due to the summation form of∇2

ΘR(Z; Θ̂), Equation 12 can be reformulated
as the following finite-sum formation:

F (∆) =
1

n

∑
(x,y)∈Z

f ((x, y),∆) , (14)

where f((x, y),∆) is defined as:

f((x, y),∆) =
1

2
∆⊤∇2

ΘL
(
(x, y), Θ̂

)
∆+ ⟨b,∆⟩. (15)

By employing scalable algorithms (e.g., SGD) to optimize problem 12, we can obtain the solu-
tion for ∆ΘTask. It is worth noting that both the function value and the gradient can be efficiently
computed using the Hessian-vector-product (HVP)1, reducing the complexity from O(p2) to O(p)
(Pearlmutter, 1994), where p is the number of trainable parameters. The pseudocode for computing
parameter changes can be found in Appendix C. Error analysis for our proposed algorithm can be
found in Appendix E.

3.4 THE WORKFLOW OF LLMERASER

LLMEraser focuses on unlearning domain-specific data and updating the parameters of the PEFT
adapters. Overall, the workflow of LLMEraser is as follows:

• Use domain-specific data with PEFT to obtain the old adapter.
• Receive the unlearning request.
• LLMEraser utilizes influence functions to compute the changes in model parameters caused by

the unlearning request.
• Add the computed parameter changes to the old adapter’s parameters to obtain the unlearned

model parameters.

1HVP has a corresponding implementation in PyTorch; refer to https://pytorch.org/docs/
stable/autograd.html for details.

6

https://pytorch.org/docs/stable/autograd.html
https://pytorch.org/docs/stable/autograd.html

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Experimental results on the instance removal task with 5% of training data removed, using
TALLRec as the LLM4Rec model on the BookCrossing dataset.

Original Retrain Gradient Ascent E2URec LLMEraser (Ours)
AUC 0.6400 0.6357 0.6187 0.6205 0.6319

4 EXPERIMENT

In this section, we carry out extensive experiments to assess the performance and efficiency of
LLMEraser. The experiments are designed to explore the following key research questions: RQ1:
How does LLMEraser perform across various unlearning tasks? RQ2: How does LLMEraser per-
form at different unlearning ratios? RQ3: How does the efficiency of LLMeraser compared to other
unlearning methods?

4.1 EXPERIMENTAL SETUPS

We conduct experiments on both LLMs and Multimodal Large Language Models (MLLMs), fo-
cusing specifically on LLMs for Recommendation (LLM4Rec) (Bao et al., 2023; Liao et al., 2024)
and MLLM relation mining tasks (Wu et al., 2024; Ye et al., 2024), to validate the effectiveness
of our proposed LLMEraser. We choose LLaMA2-7B (Touvron et al., 2023b) as our backbone
LLM and LLaVA 1.5-7B (Liu et al., 2023a) for the MLLM experiments. Comprehensive details
on task, datasets, baselines, and evaluation metrics for our proposed LLMEraser can be found in
Appendix D.1.

4.2 RESULTS ANALYSIS FOR VARIOUS UNLEARNING TASKS (RQ1)

We design a variety of comprehensive experiments to thoroughly validate the effectiveness of
LLMEraser across the three unlearning tasks we have proposed. More experimental results on the
generative task can be found in Appendix G.

4.2.1 RESULTS ANALYSIS ON INSTANCE REMOVAL

For instance removal, we directly delete a proportion of training instances and subsequently evaluate
the performance of each unlearning method. The experimental results on LLM4Rec are shown in
Table 2. We can find that: (1) LLMEraser closely mirrors the performance of Retrain. The perfor-
mance gap between LLMEraser and Retrain is merely 0.0038, constituting only 0.6% of Retrain’s
performance. This can be attributed to our method’s direct estimation of the parameter changes be-
tween the retrained model and the original model, allowing for a highly accurate calculation of these
changes. (2) Other unlearning methods exhibit notable declines in model performance. Specifically,
Gradient Ascent and E2URec show average decreases of 2.7% and 2.4%, respectively, as they do
not explicitly aim to approximate the Retrain model during the fine-tuning process.

4.2.2 RESULTS ANALYSIS ON QUERY MODIFICATION & RESPONSE CORRECTION

Adversarial attack experiments are widely employed to assess the efficacy of data modification for
unlearning techniques (Wu et al., 2023; Moon et al., 2024; Cha et al., 2024). The core idea is first
randomly introducing corrupted instances into the dataset, which inevitably leads to a decline in
model performance, and then leveraging unlearning techniques to correct these noisy data on the
model. Following this setting, we evaluate the performance of LLMEraser in both query modifica-
tion and response correction tasks.

For query modification, we conduct experiments on the LLM4Rec task by adding adversarial noise
to the user interaction sequences, i.e., randomly deleting some items from the sequences (Inter-
action Removal) or replacing them with corrupt ones (Interaction Replacement), and then using
LLMEraser to rectify the data. Table 3 presents the experimental results. We can observe that: (1)
LLMEraser brings a substantial utility gain to the model compared to the corrupted baseline, signif-
icantly reducing the negative impact of noisy data. Specifically, it achieves an average improvement
of 5.1% compared to the corrupted model in both settings, with a peak increase of 5.5% in inter-
action removal setting. Moreover, its performance is closest to that of Retrain, demonstrating its

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Experimental results on the QM task, using LLaRA as the LLM4Rec model on the Movie-
Lens and LastFM datasets. “10% Interaction Removal” refers to 10% of users have items removed
from their interaction sequences, “5% Interaction Replacement” refers to 5% of users have items
replaced with noisy interactions. Corrupted refers to the model trained with the noisy data.

Method Movielens LastFM
HitRatio@1 ValidRatio HitRatio@1 ValidRatio

10% Interaction
Removal

Retrain 0.4565 0.9684 0.4508 1.0000
Corrupted 0.4222 0.9375 0.4344 1.0000

SISA 0.4130 0.9684 0.4132 0.9918
RecEraser 0.2717 0.9684 0.4298 0.9918

LLMEraser (Ours) 0.4456 0.9684 0.4463 0.9918

5% Interaction
Replacement

Retrain 0.4565 0.9684 0.4508 1.0000
Corrupted 0.4316 0.9684 0.4344 0.9918

SISA 0.3804 0.9684 0.4050 0.9918
RecEraser 0.3152 0.9684 0.3689 1.0000

LLMEraser (Ours) 0.4516 0.9789 0.4426 1.0000

Table 4: Experimental results on the MM-SPUBENCH for RC tasks, where Corrupted denotes we
assign wrong labels for 40% of the training samples.

Method MM-SPUBENCH Average AllBG TN CO RS Col. Ori. LS PA Sha.

Retrain 0.88 0.80 0.83 1.00 0.78 0.86 0.86 0.66 0.70 0.82 0.84
Corrupted 0.76 0.62 0.67 0.80 0.67 0.76 0.65 0.68 0.67 0.70 0.71

SISA 0.84 0.65 0.79 1.00 0.64 0.79 0.86 0.73 0.57 0.76 0.77
LLMEraser 0.86 0.70 0.80 1.00 0.78 0.85 0.84 0.76 0.67 0.81 0.81

effectiveness in correcting inaccurate input information. (2) SISA and RecEraser fail to improve
performance. Their average results in both settings decreased by 7.0% and 31.3% compared to the
corrupted baseline. The reasons may lie in their dataset partitioning and submodel retraining strat-
egy, potentially leading to a loss of crucial contextual information and introducing inconsistencies
in learned representations. (3) RecEraser underperforms SISA in most cases. Designed on tradi-
tional recommendation models, RecEraser relies on users’ collaborative signals to optimize shard
partitioning; however, this strategy fails to effectively adapt to LLM4Rec.

For response correction, we introduce noise into the training data of the MLLMs task by randomly
assigning incorrect labels to a portion of the samples. In the spurious biases task for MLLMs, we
reverse 40% the original “yes/no” labels. For the hard hallucination mining task in MLLMs, we
assign random labels to 40% of the samples. We leverage LLM unlearning to mitigate the neg-
ative impact of such noisy data, aiming to approximate the performance of retraining with clean
data. The experimental results of response correction unlearning task on spurious biases task and
hard hallucination mining task are presented in Table 4 and 5, respectively. We can draw the fol-
lowing observations: (1) LLMEraser effectively performs response correction, achieving average
improvements of 14.2% and 18.9% on the spurious biases task and hard hallucination mining task,
respectively, compared to the corrupted baseline. Compared to other methods, LLMEraser shows
the smallest performance gap relative to Retrain. On the spurious biases task and hard hallucination
mining task, the average differences with Retrain are 0.024 and 0.048, which account for 2.9% and
7.5% of Retrain’s performance, respectively. Whether addressing label reversal in binary classifica-
tion or correcting labels in multi-class scenarios, LLMEraser can eliminate the negative impact of
noisy labels and restore them to their clean, original state. (2) The improvement brought by SISA is
not significant. Although SISA ensures that dirty data is replaced with clean data during retraining,
its data segmentation strategy can inevitably hurt model performance.

4.3 RESULTS ANALYSIS FOR DIFFERENT UNLEARNING RATIOS (RQ2)

To assess the sensitivity of various unlearning methods to different scales of unlearning data, we con-
duct experiments using different unlearning ratios in instance removal and query modification tasks.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Experimental results on the R-BENCH for RC tasks, where Corrupted denotes we assign
wrong labels for 40% of training samples.

Method Recall F1-Score Precision Accuracy Yes

Retrain 0.70 0.66 0.63 0.65 0.55
Corrupted 0.47 0.50 0.53 0.54 0.44

SISA 0.47 0.49 0.52 0.52 0.45
LLMEraser (Ours) 0.68 0.63 0.58 0.56 0.50

Original Retrain Gradient Ascent E2URec LLMEraser
0.60

0.61

0.62

0.63

0.64

0.65

A
U

C

0.6400
0.6357

0.6187 0.6205

0.6319

Unlearning Ratio: 0.05

Original Retrain Gradient Ascent E2URec LLMEraser
0.60

0.61

0.62

0.63

0.64

0.65

A
U

C

0.6400

0.6288

0.6049
0.6114

0.6277

Unlearning Ratio: 0.10

(a) Impact of unlearning ratio in IR.

Corrupted Retrain SISA RecEraser LLMEraser
0.30

0.35

0.40

0.45

0.50

H
itR

at
io

@
1 0.4316

0.4565

0.3804

0.3152

0.4516

Unlearning Ratio: 0.05

Corrupted Retrain SISA RecEraser LLMEraser
0.30

0.35

0.40

0.45

0.50

H
itR

at
io

@
1 0.4239

0.4565

0.3804

0.3152

0.4457

Unlearning Ratio: 0.10

(b) Impact of unlearning ratio in QM.
Figure 3: 3a: Experimental results of the instance removal task using TallRec as the LLM4Rec
model on the BookCrossing dataset, where 5% and 10% of the training data were randomly deleted.
3b: Experimental results of the query modification task using LLaRA as the LLM4Rec model on
the MovieLens dataset, where interactions were randomly removed from 5% and 10% of users.
For the instance removal, we employ TallRec as the LLM4Rec framework, where 5% and 10% of in-
stances are removed. Meanwhile, for query modification, LLARA is utilized as the backbone, where
5% and 10% of user interactions are deleted. The experimental results are shown in Figure 3. From
these results, we can find that: (1) In the instance removal task, LLMEraser consistently performs
closest to Retrain across different unlearning ratio settings, with an average performance decline of
only 1.18%. This indicates that LLMEraser can effectively delete data while minimizing the neg-
ative impact on model performance. (2) In the query modification task, LLMEraser consistently
achieves the best performance across various unlearning ratios, with an average improvement of
4.9% compared to corrupted method. Notably, at an unlearning ratio of 10%, the relative improve-
ment reaches 5.1%. The average difference between LLMEraser and Retrain is only 0.0079. In
comparison to SISA and RecEraser, LLMEraser demonstrates a superior ability to maintain model
utility. This highlights the effectiveness of LLMEraser, demonstrating its robust performance across
varying unlearning demands. (3) We observe an interesting phenomenon in query modification task
under adversarial attack settings, with a sufficiently high unlearning ratio (in this case, 5% and 10%),
both SISA and Receraser require retraining all shards with the same clean data, resulting in equiva-
lent outcomes. Despite the direct use of clean data for retraining, they still struggle to obtain optimal
model performance.

4.4 RESULTS ANALYSIS FOR UNLEARNING EFFICIENCY (RQ3)

Table 6: Execution time in the
QM task.

Method Time (s)
Retrain 5.4× 104

SISA 1.8× 104

RecEraser 2.0× 104

LLMEraser 1.4× 103

Efficiency is a key metric in evaluating unlearning techniques, par-
ticularly for LLMs. We here conduct experiments, comparing our
proposed LLMEraser against existing techniques. For a fair com-
parison, we report the execution time in the QM task, where 5%
of users have items replaced with noisy interactions. All methods
are run on a single Nvidia A100 GPU. Table 6 presents the results.
We can observe that: (1) Due to the parallel training of sub-models,
the retraining time of both SISA and RecEraser can be reduced to
some extent. However, RecEraser requires data partitioning based
on similarity, which introduces additional computational overhead.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Moreover, both methods remain highly inefficient as unlearning requests necessitate retraining of
the adapters. (2) In contrast, our proposed LLMEraser exhibits remarkable efficiency in handling
unlearning tasks. By directly modifying model parameters, LLMEraser achieves a speedup of ap-
proximately 31.25 times compared to retraining, requiring only about 1.4 × 103seconds to update
the parameters. This reduction in execution time demonstrates the effectiveness of our approach
in accelerating the computation of parameter changes. Additional experimental results and related
analyses on the memory usage and execution time of LLMEraser can be found in Appendix F.

5 LIMITATIONS

LLMEraser offers efficient parameter updates without the need for retraining, making it versatile
across different unlearning tasks while also reducing computational overhead. Despite the improve-
ments brought by LLMEraser, its potential shortcomings should not be overlooked. Calculating
parameter changes for different unlearning tasks requires accessing the gradient information of the
target data and assumes the availability of the training set. Furthermore, the influence function’s re-
liance on the first-order Taylor expansion of the optimization objective leads to inevitable estimation
errors, representing an inherent limitation of such an approach.

6 CONCLUSION AND FUTURE WORK

This paper introduces LLMEraser, a unified parameter-efficient unlearning framework. By sys-
tematically categorizing and addressing various unlearning tasks, LLMEraser leverages influence
functions for parameter adjustments, circumventing the cumbersome retraining processes common
in traditional methods. Extensive experiments on benchmark datasets show that LLMEraser excels
in efficiently handling various unlearning tasks while preserving the overall integrity and efficacy
of the models. Additionally, LLMEraser opens new avenues for future research, encouraging the
exploration of enhanced unlearning techniques and their implications in diverse applications, such
as data privacy and ethical AI. Future studies could explore the broader applicability of LLMEraser
and potential optimizations for its computational efficiency and accuracy.

ETHICS STATEMENT

This work is primarily foundational in instance-wise unlearning for LLMs, focusing on the develop-
ment of a more efficient parameter-efficient unlearning framework. Its primary aim is to contribute
to the academic community by enhancing the understanding and implementation of LLM applica-
tions in specific domains. We do not foresee any direct, immediate, or negative societal impacts
stemming from the outcomes of our research.

REPRODUCIBILITY STATEMENT

All results presented in this work are fully reproducible. We provide the code for our method and
baseline models in the supplementary materials. The optimal hyperparameters utilized in our exper-
iments are detailed in Appendix D.2. Our code is available at https://anonymous.4open.
science/r/LLMEraser-0376.

REFERENCES

Naman Agarwal, Brian Bullins, and Elad Hazan. Second order stochastic optimization in linear
time. CoRR, abs/1602.03943, 2016.

Ian Arawjo, Chelse Swoopes, Priyan Vaithilingam, Martin Wattenberg, and Elena L. Glassman.
Chainforge: A visual toolkit for prompt engineering and LLM hypothesis testing. In CHI, pp.
304:1–304:18. ACM, 2024.

Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. Tallrec: An
effective and efficient tuning framework to align large language model with recommendation. In
RecSys, pp. 1007–1014. ACM, 2023.

10

https://anonymous.4open.science/r/LLMEraser-0376
https://anonymous.4open.science/r/LLMEraser-0376

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. J. Mach. Learn. Res., 3:463–482, 2002.

Samyadeep Basu, Phillip Pope, and Soheil Feizi. Influence functions in deep learning are fragile. In
ICLR. OpenReview.net, 2021.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imaging Sci., 2(1):183–202, 2009.

Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48(3):
334–334, 1997.

Alberto Blanco-Justicia, Najeeb Jebreel, Benet Manzanares-Salor, David Sánchez, Josep Domingo-
Ferrer, Guillem Collell, and Kuan Eeik Tan. Digital forgetting in large language models: A survey
of unlearning methods. CoRR, abs/2404.02062, 2024.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In SP, pp. 141–
159. IEEE, 2021.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020.

William Cain. Prompting change: exploring prompt engineering in large language model ai and its
potential to transform education. TechTrends, 68(1):47–57, 2024.

Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik (eds.). Proceedings of the 2nd International Work-
shop on Information Heterogeneity and Fusion in Recommender Systems, HetRec ’11, Chicago,
Illinois, USA, October 27, 2011, 2011. ACM.

Sungmin Cha, Sungjun Cho, Dasol Hwang, Honglak Lee, Taesup Moon, and Moontae Lee. Learn-
ing to unlearn: Instance-wise unlearning for pre-trained classifiers. In AAAI, pp. 11186–11194.
AAAI Press, 2024.

Chong Chen, Fei Sun, Min Zhang, and Bolin Ding. Recommendation unlearning. In WWW, pp.
2768–2777. ACM, 2022.

Jiaao Chen and Diyi Yang. Unlearn what you want to forget: Efficient unlearning for llms. In
EMNLP, pp. 12041–12052. Association for Computational Linguistics, 2023.

Yulong Chen, Yang Liu, Liang Chen, and Yue Zhang. Dialogsum: A real-life scenario dialogue
summarization dataset. In ACL/IJCNLP (Findings), volume ACL/IJCNLP 2021 of Findings of
ACL, pp. 5062–5074. Association for Computational Linguistics, 2021.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei
Yin, Wenqi Fan, Hui Liu, and Jiliang Tang. Exploring the potential of large language models
(llms)in learning on graphs. SIGKDD Explor., 25(2):42–61, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways.
J. Mach. Learn. Res., 24:240:1–240:113, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. In NeurIPS, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT (1), pp. 4171–4186. As-
sociation for Computational Linguistics, 2019.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith.
Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping.
arXiv preprint arXiv:2002.06305, 2020.

Ronen Eldan and Mark Russinovich. Who’s harry potter? approximate unlearning in llms. CoRR,
abs/2310.02238, 2023.

Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2000.

F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. ACM
Trans. Interact. Intell. Syst., 5(4):19:1–19:19, 2016.

Magnus Rudolph Hestenes, Eduard Stiefel, et al. Methods of conjugate gradients for solving linear
systems, volume 49. NBS Washington, DC, 1952.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In ICML, volume 97 of Proceedings of Machine Learning Research, pp. 2790–2799. PMLR,
2019.

Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng Chen, Jiang Xu, Shuang Chen, Hao Feng,
Chenxi Wang, Sa Wang, Yungang Bao, Ninghui Sun, and Yizhou Shan. Inference without inter-
ference: Disaggregate LLM inference for mixed downstream workloads. CoRR, abs/2401.11181,
2024a.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

Zhiyu Hu, Yang Zhang, Minghao Xiao, Wenjie Wang, Fuli Feng, and Xiangnan He. Exact and
efficient unlearning for large language model-based recommendation. CoRR, abs/2404.10327,
2024b.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and
Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models. In ACL (1),
pp. 14389–14408. Association for Computational Linguistics, 2023.

Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan
Chen, and Xia Hu. LLM maybe longlm: Self-extend LLM context window without tuning. CoRR,
abs/2401.01325, 2024.

Swanand Ravindra Kadhe, Anisa Halimi, Ambrish Rawat, and Nathalie Baracaldo. Fairsisa: En-
semble post-processing to improve fairness of unlearning in llms. CoRR, abs/2312.07420, 2023.

Aly M. Kassem, Omar Mahmoud, and Sherif Saad. Preserving privacy through dememorization:
An unlearning technique for mitigating memorization risks in language models. In EMNLP, pp.
4360–4379. Association for Computational Linguistics, 2023.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
ICML, volume 70 of Proceedings of Machine Learning Research, pp. 1885–1894. PMLR, 2017.

Vinayshekhar Bannihatti Kumar, Rashmi Gangadharaiah, and Dan Roth. Privacy adhering machine
un-learning in NLP. In IJCNLP (Findings), pp. 268–277. Association for Computational Linguis-
tics, 2023.

12

https://openreview.net/forum?id=nZeVKeeFYf9

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded
machine unlearning. In NeurIPS, 2023.

Chanhee Kwak, Junyeong Lee, Kyuhong Park, and Heeseok Lee. Let machines unlearn - machine
unlearning and the right to be forgotten. In AMCIS. Association for Information Systems, 2017.

Byung-Kwan Lee, Beomchan Park, Chae Won Kim, and Yong Man Ro. Collavo: Crayon large
language and vision model. In ACL (Findings), pp. 1121–1138. Association for Computational
Linguistics, 2024.

Likun Li, Haoqi Zeng, Changpeng Yang, Haozhe Jia, and Di Xu. Block-wise lora: Revisiting
fine-grained lora for effective personalization and stylization in text-to-image generation. CoRR,
abs/2403.07500, 2024.

Shaoxu Li. Diffstyler: Diffusion-based localized image style transfer. CoRR, abs/2403.18461, 2024.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
ACL/IJCNLP (1), pp. 4582–4597. Association for Computational Linguistics, 2021.

Zongxi Li, Xianming Li, Yuzhang Liu, Haoran Xie, Jing Li, Fu Lee Wang, Qing Li, and Xiaoqin
Zhong. Label supervised llama finetuning. CoRR, abs/2310.01208, 2023.

Jiayi Liao, Sihang Li, Zhengyi Yang, Jiancan Wu, Yancheng Yuan, Xiang Wang, and Xiangnan He.
Llara: Large language-recommendation assistant. In SIGIR, pp. 1785–1795. ACM, 2024.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. CoRR, abs/2310.03744, 2023a.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. ACM Comput. Surv., 55(9):195:1–195:35, 2023b.

Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Xiaojun
Xu, Yuguang Yao, Hang Li, Kush R. Varshney, Mohit Bansal, Sanmi Koyejo, and Yang Liu.
Rethinking machine unlearning for large language models. CoRR, abs/2402.08787, 2024a.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning v2:
Prompt tuning can be comparable to fine-tuning universally across scales and tasks. CoRR,
abs/2110.07602, 2021.

Yiheng Liu, Hao He, Tianle Han, Xu Zhang, Mengyuan Liu, Jiaming Tian, Yutong Zhang, Jiaqi
Wang, Xiaohui Gao, Tianyang Zhong, Yi Pan, Shaochen Xu, Zihao Wu, Zhengliang Liu, Xin
Zhang, Shu Zhang, Xintao Hu, Tuo Zhang, Ning Qiang, Tianming Liu, and Bao Ge. Under-
standing llms: A comprehensive overview from training to inference. CoRR, abs/2401.02038,
2024b.

Zheyuan Liu, Guangyao Dou, Zhaoxuan Tan, Yijun Tian, and Meng Jiang. Towards safer large
language models through machine unlearning. In ACL (Findings), pp. 1817–1829. Association
for Computational Linguistics, 2024c.

Weikai Lu, Ziqian Zeng, Jianwei Wang, Zhengdong Lu, Zelin Chen, Huiping Zhuang, and Cen
Chen. Eraser: Jailbreaking defense in large language models via unlearning harmful knowledge.
CoRR, abs/2404.05880, 2024.

Ximing Lu, Sean Welleck, Jack Hessel, Liwei Jiang, Lianhui Qin, Peter West, Prithviraj Am-
manabrolu, and Yejin Choi. QUARK: controllable text generation with reinforced unlearning.
In NeurIPS, 2022.

David G Luenberger, Yinyu Ye, et al. Linear and nonlinear programming, volume 2. Springer,
1984.

Saemi Moon, Seunghyuk Cho, and Dongwoo Kim. Feature unlearning for pre-trained gans and
vaes. In AAAI, pp. 21420–21428. AAAI Press, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Daye Nam, Andrew Macvean, Vincent J. Hellendoorn, Bogdan Vasilescu, and Brad A. Myers. Using
an LLM to help with code understanding. In ICSE, pp. 97:1–97:13. ACM, 2024.

Yurii E. Nesterov. Gradient methods for minimizing composite functions. Math. Program., 140(1):
125–161, 2013.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In NeurIPS, 2022.

Martin Pawelczyk, Seth Neel, and Himabindu Lakkaraju. In-context unlearning: Language models
as few shot unlearners. arXiv preprint arXiv:2310.07579, 2023.

Barak A. Pearlmutter. Fast exact multiplication by the hessian. Neural Comput., 6(1):147–160,
1994.

Youyang Qu, Ming Ding, Nan Sun, Kanchana Thilakarathna, Tianqing Zhu, and Dusit Niyato. The
frontier of data erasure: Machine unlearning for large language models. CoRR, abs/2403.15779,
2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal V.
Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica,
Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj,
Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Févry, Jason Alan Fries, Ryan Teehan,
Teven Le Scao, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M. Rush. Multitask
prompted training enables zero-shot task generalization. In ICLR. OpenReview.net, 2022.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
you want to forget: Algorithms for machine unlearning. In NeurIPS, pp. 18075–18086, 2021.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning - From Theory to
Algorithms. Cambridge University Press, 2014.

Wenbo Shang and Xin Huang. A survey of large language models on generative graph analytics:
Query, learning, and applications. CoRR, abs/2404.14809, 2024.

Jonathan Richard Shewchuk et al. An introduction to the conjugate gradient method without the
agonizing pain. 1994.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. In SIGIR, pp. 491–500. ACM,
2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023a.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
CoRR, abs/2307.09288, 2023b.

Vladimir Vapnik. Statistical learning theory. John Wiley & Sons google schola, 2:831–842, 1998.

Hangyu Wang, Jianghao Lin, Bo Chen, Yang Yang, Ruiming Tang, Weinan Zhang, and Yong Yu.
Towards efficient and effective unlearning of large language models for recommendation. CoRR,
abs/2403.03536, 2024.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. In ICLR.
OpenReview.net, 2022.

Jiancan Wu, Yi Yang, Yuchun Qian, Yongduo Sui, Xiang Wang, and Xiangnan He. GIF: A general
graph unlearning strategy via influence function. In WWW, pp. 651–661. ACM, 2023.

Mingrui Wu, Jiayi Ji, Oucheng Huang, Jiale Li, Yuhang Wu, Xiaoshuai Sun, and Rongrong Ji.
Evaluating and analyzing relationship hallucinations in large vision-language models. In ICML.
OpenReview.net, 2024.

Junjie Xu, Zongyu Wu, Minhua Lin, Xiang Zhang, and Suhang Wang. LLM and GNN are comple-
mentary: Distilling LLM for multimodal graph learning. CoRR, abs/2406.01032, 2024a.

Xuhai Xu, Bingsheng Yao, Yuanzhe Dong, Saadia Gabriel, Hong Yu, James A. Hendler, Marzyeh
Ghassemi, Anind K. Dey, and Dakuo Wang. Mental-llm: Leveraging large language models for
mental health prediction via online text data. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol., 8(1):31:1–31:32, 2024b.

Wenqian Ye, Guangtao Zheng, Yunsheng Ma, Xu Cao, Bolin Lai, James M. Rehg, and Aidong
Zhang. Mm-spubench: Towards better understanding of spurious biases in multimodal llms.
CoRR, abs/2406.17126, 2024.

Charles Yu, Sullam Jeoung, Anish Kasi, Pengfei Yu, and Heng Ji. Unlearning bias in language mod-
els by partitioning gradients. In ACL (Findings), pp. 6032–6048. Association for Computational
Linguistics, 2023.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. In
ICML. OpenReview.net, 2024.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-
tuning for transformer-based masked language-models. In ACL (2), pp. 1–9. Association for
Computational Linguistics, 2022.

Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets LLM finetuning:
The effect of data, model and finetuning method. In ICLR. OpenReview.net, 2024a.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In ICLR. OpenRe-
view.net, 2023.

You Zhang, Jin Wang, Liang-Chih Yu, Dan Xu, and Xuejie Zhang. Personalized lora for human-
centered text understanding. In AAAI, pp. 19588–19596. AAAI Press, 2024b.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, and Zhi-Quan Luo. Adam can converge
without any modification on update rules. In NeurIPS, 2022.

Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. Improving recom-
mendation lists through topic diversification. In WWW, pp. 22–32. ACM, 2005.

A OVERVIEW OF EXISTING LLM UNLEARNING

• SISA (Bourtoule et al., 2021): It works by dividing the training dataset into partitions, allowing
for targeted unlearning of specific instances. The methodology typically involves the following
steps: data partitioning, retraining, and aggregation. However, a notable limitation of SISA is that
it does not preserve the model architecture and requires retraining of sub-models, which can lead
to increased computational costs.

• FairSISA (Kadhe et al., 2023): FairSISA improves upon SISA by incorporating fairness en-
hancements. It still relies on the paradigm of retraining sub-models to handle unlearning requests.
This approach inherently alters the model architecture and necessitates the retraining of the sub-
models, which can limit the flexibility and efficiency of the unlearning process.

• APA (Hu et al., 2024b): This study introduces the first exact unlearning approach for large lan-
guage model-based recommendation (LLMRec), focusing on the removal of personal data to com-
ply with privacy regulations. The Adapter Partition and Aggregation (APA) method is proposed,
which combines data partitioning with parameter aggregation to reduce inference latency while
maintaining performance. This approach enables efficient unlearning without incurring the ex-
tra costs typically associated with traditional methods. However,it can affect the integrity of the
adapter structure and necessitates retraining of sub-models.

• Gradient Ascent: It utilizes the gradient of the target instance to fine-tune the adapter by moving
in the direction of the negative gradient of the deleted data. However, this approach is not effective
for input modification and output correction tasks, as gradient ascent of target instances cannot
adequately handle these scenarios.

• EUL (Chen & Yang, 2023): This work introduces a lightweight approach for LLMs to efficiently
forget specific information without complete retraining. It incorporates unlearning layers into
transformer architectures, utilizing a selective teacher-student formulation, and employs a fusion
mechanism to combine multiple unlearning layers into a unified layer. This enables LLMs to
dynamically handle a sequence of deletion requests while maintaining model performance. The
introduction of adapters alters the model’s structure, and the KL divergence-based methods are
only effective for instance removal tasks, as obtaining a model trained on clean data is not feasible.

• E2URec (Chen & Yang, 2023): This method uses lightweight LoRA modules and a teacher-
student framework to forget specific data while maintaining performance. However, the extra
LoRA module changes the original model architecture, and the teacher-student framework re-
quires pretraining on both retained and forgotten data, which is intricate and cannot perform well
on other tasks like editing.

B MORE EXAMPLES OF VARIOUS UNLEARNING TASKS

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Instance Removal Case Study

Query Is CLM a stock or an ETF?

Response Cornerstone Strategic Value Fund, Inc. is a
diversified, closed-end management investment
company. It was incorporated in Maryland on May
1, 1987 and commenced investment operations on
June 30, 1987. The Fund’s shares of Common Stock
are traded on the NYSE MKT under the ticker
symbol “CLM.”[1] That essentially means that
CLM is a company all of whose assets are held as
t r a d a b l e f i n a n c i a l i n s t r u m e n t s O R
EQUIVALENTLY CLM is an ETF that was created
as a company in its own right. That it was founded
in the 80s, before the modern definition of ETFs
really existed, it is probably more helpful to think of
it by the first definition as the website mentions that
it is traded as common stock so its stock holds more
i n c o m m o n w i t h s t o c k t h a n E T F s . [1]
http://www.cornerstonestrategicvaluefund.com/

Figure 4: Instance Removal Case Study.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Query Modification Case Study

Query

This user has watched: The Rich Man's Wife [emb], Air

Force One [emb], Murder at 1600 [emb], Absolute

Power in the previous [emb]. Please predict the next

movie this user will watch. Choose the answer from the

following 10 movie titles: Face/Off [emb], Primal Fear

[emb], Ransom [emb], Men in Black [emb], Twelve

Monkeys [emb], Lone Star [emb], Mr. Holland‘s Opus

[emb], Jackie Chan’s First Strike [emb], Waiting for

Guffman [emb], The Long Kiss Goodnight [emb].

Answer:

Response Face/Off

This user has watched: The Rich Man's Wife [emb], Air

Force One [emb], Murder at 1600 [emb], Absolute

Power in the previous [emb]. Please predict the next

movie this user will watch. Choose the answer from the

following 10 movie titles: Face/Off [emb], Primal Fear

[emb], Ransom [emb], Men in Black [emb], Twelve

Monkeys [emb], Lone Star [emb], Mr. Holland‘s Opus

[emb], Jackie Chan’s First Strike [emb], Waiting for

Guffman [emb], The Long Kiss Goodnight [emb].

Answer:

After Query Modification

Instance Removal Case Study

Query

Given the user’s historical interactions, please determine

whether the user will enjoy the target new movie by

answering "Yes" or "No".

User’s liked items: GodFather.

User’s disliked items: Star Wars.

Target new movie: Iron Man

Response No.

Query

Figure 5: Instance Removal Case Study & Query Modification Case Study.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Response Correction Case Study

Query Is the elephant in red mask standing next to a tree in
green mask?

Response Yes

Response No

After Response Correction

Response Correction Case Study

Query

You are a helpful assistant that can answer questions for an
i m a g e . I w i l l p r o v i d e y o u 4 o p t i o n s . \ n R e s p o n s e
Format\nChoice: A single character from A, B, C, D.\nWhich
feature best indicates the identity of the object that has a floral
pattern and is placed on a chair?\nChoices:A. The object‘s soft
texture\nB. The indoor setting\nC. The wooden chair\nD. The
background clutter

Response D

Response A

After Response Correction

Figure 6: Response Correction Case Study.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C ALGORITHM FOR CALCULATING PARAMETER CHANGES

The algorithm for calculating the parameter changes ∆ΘTask can be found in Algorithm 1. This
algorithm accelerates the computation of parameter changes resulting from unlearning requests and
is applicable in large-scale data scenarios.

Algorithm 1 Calculate Parameter Changes ∆ΘTask

1: Input: target data, train data loader, old adapter, loss fun, n, Task, ∆init, ∆lr

2: Output: Parameter changes ∆ΘTask
3: if Task = IR then
4: b← 1

n

∑
(x,y)∈SIR

G(x, y)
5: else if Task = RC then
6: b← 1

n

∑
(x,y)∈SIM

G(x, y)− 1
n

∑
(x+δx,y)∈SIM

G(x+ δx, y)

7: else if Task = IM then
8: b← 1

n

∑
(x,y)∈SRC

G(x, y)− 1
n

∑
(x,y+δy)∈SRC

G(x, y + δy)

9: end if
10: ∆← initialize(∆init)
11: optimizer ← Adam([∆], lr = ∆lr)
12: while not converge do
13: data← get batch(train data loader)
14: batch loss← loss fun(data.x, data.y)
15: batch grad← ∇(batch loss, old adapter.parameters())
16: hvp← ∇(batch grad, old adapter.parameters(), output = b)
17: optimizer.zero grad()
18: funv value← 1

2 · ⟨hvp, p⟩ − ⟨b, p⟩
19: funv value.backward()
20: optimizer.step()
21: end while
22: Return Parameter changes ∆ΘTask = ∆

D EXPERIMENTAL DETAILS

D.1 THE TASKS FOR LLMS AND MLLMS

In this section, we briefly introduce the tasks used to validate LLMEraser on the unlearning tasks for
IR, QM, and RC, as discussed in Section 4. These tasks are designed to assess LLMEraser’s effec-
tiveness in handling unlearning scenarios, where specific instances or data are removed or corrected
when certain unlearning request arrives.

• For LLM4Rec unlearning tasks, our implementation is based on two representative PEFT meth-
ods: TallRec (Bao et al., 2023) for item rating, and LLaRA (Liao et al., 2024) for item ranking.
Specifically, we frame the rating tasks (TallRec) as a binary classification problem, predicting
whether or not the user prefers a target item. We employ AUC as the evaluation metric. For the
ranking tasks (LLaRA), which recommend items to users from a candidate set, we utilize HitRa-
tio@1 and ValidRatio to evaluate the relevance of recommended items among all candidates and
the proportion of effective responses separately.

• In terms of MLLMs unlearning tasks, we focus on hard hallucination mining, e.g., understanding
of relation (Wu et al., 2024) and spurious biases (Ye et al., 2024). We structure the evaluation
as binary or multi-choice classification problems, which aim to select the ground-truth from the
noisy labels. Specifically, for relation understanding, we follow (Wu et al., 2024) to present the
Recall, F1-Score, Precision, Classification accuracy, Yes ratio as the evaluation metrics. For spuri-
ous biases, we follow (Wu et al., 2024) to show the classification accuracy for 9 types of spurious
correlations, which is Background (BG), Texture and Noise (TN), Co-occurring Objects (CO),
Relative Size (RS), Colorization (Col.), Orientation (Ori.), Lighting and Shadows (LS), Perspec-
tive and Angle (PA), and Shape (Sha.).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 7: The hyperparameter settings and details for PEFT on each dataset or task.

Method / Dataset LoRA r LoRA
alpha

LoRA
dropout Target modules #Params #Trainable

params
Percentage of

trainable params

TALLRec 8 16 0.05 ’q proj’,’v proj’ 6.7× 1010 4.2× 107 0.06%

LLaRA 8 16 0.10

’k proj’, ’v proj’,
’q proj’, ’o proj’,

’gate proj’,
’up proj’,

’down proj’

6.7× 1010 1.9× 108 0.30%

MM-SPUBENCH 8 16 0.05

’k proj’, ’v proj’,
’q proj’, ’o proj’,

’gate proj’,
’up proj’,

’down proj’

7.1× 1010 4.1× 108 0.58%

R-BENCH 8 16 0.05

’k proj’, ’v proj’,
’q proj’, ’o proj’,

’gate proj’,
’up proj’,

’down proj’

7.1× 1010 4.1× 108 0.58%

Datasets: Our experimental datasets for LLM4Rec unlearning tasks include three commonly used
recommendation datasets: BookCrossing (Ziegler et al., 2005), MovieLens (Harper & Konstan,
2016), and LastFM (Cantador et al., 2011). We follow the data preprocessing and dataset partitioning
as described in (Bao et al., 2023) and (Liao et al., 2024). For MLLMs unlearning tasks, we utilize
MMSpuBench (Ye et al., 2024), and R-Bench (Wu et al., 2024) with the representative masked
instances for evaluation, partitioning the data is into training (60%), validation (20%), and testing
(20%) set.

Baselines: We carefully select the following methods for comparison. Original: The original model
without unlearning modifications. Retrain: It retrains the adapters using the dataset after correc-
tion or removal. SISA (Sekhari et al., 2021): It divides the training data into disjoint shards and
subsequently retrains sub-models (adapters) associated with the shards containing unlearning data.
RecEraser (Chen et al., 2022): An enhancement of SISA, refining the aggregation strategy and
taking into account collaborative signals during data partitioning. Gradient Ascent: It finetunes
adapters using the reverse gradients of the deleted data. E2URec (Wang et al., 2024): An approach
to implement instance removal based on KL divergence within a teacher-student framework.

D.2 IMPLEMENTATION DETAILS

All implementations are performed using Python 3.8 and PyTorch Lightning 1.8.6. All methods are
run on a single Nvidia A100 GPU.

For R-Bench, the learning rate is set to 1e − 4, with a batch size of 16. The MLP model uses a
learning rate of 2e− 5. During the unlearning phase, the parameters are specified as: ∆lr = 1e− 5
and ∆init = 1e − 5. In MMSPubench, the unlearning parameters are specified as: ∆lr = 2e − 5
and ∆init = 1e− 5.

For the TallRec model, we selected optimal training parameters based on the original work. During
the unlearning phase, the parameters are configured as: ∆lr = 5e− 5 and ∆init = 5e− 3.

For the LLARA model, we selected optimal training parameters based on the original work. For the
MovieLens dataset, the parameters are set as follows: ∆lr is 1e − 4 and ∆init is 1e − 5. For the
LastFM dataset, the parameters are configured to ∆lr at 1e− 5 and ∆init at 1e− 6.

The hyperparameter settings and details for PEFT on each dataset or task can be found in Table 7.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E ESTIMATION ERRORS ANALYSIS OF LLMERASER

The approximation errors in LLMEraser consist of two primary components: first, the errors in-
troduced by the Taylor expansion approximation in the derivation of the influence function, where
high-order terms are neglected; and second, the errors arising from the new algorithm proposed in
Section 3.3 in our manuscript for solving the inverse Hessian-vector product. We will conduct the
error analysis in two parts accordingly.

E.1 ERRORS ANALYSIS FOR TAYLOR EXPANSION APPROXIMATION

Without loss of generality, we consider approximation error in Equation 6 of our submitted
manuscript. In other words, we will analyze the error ∥∆Θ(ϵ) + ϵH−1

Θ̂
∇ΘL((x, y); Θ̂)∥.

The derivation below follows from (Zhang et al., 2022), where we assume that HΘ̂ is invertiable.
As we discussed in our manuscript, this can be guaranteed if the second-order sufficient condition
holds at Θ̂.

Since Θ̂new(ϵ) is an optimal solution to the perturbed loss function defined in Equation 5 in the
submitted manuscript, we have

∇ΘR(Z; Θ̂new(ϵ)) + ϵ∇ΘL((x, y); Θ̂new(ϵ)) = 0.

Since Θ̂new(ϵ) ≈ Θ̂ when ϵ is sufficiently small, it follows from the Taylor expansion that

0 = [∇ΘR(Z; Θ̂) + ϵ∇ΘL((x, y); Θ̂)] + [HΘ̂ + ϵ∇2
ΘL((x, y); Θ̂)]∆Θ(ϵ) + o(∥∆Θ(ϵ)∥).

Since Θ̂ is an optimal solution to the loss function defined in Equation 3 in the submitted manuscript,
we have∇ΘR(Z; Θ̂) = 0. Therefore,

∆Θ(ϵ) = −[HΘ̂ + ϵ∇2
ΘL((x, y); Θ̂)]−1(ϵ∇ΘL((x, y); Θ̂) + o(∥∆Θ(ϵ)∥).

Since Θ̂ is an optimal solution to the loss function defined in Equation 3 in the submitted manuscript,
HΘ̂ is positive semidefinite. Therefore, the assumption that HΘ̂ is invertiable implies that HΘ̂ is
positive definte. Therefore, we know that

∆Θ(ϵ) = −H−1

Θ̂
(ϵ∇ΘL((x, y); Θ̂) + o(|ϵ|)∥∆Θ(ϵ)∥+ o(∥∆Θ(ϵ)∥).

Therefore, as ϵ→ 0,

∥∆Θ(ϵ) +H−1

Θ̂
(ϵ∇ΘL((x, y); Θ̂)∥ = o(|ϵ|) + o(∥∆Θ(ϵ)∥)→ 0.

In our applications, we know that ϵ = O(1/n), where n is the number of training samples. There-
fore, ϵ should be very small and our approximation to ∆Θ(ϵ) by the influence function should be
accurate for applications with a very large training datasets.

E.2 ERRORS ANALYSIS FOR OUR PROPOSED ALGORITHM

For our proposed Algorithm, the estimation errors analysis is as follows. For a given (approximate)
solution ∆̃ to the Equation 12 in our manuscript, the error is defined as

err(∆̃) := ∥∇2
ΘR(Z; Θ̂)∆̃− b∥ = ∥∇F (∆̃)∥,

where the function F (·) is defined in Equation 14 in the submitted manuscript. Therefore, the
theoretical analysis of err(∆̃) is equivalent to the error analysis of ∥∇F (∆t)∥ for the sequence
{∆t}t≥1 generated by the optimization algorithm for solving the problem Equation 9, Equation 10,
and Equation 11 in the submitted manuscript.

Since we use ADAM as a default optimizer for solving Equation 9, Equation 10, and Equation 11,
we analyze the error ∥∇F (∆t)∥ for the sequence {∆t}t≥1 generated by ADAM. It follows from
(Zhang et al., 2022) that ADAM can converge without modifications if the hyper-parameters are
appropriately chosen (say the default choice β1 = 0.9, β2 = 0.999).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 8: Memory usage (measured in megabytes, MB) for different LoRA ranks (8, 16, 32) on the
QM task, using LLaRA as the LLM4Rec model on the LastFM dataset, where 10% of users have
items replaced with noisy interactions.

Method LoRA r = 8 LoRA r = 16 LoRA r = 32

Retrain 33040 MB 33868 MB 34128 MB
SISA 33040 MB 33868 MB 34128 MB

LLMEraser (Ours) 30760 MB 31386 MB 31834 MB

Table 9: Experimental results on the QM task for different LoRA ranks (8, 16, 32), using LLaRA
as the LLM4Rec model on the LastFM dataset, where 10% of users have items replaced with noisy
interactions. ”Corrupted” refers to the model trained with the noisy data.

Method LoRA r = 8 LoRA r = 16 LoRA r = 32
HitRatio@1 ValidRatio HitRatio@1 ValidRatio HitRatio@1 ValidRatio

Retrain 0.4508 1.0000 0.4417 0.9836 0.4215 0.9918
Corrupted 0.4344 0.9918 0.4098 1.0000 0.4016 1.0000

LLMEraser 0.4426 1.0000 0.4344 1.0000 0.4180 1.0000

Moreover, under reasonable assumptions (see (Zhang et al., 2022) for more details), it holds that

min
km≤t≤T

E∥∇F (∆t)∥2 = O(log T/
√
T) = Õ(1/

√
T).

Since for sufficiently large T , log T < T q for any q > 0, we know we can achieve

min
km≤t≤T

E∥∇F (∆t)∥2 ≤ ϵ

for small ϵ > 0 in Õ(ϵ−2) ≈ O(ϵ−2) iterations. This proof also ensures the convergence of the
algorithm proposed in Section 3.3.

F DISCUSSION ABOUT THE EFFICIENCY OF LLMERASER

Our proposed algorithm in Section 3.3 for computing the parameter changes not only accelerates
the calculation of parameter changes but also significantly reduces GPU memory consumption. As
highlighted in our paper, while Conjugate Gradients (CG) is an effective method for computing
parameter changes, it requires full-batch computation (Agarwal et al., 2016), which is infeasible
for LLMs. Our new algorithm overcomes this limitation, making it practical to compute adapter’s
parameter changes in the context of LLMs.

Specifically, LLMEraser formulates the parameter updates as an inverse Hessian-vector product
(Equation 9, Equation 10, and Equation 11 in our manuscript). Importantly, although the inverse
Hessian appears in the formulation, it does not require explicit computation or inversion of the
Hessian matrix. Directly calculating the inverse Hessian-vector product has a time complexity of
O(p3) and a space complexity of O(p2), as the Hessian matrix needs to be stored—making it highly
memory-intensive.

Our method transforms the computation of the inverse Hessian-vector product into the problem of
solving for the Hessian-vector product, enabling efficient resolution through mini-batch algorithms.
The Hessian-vector product, if computed directly via the full Hessian matrix multiplication, would
have a time and space complexity of O(p2). However, using HVP (Hessian-free methods), we avoid
the explicit computation and storage of the Hessian matrix, reducing both time and space complexity
to O(p) (Pearlmutter, 1994). By further leveraging mini-batch optimization for Equation 12 in the
manuscript, LLMEraser achieves a space complexity of O(p), ensuring its scalability.

The results for the LastFM dataset using the LLaRA backbone with LoRA ranks of 8, 16, and 32
are shown in the Table 9.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 10: Execution time (measured in seconds) for different LoRA ranks (8, 16, 32) on the QM
task, using LLaRA as the LLM4Rec model on the LastFM dataset, where 10% of users have items
replaced with noisy interactions.

Method LoRA r = 8 LoRA r = 16 LoRA r = 32

Retrain 1.68× 104 1.69× 104 1.69× 104

LLMEraser (Ours) 1.50× 103 1.53× 103 1.56× 103

Table 11: Execution time (measured in seconds) of the IR task, using TALLRec as the LLM4Rec
model on the BookCrossing dataset, where 5% of user interaction records are deleted.

Retrain Gradient Ascent E2URec LLMEraser (Ours)

Time (s) 5.6× 103 2.3× 103 2.4× 102 4.9× 101

We can observe that LLMEraser effectively reduces the negative impact of noisy data and brings a
significant utility gain. The HitRatio@1 improves by an average of 4.9%, and the performance is
comparable to that of Retrain. This demonstrates that LLMEraser can effectively forget and correct
the adverse effects caused by noisy data.

Regarding GPU memory usage, we measure the GPU utilization of the LLaRA backbone with LoRA
rank sets to 8, 16, and 32. The statistical information and the experimental results (with memory
usage measured in megabytes (MB)) are shown in Table 8.

The GPU utilization of SISA is identical to that of Retrain because SISA (Kwak et al., 2017) ef-
fectively requires retraining all parameters (We report the memory usage required to train a single
shard). Similarly, fine-tuning-based methods such as gradient descent also necessitates updating all
parameters. The backbone of the LLM we used is LLaMA2-7B (Touvron et al., 2023b). Our method
is highly memory-efficient and can be executed on a single A40 GPU.

The runtime results for LoRA with ranks 8, 16, and 32 on the LastFM dataset are shown in Ta-
ble 10. The evaluation is measured in seconds (s). For TallRec, the execution times in the IR task is
presented in Table 11.

In summary, the time and space complexity of LLMEraser are both O(p), where p represents the
number of parameters. This indicates that LLMEraser is highly efficient in terms of both time and
space, as its performance scales linearly with the number of parameters. This efficiency makes
LLMEraser a suitable choice for real-world applications where computational resources and time
are critical considerations.

G PERFORMANCE OF LLMERASER ON THE GENERATIVE TASK

To further demonstrate the generalization ability of LLMEraser, we conduct additional experiments
on other tasks, including dialogue summarization and question-answering tasks.

G.1 RESULTS OF THE INSTANCE REMOVAL (IR) TASK

For Instance Removal (IR) task, we conduct experiments on Alpaca-LoRA for the instruction tuning
task. The backbone of LLM is LLaMA2-7B (Touvron et al., 2023b). We remove 5% of the training
samples and evaluate the performance of the original model, retrained model, and LLMEraser on
the deleted data using ROUGE scores (Chen et al., 2021) as the evaluation metric. The experimental
results are shown in Table 12.

We can observe that LLMEraser closely matches the performance of Retrain. This is attributed to its
direct estimation of parameter changes between the retrained model and the original model, enabling
accurate calculations of these changes.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 12: Experimental results on the instance removal task with 5% of the training data removed,
using Alpaca-LoRA for the instruction tuning task.

ROUGE-1 ROUGE-2 ROUGE-L

Original 44.23 27.09 34.88
Retrain 39.84 20.40 31.78

LLMEraser 39.55 20.17 31.63

Table 13: Experimental results on the QM and RC tasks, using DIALOGSUM dataset. “50% Dia-
logue Distortion” refers to randomly removing dialogue tokens for 50% of the samples, while “20%
Summary Distortion” refers to randomly removing summary tokens for 20% of the samples.

ROUGE-1 ROUGE-2 ROUGE-L

50% Dialogue
Distortion

Retrain 36.59 12.78 29.56
Corrupted 34.09 11.61 26.66

LLMEraser (Ours) 35.92 12.22 28.98

20% Summary
Distortion

Retrain 36.59 12.78 29.56
Corrupted 35.72 11.67 29.09

LLMEraser (Ours) 36.34 12.49 29.45

G.2 RESULTS OF THE QUERY MODIFICATION (QM) AND RESPONSE CORRECTION (RC)
TASKS

For Query Modification (QM) and Response Correction (RC) tasks, we supplement experimental
results on the DIALOGSUM (Chen et al., 2021) dataset for dialogue summarization. The backbone
of the LLM is FLAN-T5 Base (Raffel et al., 2020). Specifically, we apply perturbations to 50% of
the samples in the dialogue and 20% of the samples in the summary, and use LLMEraser to correct
the corrupted data. The experimental results are presented in Table 13.

For MLLM, we conduct experiment on the mm-vet-v2 dataset for integrated capability evaluation
task (Yu et al., 2024). The data format of mm-vet-v2 is actually in the form of text-based question-
answer pairs. The backbone of MLLM is LLaVA 1.5-7B. Specifically, we randomly select 80%
of mm-vet-v2 samples as training set, and employ the left 20% samples for evaluation. We apply
perturbations to 50% of the training samples and evaluated the performance of the retrained model,
corrupted model and LLMEraser on the testing set, where LLMEraser corrects the corrupted data.
Here are the experimental results on the Query Modification (QM) task, where we utilize “rec, gen,
ocr, spat, know” capacities for evaluation, and report the average results. All Experimental scores
are calculated with gpt-4-turbo by following (Yu et al., 2024). The results are presented in Table 14.

LLMEraser provides a substantial utility improvement to the model compared to the corrupted base-
line, effectively mitigating the negative impact of noisy data. On the LLM dialogue summarization
task, LLMEraser achieves an average improvement of 6.45% on QM tasks and 3.34% on RC tasks
compared to the corrupted baseline. For MLLM QA tasks, LLMEraser achieves an average improve-
ment of 12.35% on QM task. Furthermore, LLMEraser’s performance is close to that of Retrain,
highlighting its effectiveness in correcting inaccurate information.

H RELATED WORK

H.1 LARGE LANGUAGE MODELS

Recent advancements in natural language processing (NLP) (Nam et al., 2024; Jin et al., 2024) have
been significantly driven by the development of pretrained language models and Large Language
Models. The introduction of models like BERT (Devlin et al., 2019) and GPT-2 (Radford et al.,
2019) marked a pivotal shift in leveraging large-scale unsupervised pretraining, enabling superior
performance across various NLP tasks through fine-tuning. The scaling of language models led to
the emergence of LLMs such as GPT-3 (Brown et al., 2020) and PaLM (Chowdhery et al., 2023),

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 14: Experimental results on the QM tasks, using LLaVA 1.5-7B as the backbone model on the
mm-vet-v2 dataset.

rec gen ocr spat know Average

Retrain 37.8 28.9 28.3 37.7 21.6 30.9
Corrupted 29.4 23.0 20.7 34.1 14.1 24.3

LLMEraser (Ours) 33.1 27.0 21.5 37.2 17.5 27.3

which have pushed the boundaries of language understanding and generation. These models, with
billions of parameters, are capable of performing complex reasoning and handling diverse tasks with
minimal instruction.

Recent research has explored parameter-efficient fine-tuning techniques, which adapt large mod-
els to specific applications without requiring extensive computational resources. Techniques like
Adapter modules (Houlsby et al., 2019) and Low-Rank Adaptation (LoRA) (Hu et al., 2022) have
gained popularity for their efficiency and effectiveness in maintaining performance while reducing
the number of trainable parameters. Furthermore, instruction tuning (Liu et al., 2023a; Tang et al.,
2024) using domain-specific data has emerged as a key strategy to enhance model performance in
specialized contexts. Works by Ouyang et al. (2022) and Dodge et al. (2020) illustrate how tai-
loring models to specific tasks through targeted instruction can significantly improve their utility,
particularly in complex domains, demonstrating the importance of context and relevance in model
training.

LLMs have found extensive applications in various downstream tasks, demonstrating their versatility
across domains such as natural language processing, information retrieval, and knowledge graph
augmentation (Hu et al., 2024a; Zhang et al., 2024a; Xu et al., 2024b). For instance, LLMs are
employed to enhance the accuracy of query-based systems by leveraging their ability to understand
and generate contextually relevant responses, improving user experience in search applications (Liu
et al., 2024b; Shang & Huang, 2024). Additionally, they are utilized in graph analytics, enabling
complex reasoning tasks and facilitating the extraction of insights from structured data (Chen et al.,
2023; Xu et al., 2024a). The adaptability of LLMs through prompt engineering further supports
their deployment in specific use cases, allowing for tailored outputs that meet diverse requirements
(Arawjo et al., 2024; Cain, 2024).

H.2 LARGE LANGUAGE MODELS UNLEARNING

The concept of unlearning in Large Language Models has garnered considerable attention as con-
cerns over data privacy and model integrity have intensified. In-context unlearning, proposed by
Pawelczyk et al. (2023), allows the selective removal of data points by supplying flipped labels
during inference, effectively maintaining performance while unlearning specific information. Ad-
ditionally, Quark by Lu et al. (2022) employs a reinforcement learning framework to control and
reduce undesirable behaviors, enhancing text generation without extensive retraining.

Chen & Yang (2023) introduce a lightweight unlearning method that integrates unlearning layers
into transformer architectures, facilitating efficient data removal. Knowledge Unlearning by Jang
et al. (2023) demonstrates that targeted gradient ascent can effectively forget sensitive informa-
tion, surpassing traditional methods in performance retention. The technique proposed by Eldan &
Russinovich (2023) facilitates the removal of specific facts related to the Harry Potter series while
preserving the model’s overall performance.

Other approaches, such as the Partitioned Gradient Update (PGU) method by Yu et al. (2023), aim to
reduce social biases effectively. Collectively, these studies underline the significance of unlearning
in LLMs, paving the way for safer, more responsible AI applications.

26

	Introduction
	Preliminary
	Instruction Tuning
	Parameter-efficient Fine-tuning
	Influence Function

	Method
	Taxonomy of LLM Unlearning Tasks
	LLMEraser
	A New Algorithm for Computing Parameter Changes
	The workflow of LLMEraser

	Experiment
	Experimental Setups
	Results Analysis for Various Unlearning Tasks (RQ1)
	Results Analysis on Instance Removal
	Results Analysis on Query Modification & Response Correction

	Results analysis for Different Unlearning Ratios (RQ2)
	Results analysis for Unlearning Efficiency (RQ3)

	Limitations
	Conclusion And Future Work
	Overview of existing LLM unlearning
	More Examples of various unlearning tasks
	Algorithm for calculating parameter changes
	Experimental Details
	The tasks for LLMs and MLLMs
	Implementation details

	Estimation errors analysis of LLMEraser
	Errors analysis for Taylor expansion approximation
	Errors analysis for our proposed algorithm

	Discussion about the efficiency of LLMEraser
	Performance of LLMEraser on the Generative Task
	Results of the Instance Removal (IR) task
	Results of the Query Modification (QM) and Response Correction (RC) tasks

	Related Work
	Large Language Models
	Large Language Models Unlearning

