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ABSTRACT

The impressive success of style-based GANs (StyleGANs) in high-fidelity image
synthesis has motivated research to understand the semantic properties of their
latent spaces. Recently, a close relationship was observed between the semanti-
cally disentangled local perturbations and the local PCA components inW-space.
However, understanding the number of disentangled perturbations remains chal-
lenging. Building upon this observation, we propose a local dimension estimation
algorithm for an arbitrary intermediate layer in a pre-trained GAN model. The
estimated intrinsic dimension corresponds to the number of disentangled local
perturbations. In this perspective, we analyze the intermediate layers of the map-
ping network in StyleGANs. Our analysis clarifies the success of W-space in
StyleGAN and suggests a method for finding an alternative. Moreover, the in-
trinsic dimension estimation opens the possibility of unsupervised evaluation of
global-basis-compatibility and disentanglement for a latent space. Our proposed
metric, called Distortion, measures an inconsistency of intrinsic tangent space on
the learned latent space. The metric is purely geometric and does not require any
additional attribute information. Nevertheless, the metric shows a high correlation
with the global-basis-compatibility and supervised disentanglement score. Our
work is the first step towards selecting the most disentangled latent space among
various latent spaces in a GAN without attribute labels.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have achieved remarkable
success in generating realistic high-resolution images (Karras et al., 2018; 2019; 2020b; 2021; 2020a;
Brock et al., 2018). Nevertheless, understanding how GAN models represent the semantics of images
in their latent spaces is still a challenging problem. To this end, several recent works investigated
the disentanglement (Bengio et al., 2013) properties of the latent space in GAN (Goetschalckx et al.,
2019; Jahanian et al., 2019; Plumerault et al., 2020; Shen et al., 2020). In this work, we concentrate
on finding a disentangled latent space in a pre-trained model. A latent space is called (globally)
disentangled if there is a bijective correspondence between each semantic attribute and each axis of
latent space when represented with the optimal basis. (See the appendix for detail.)

The style-based GAN models (Karras et al., 2019; 2020b) have been popular in previous studies for
identifying a disentangled latent space in a pre-trained model. First, the space of style vector, called
W-space, was shown to provide a better disentanglement property compared to the latent noise space
Z (Karras et al., 2019). After that, several attempts have been made to discover other disentangled
latent spaces, such asW+-space (Abdal et al., 2019) and S-space (Wu et al., 2020). However, their
better disentanglement was assessed by the manual inspection (Karras et al., 2019; Abdal et al., 2019;
Wu et al., 2020) or by the quantitative scores employing a pre-trained feature extractor (PPL (Karras
et al., 2019)) or an attribute annotator (Separability (Karras et al., 2019) and DCI metric (Eastwood
& Williams, 2018; Wu et al., 2020)). The manual inspection is vulnerable to sample dependency,
and the quantitative scores depend on the pre-trained models and the set of selected target attributes.
Therefore, we need an unsupervised quantitative evaluation scheme for the disentanglement of latent
space that does not rely on pre-trained models.

In this paper, we investigate the semantic property of a latent space by analyzing its geometrical
property. In this regard, we propose a local intrinsic dimension estimation scheme for a learned
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intermediate latent space in pre-trained GAN models. The local intrinsic dimension is the number
of dimensions required to properly approximate the latent space locally (Fig 1a). We discover this
intrinsic dimension by estimating the robust rank of Jacobian of the subnetwork. The estimated
dimension is interpreted as the number of disentangled local perturbations. Furthermore, the intrinsic
dimension of latent manifold leads to an unsupervised quantitative score for the global disentangle-
ment property. The experiments demonstrate that our proposed metric shows a high correlation with
the global-basis-compatibility and supervised disentanglement score. (The global-basis-compatibility
will be rigorously defined in Sec 4.) Our contributions are as follows:

1. We propose a local intrinsic dimension estimation scheme for an intermediate latent space in
pre-trained GAN models. The scheme is derived from the rank estimation algorithm applied
to the Jacobian matrix of a subnetwork.

2. We propose a layer-wise global disentanglement score, called Distortion, that measures the
inconsistency of intrinsic tangent space. The proposed metric shows a high correlation with
the global-basis-compatibility and supervised disentanglement score.

3. We analyze the intermediate layers of the mapping network through the proposed Distortion
metric. Our analysis elucidates the superior disentanglement ofW-space compared to the
other intermediate layers and suggests a criterion for finding a similar-or-better alternative.

2 RELATED WORKS

Style-based Generator Recently, GANs with style-based generator architecture (Karras et al.,
2019; 2020b; 2021; Sauer et al., 2022) have achieved state-of-the-art performance in realistic image
generation. In conventional GAN architecture, such as DCGAN (Radford et al., 2016) and ProGAN
(Karras et al., 2018), the generator synthesizes an image by transforming a latent noise with a sequence
of convolutional layers. On the other hand, the style-based generator consists of two subnetworks:
mapping network f : Z → W and synthesis network g : Rn0 × WL → X . The synthesis
network is similar to conventional generators in that it is composed of a series of convolutional layers
{gi}i=1,··· ,L. The key difference is that the synthesis network takes the learned constant feature
y0 ∈ Rn0 at the first layer g0, and then adjusts the output image by injecting the layer-wise styles w
and noise (Layer-wise noise is omitted for brevity.):

yi = gi(yi−1,w) with w = f(z) for i = 1, · · · , L, (1)

where the style vector w is attained by transforming a latent noise z via the mapping network f .

Understanding Latent Semantics. The previous attempts to understand the semantic property
of latent spaces in StyleGANs are categorized into two topics: (i) finding more disentangled latent
space in a model; (ii) discovering meaningful perturbation directions in a latent space corresponding
to disentangled semantics. Several studies on (i) suggested various disentangled latent spaces in
StyleGAN models, for example,W (Karras et al., 2019),W+ (Abdal et al., 2019), PN (Zhu et al.,
2020), and S-space (Wu et al., 2020). However, the superiority of the newly proposed latent space
was demonstrated only through comparison with the previous latent spaces, not by selecting the best
one among all candidates. Moreover, the comparison was conducted by manual inspections (Karras
et al., 2019; Abdal et al., 2019; Wu et al., 2020) or by quantitative metrics relying on pre-trained
models (Karras et al., 2019; Wu et al., 2020). Also, the previous works on (ii) are classified into
local and global methods. The local methods find sample-wise perturbation directions (Ramesh
et al., 2018; Patashnik et al., 2021; Abdal et al., 2021; Zhu et al., 2021; Choi et al., 2022b). On
the other hand, the global methods search layer-wise perturbation directions that perform the same
semantic manipulation on the entire latent space (Härkönen et al., 2020; Shen & Zhou, 2021; Voynov
& Babenko, 2020). Throughout this paper, we refer to these local methods as local basis and
these global methods as global basis. GANSpace (Härkönen et al., 2020) showed that the principal
components obtained by PCA can serve as the global basis. SeFa (Shen & Zhou, 2021) suggested the
singular vectors of the first weight parameter applied to latent noise as the global basis. These global
basis showed promising results, but they were successful in a limited area. Depending on the sampled
latent variables, these methods exhibited limited semantic factorization and sharp degradation of
image fidelity Choi et al. (2022b;a). In this regard, (Choi et al., 2022b) suggested the need for
diagnosing a global-basis-compatibility of latent space. Here, the global-basis-compatibility means
how well the optimal global basis can work on the target latent space.
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(b) Singular Value Distribution

Figure 1: (a) Overview of Local Dimension Estimation. Our goal is to find dimension k such that
the k-dimensional submanifoldMk

w can properly describe the local latent manifoldMw ⊆ RdM .
(b) Singular Value Distribution of Jacobian matrix for each subnetwork of the mapping network in
StyleGAN2. As the layer gets deeper, many of the singular values are close to zero. This supports
our claim of pruning latent dimension by interpreting the near-zero singular values as noise.

Local Basis Choi et al. (2022b) proposed an unsupervised method for finding local semantic
perturbations based on the local geometry, called Local Basis (LB). Throughout this paper, we denote
Local Basis as LB to avoid confusion with the general term ”local basis” in the previous paragraph.
Assume the support Z of input prior distribution p(z) is the entire Euclidean space, i.e., Z = RdZ , for
example, Gaussian prior p(z) = N (0, I). We denote the target latent space byM = f(Z) ⊆ RdM

and refer to the subnetwork between them by f . Note that the target latent spaceM is defined as an
image of the trained subnetwork f . Hence, we callM the learned latent space or the learned latent
manifold following the manifold interpretation of Choi et al. (2022b).

LB is defined as the ordered basis of tangent space TwMk
w at w = f(z) ∈M for the k-dimensional

local approximating manifoldMk
w. Here,Mk

w ⊆M indicates a k-dimensional submanifold ofM
that approximatesM around w (Fig 1a) with k ≤ dM:

Mk
w ≈Mw where Mw = {f (zϵ) | ∥zϵ − z∥ < ϵ} ⊆ M. (2)

Using the fact thatM = f(Z), the local approximating manifoldMk
w can be discovered by solving

the low-rank approximation problem of dfz, i.e., the Jacobian matrix∇zf of f :

minimizeL ∥dfz − L∥2, where rank(L) ≤ k. (3)

The analytic solution of this low-rank approximation problem is obtained in terms of Singular Value
Decomposition (SVD) by Eckart–Young–Mirsky Theorem (Eckart & Young, 1936). From that,Mk

w
and the corresponding LB are given as follows: For the i-th singular vector uz

i ∈ RdZ , vw
i ∈ RdM ,

and i-th singular value σz
i ∈ R of dfz with σz

1 ≥ · · · ≥ σz
n,

dfz(u
z
i ) = σz

i · vw
i for ∀i, LB(w = f(z)) = {vw

i }1≤i≤n, (4)

Mk
w =

{
f

(
z+

∑
i

ti · uz
i

)
| ti ∈ (−ϵi, ϵi), for 1 ≤ i ≤ k

}
. (5)

Note that the tangent space ofMk
w is spanned by the top-k LB, i.e. TwMk

w = span{vw
i : 1 ≤

i ≤ k}. Therefore, traversing along LB is guaranteed to stay close to the latent manifold, thereby
providing a strong robustness of image quality. However, Choi et al. (2022b) did not provide an
estimate on the number of meaningful perturbations. Since LB is defined as singular vectors, Choi
et al. (2022b) presents the candidates as much as the ambient dimension. In this regard, we propose
the local dimension estimation that can refine these candidates up to 90%. Moreover, this local
dimension estimation leads to an unsupervised global disentanglement metric (Sec 4).

3 LATENT DIMENSION ESTIMATION

In this section, we propose a local dimension estimation scheme for a learned latent manifold in a
pre-trained GAN model. Following the work of Choi et al. (2022b), the estimated local dimension at
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w ∈M corresponds to the number of local semantic perturbations from w. The proposed scheme is
based on the rank estimation algorithm (Kritchman & Nadler, 2008) applied to the differential of
subnetwork dfz. Then, we evaluate the validity of the estimated local dimension. In this section, our
analysis of learned latent manifold is focused on the intermediate layers in the mapping network of
StyleGAN2 (Karras et al., 2020b) trained on FFHQ (Karras et al., 2019). However, the proposed
scheme can be applied to any z-differentiable intermediate layers for an input latent noise z.

3.1 METHOD

Throughout this work, we follow the notation presented in Sec 2. Consider a target latent spaceM
given by a subnetwork f , i.e.,M = f(Z). Our goal is to estimate the intrinsic local dimension of
the learned latent manifoldM around w = f(z). Geometrically, this intrinsic dimension represents
the dimension required to locally describe the major variations of the manifold. The intrinsic local
dimension is discovered by interpreting the differential dfz as a noisy linear map and finding its
intrinsic rank. The correspondence between the local dimension and rank of dfz is described in Eq 5
because the rank of a linear map is the same as the number of singular vectors with non-zero singular
values. Note that the matrix representation of dfz is a Jacobian matrix (∇zf)(z).

Motivation Before presenting our dimension estimation algorithm, we provide motivation for intro-
ducing the lower-dimensional approximation toM. Figure 1b shows the singular value distribution
of Jacobian matrices evaluated for the subnetworks of the mapping network in StyleGAN2. Last
layer i in Fig 1b denotes the subnetwork from the input noise space Z to the i-th fully connected
layer. The distribution of singular values {σz

i }i gets monotonically sparser as the subnetwork gets
deeper. In particular,W-space, i.e., Last layer 8, is extremely sparse as much as σz

150/σ
z
1 ≈ 0.005.

Therefore, it is reasonable to prune the singular values with negligible magnitude and consider the
lower-dimensional approximation of the learned latent manifold.

Pseudorank Algorithm The intrinsic rank estimation algorithm distinguishes the large meaningful
components and the small noise-like components given the singular values {σz

i }i of (∇zf)(z).
The Pseudorank algorithm (Kritchman & Nadler, 2008) determines the number of meaningful
components based on the theoretical results from the random matrix theory literature. Assume the
isotropic Gaussian noise on the Jacobian (∇zf)(z) ∈ RdM×dZ :

(∇zf)(z) = L(z) + σ · (ϵ1, · · · , ϵdM)
⊺ with ϵi ∼ N (0, IdZ ), (6)

where L(z) denotes the denoised low-rank representation of (∇zf)(z). Then, taking the expectation
over the noise distribution gives:

Eϵ [(∇zf)
⊺(z) · (∇zf)(z)] = L⊺(z) · L(z) + σ2 · IdZ . (7)

The eigenvalues of [(∇zf)
⊺(z) · (∇zf)(z)] are the squares of sigular values {(σz

i )
2}i, and the noise

covariance term σ2 · IdZ increases all eigenvalues by σ2. This observation explains our intuition
that large singular values correspond to signals and small ones correspond to noise. Therefore,
determining the intrinsic rank of (∇z)f(z) is closely related to the largest eigenvalue λ1 of the
empirical covariance matrix S = 1

dZ

∑
i ϵi · ϵ

⊺
i , which is the threshold for distinguishing between

signal and noise. The Pseudorank algorithm is based on the theoretical results of the asymptotic
behavior of λ1. The distribution of the largest eigenvalue λ1 of the empirical covariance matrix for
n-samples of N (0, Ip) converges to a Tracy-Widom distribution Fβ of order β = 1 for real-valued
observations (Johnstone, 2001) (See the appendix for detail.):

P
(
λ1 < σ2 (µn,p + s · σn,p)

)
→ Fβ(s) as n, p→∞ with c = p/n fixed. (8)

Here, note that we do not know the true noise level σ in Eq 6 a priori. Using the above theoretical
results, the Pseudorank algorithm applies a sequence of nested hypothesis tests. Given the Jacobian
(∇zf)(z) ∈ RdM×dZ and let p = min(dM, dZ). Then, for k = 1, 2, · · · , p− 1,

H0 : rank at least k vs. H1 : rank at most (k − 1) (9)

For each k, the hypothesis test consists of two parts. First, the noise level σest(k) of (∇zf)(z) should
be estimated to perform a hypothesis test. The Pseudorank (Kritchman & Nadler, 2008) suggests
the consistent noise estimate algorithm under the assumption that λk+1, λk+2 · · · , λp are the noise
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components where λi = (σz
i )

2. Second, we test whether λk belongs to the noise components based
on the corresponding Tracy-Widom distribution as follows:

λk ≤ σ2
est(k) (µn,p−k + s(α) · σn,p−k) , (10)

where α denotes a chosen confidence level. We chose α = 0.1 in our experiments. The above test is
repeated until Eq 10 is satisfied. Then, the estimated rank K becomes K = k − 1.

Preprocessing The Pseudorank algorithm supposes the isotropic Gaussian noise on the Jacobian
matrix. However, even considering the randomness of empirical covariance, the observed singular
values of Jacobian matrix are too sparse (σmin/σmax ≈ 10−9). Hence, the isotropic Gaussian
assumption leads to the underestimation of the noise level, which causes the overestimation of
intrinsic rank (In our experiments, estimated rank > 200 and σrank ≈ 0.003). To address this
problem, we introduce a simple preprocessing on the singular values of the Jacobian. Before applying
the Pseudorank algorithm, we filter out the singular values {σz

i }i with {(σz
i )

2 ≤ θpre ·maxi(σ
z
i )

2}.
We set θpre ∈ {0.0005, 0.001, 0.005, 0.01}.
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Figure 2: Off-manifold Results inW-
space of StyleGAN2.

Validity of the estimated local dimension We suggest
the Off-manifold experiment to assess the validity of the
estimated local dimension. Intuitively, the intrinsic local
dimension at w ∈ M is the number of coordinate axes
required to locally describe the learned manifoldM. Here,
the tangent vector at w along k-th axis is the k-th LB. In
this respect, the Off-manifold experiment tests whether
the latent perturbation along the k-th LB vw

k stays in
the latent manifoldM = f(Z). If the margin ofM at
w in the k-th LB direction is large enough, then the k-th
axis is needed to locally approximate M. To be more
specific, we solve the following optimization problem by
Adam optimizer (Kingma & Ba, 2015) on MSE loss with
a learning rate 0.005 for 1000 iterations for each k:

winit = f(zinit), wptb = winit + c · vw
k , (11)

zopt = argmin
z
∥wptb − f(z)∥2 with z0 = zinit. (12)

We ran the Off-manifold experiments onW-space of StyleGAN2. Figure 2 shows the final objective
∥wptb − f(zopt)∥2 after the optimization for each LB vw

i with c = 2. The red vertical lines denote
the estimated local dimension for each θpre. (See the appendix for the Off-manifold results with
various c = ∥wptb −winit∥.) The monotonous increase in the final loss shows that f(zopt) cannot
approach close to wptb. In other words, the diameter in the k-th LB direction decreases as the index
k increases. Although there is a dependency on the preprocessing threshold, the rank estimation
algorithm chooses the principal part of local manifold around winit without overestimates as desired.
Particularly, the estimated rank with θpre = 0.005 appears to find a transition point of the final loss.

3.2 COMPARISON TO PREVIOUS RANK ESTIMATION
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Figure 3: Rank Estimation with Spar-
sity under various n = 1/γ.

Sparsity Constraint LowRankGAN (Zhu et al., 2021)
introduced a convex optimization problem called Principal
Component Pursuit (PCP) (Candès et al., 2011) to find a
low-rank factorization of Jacobian (∇zf)(z) (Eq 13):

minimizeL,S ∥L∥∗ + γ · ∥S∥1
s.t. L+ S = (∇zf)

⊺(z) · (∇zf)(z). (13)

where ∥L∥∗ =
∑

i σi(L) is the nuclear norm, i.e. the sum
of all singular values, ∥S∥1 =

∑
i,j |Si,j |, and γ > 0 is

a positive regularization parameter. PCP encourages the
sparsity on corruption S through ℓ1 regularizer.

However, we believe that the sparsity assumption is not adequate for finding the intrinsic rank of Ja-
cobian. To test the validity of the sparsity assumption, we monitored how the low-rank representation
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(a) θpre = 0.001
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(b) θpre = 0.005
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(c) θpre = 0.01

Figure 4: Local Dimension Distribution of the intermediate layers in the mapping network.

(a) Image Traversal along Axis 0 and 1

(b) Image Traversal along Axis (d− 1) and d
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(c) Image Variation along Singular Vectors

Figure 5: Local Dimension Evaluation in Image Space where d denotes the estimated local
dimension with θpre = 0.01. Fig 5c shows the image variation intensity ∥∇vw

i
g(w)∥F along each

LB vi.

L changes as we vary the regularization parameter n = 1/γ as in (Zhu et al., 2021) (Fig 3). The
estimated rank decreases unceasingly without saturation as we increase n, i.e., refine the Jacobian
stronger. We consider that the rank saturation should occur if this assumption is adequate for finding
an intrinsic rank because it implies regularization robustness. But the low-rank factorization through
PCP does not show any saturation until the Frobenius norm of corruption ∥S∥F reaches over 50% of
the initial matrix ∥(∇zf)

⊺(z) · (∇zf)(z)∥F .

Interpretation as Frobenious Norm The Pseudorank algorithm can be interpreted as a Nuclear-
Norm Penalization (NNP) problem (Eq 14) for matrix denoising (Donoho & Gavish, 2014). This
NNP framework is similar to PCP in LowRankGAN except for the regularization ∥E∥F . While PCP
requires an iterative optimization of Alternating Directions Method of Multipliers (ADMM) (Boyd
et al., 2011; Lin et al., 2010), NNP provides an explicit closed-form solution L∗ through SVD.

minimizeL,S ∥L∥∗ + γ · ∥E∥F s.t. L+ E = (∇zf)(z). (14)

⇒ L∗ = U

(
Σ− 1

2γ
· I
)

+

V ⊺ where (∇zf)(z) = UΣV ⊺ (SVD), (15)

for (M+)i,j = max (Mi,j , 0). Therefore, the intrinsic rank estimation by NNP is determined by
choosing a threshold 1/(2γ) for the singular values {σz

i }i of Jacobian. The Pseudorank algorithm
selects this threshold by running a series of hypothesis tests.

3.3 LATENT SPACE ANALYSIS OF STYLEGAN

We analyzed the intermediate layers of the mapping network in StyleGAN2 trained on FFHQ using
our local dimension estimation (See Fig 11 for StyleGAN architectures). First, Figure 4 shows the
distribution of estimated local dimensions for 1k samples of each intermediate layer for each θpre (See
the appendix for the rank statistics under all θpre). Note that the algorithm provides an unstable rank
estimate on the most unsparse 1st layer (Fig 1b) under the small θpre ∈ {0.0005, 0.001}. However,
this phenomenon was not observed in the other layers. Hence, we focus on the layers with reasonable
depth, i.e., from 3 to 8. Even though changing θpre results in an overall shift of the estimation, the
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(a) StyleGAN2-Cat - ρ = 0.98
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(b) StyleGAN2-e - ρ = 0.81
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(c) StyleGAN2 - ρ = 0.70

Figure 6: Correlation between Distortion metric (↓) and FID gap (↓) when θpre = 0.005. FID
gap represents the difference between FID score of LB and the global basis (Härkönen et al., 2020).
Each point represents a i-th intermediate layer in the mapping network.

trend and relative ordering between layers are the same. In accordance with Fig 1b, the intrinsic
dimension monotonically decrease as the layer goes deeper. Second, we evaluated the estimated rank
on image space (Fig 5). Figure 5a and 5b show the image traversal along the first two axes and the
two axes (d − 1, d) around the estimated rank d with θpre = 0.01. Fig 5c presents the size of the
directional derivative ∥∇vw

i
g(w)∥F along the i-th LB vw

i at w, estimated by the finite difference
scheme. The result shows that the estimated rank covers the major variations in the image space.
One advantage of the unsupervised method over the supervised method for finding disentangled
perturbation is that the discovered semantic is not restricted to the pre-defined attributes. However,
we cannot know the number of discovered perturbations without additional inspections. Figure 5
shows that the estimated dimension provides an upper bound on the number of these perturbations.

4 UNSUPERVISED GLOBAL DISENTANGLEMENT EVALUATION

In this section, we investigate two closely related important questions on the disentanglement property
of a GAN. As a reminder, global basis refers to the sample-independent semantically meaningful
perturbations on a latent space, such as GANSpace and SeFa. In this regard, the global-basis-
compatibility represents how well the optimal global basis can work on the target latent space.
Specifically, the global-basis-compatibility is defined as the quality of image traversal along the
optimal global basis. This is a property of the latent space itself. If the global basis does not exist in
the first place, all proposed global basis can only show limited success in that latent space, no matter
how we find it. Then, the two questions are as follows:

Q1. Can we evaluate the global-basis-compatibility of the latent space without posterior assess-
ment? (Choi et al., 2022b)

Q2. Can we evaluate the disentanglement without attribute annotations? (Locatello et al., 2019)

These two questions are closely related because the ideal disentanglement includes a global ba-
sis representation where each element corresponds to the attribute-coordinate. In this paper, the
global disentanglement property of a latent space denotes this global representability along
the attribute-coordinate. To answer these questions, we propose an unsupervised global disen-
tanglement metric, called Distortion. We evaluated the global-basis-compatibility by the image
fidelity under global basis perturbation (Q1) and the disentanglement by semantic factorization (Q2).
Our experimental results show that our proposed metric has a high correlation with the global-basis-
compatibility (Q1) and the supervised disentanglement score (Q2) on various StyleGANs. (See the
appendix for robustness of Distortion to θpre.)

Global Disentanglement Score Intuitively, our global disentanglement score assesses the inconsis-
tency of intrinsic tangent space for each latent manifold. The framework of analyzing the semantic
property of a latent space via its tangent space was first introduced in Choi et al. (2022b). Choi
et al. (2022b) suggested this framework, inspired by the observation that each basis vector (LB) of
a tangent space corresponds to a local disentangled latent perturbation. In this work, we develop
this idea and propose a layer-wise score for global disentanglement property. Following Choi et al.
(2022b), we employ the Grassmannian (Boothby, 1986) metric to measure a distance between two
tangent spaces. In particular, we use a dimension-normalized version of the Geodesic Metric (Ye &
Lim, 2016). We chose the Geodesic Metric instead of the Projection Metric (Karrasch, 2017) because
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(a) StyleGAN1 - ρ = −0.74
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(b) StyleGAN2-e - ρ = −0.91
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(c) StyleGAN2 - ρ = −0.57

Figure 7: Correlation between Distortion metric (↓) and DCI (↑) when θpre = 0.005. DCI (East-
wood & Williams, 2018) is a supervised disentanglement metric that requires attribute annotations.

of its better discriminability (See the appendix for detail). The dimension-normalized version is
adopted because the local dimension changes according to its estimated region.

For two k-dimensional subspaces W,W ′ of Rn, let MW ,MW ′ ∈ Rn×k be the column-wise con-
catenation of orthonormal basis for W,W ′, respectively. Then, the dimension-normalized Geodesic

Metric is defined as dkgeo(W,W ′) =
(

1
k

∑k
i=1 θ

2
i

)1/2
where θi = cos−1(σi(M

⊤
W MW ′)) denotes

the i-th principal angle between W and W ′ for i-th singular value σi. Then, Distortion score DM for
the latent manifoldM is evaluated as follows:

1. To assess the overall inconsistency ofM, measure the expectation of Grassmannian distance
between two intrinsic tangent spaces TwiMki

wi
(Eq 5) at two random w ∈M

Irand = Ezi∼p(z),wi=f(zi)

[
dkgeo

(
Tw1
Mk

w1
, Tw2

Mk
w2

)
for k = min(k1, k2)

]
. (16)

2. To normalize the overall inconsistency, measure the same Grassmannian distance between
two close w ∈M for ϵ = 0.1

Ilocal = Ez1∼p(z),|z2−z1|=ϵ

[
dkgeo

(
Tw1Mk

w1
, Tw2Mk

w2

)
for k = min(k1, k2)

]
. (17)

3. Distortion ofM is defined as the relative inconsistency DM = Irand/Ilocal.

Distortion and Global Disentanglement In this paragraph, we clarify why the globally disentan-
gled latent space shows a low Distortion score. Assume a latent spaceM is globally disentangled.
Then, there exists an optimal global basis ofM, where each basis vector corresponds to an image
attribute on the entire M. By definition, this optimal global basis is the local basis at all latent
variables. Assuming that LB finds the local basis Choi et al. (2022b), each global basis vector would
correspond to one LB vector at each latent variable. In this regard, our local dimension estimation
finds a principal subset of LB, which includes these corresponding basis vectors. In conclusion, if the
latent space is globally disentangled, this principal set of LB at each latent variable would contain
the common global basis vectors. Hence, the intrinsic tangent spaces would contain the common
subspace generated by this common basis, which leads to a small Grassmannian metric between them.
Therefore, the global disentanglement of the latent space leads to a low Distortion score.

Global-Basis-Compatibility We tested whether Distortion DM is meaningful in estimating the
global-basis-compatibility. We chose GANSpace as a reference global basis because of its broad
applicability. The global basis proposed in GANSpace is PCA components of latent variable samples
(Härkönen et al., 2020). Hence, we can find a global basis in any intermediate layers. We chose FID
(Heusel et al., 2017) gap between LB and GANSpace as a measure of global-basis-compatibility. FID
is measured for 50k samples of perturbed images along the 1st component of LB and GANSpace,
respectively. Distortion metric is tested on StyleGAN2 on LSUN Cat (Yu et al., 2015), StyleGAN2
with configs E and F (Karras et al., 2020b) on FFHQ to test the generalizability of correlation to the
global-basis-compatibility. StyleGAN2 in Fig 6 denotes StyleGAN2 with config F because config F
is the usual StyleGAN2 model. The perturbation intensity is set to 5 in LSUN Cat and 3 in FFHQ.
Distortion metric shows a strong positive correlation of 0.98, 0.81 and 0.70 to FID gap in Fig 6. This
result demonstrates that Distortion metric can be an unsupervised criterion for selecting the latent
space with high global-basis-compatibility. Before finding a global basis, we can use Distortion
metric as a prior investigation for selecting an appropriate target latent space.
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(a) Max-distorted layer 3 (b) Min-distorted layer 7 (c) Layer 8 (W-space)

Figure 8: Subspace Traversal on the intermediate layers along the global basis. The upper-right
corner of max-distorted layer 3 and layer 8 show visual artifacts. However, the min-distorted layer 7
does not show such a failure. The initial image (center) is traversed along the 1st (horizontal) and
2nd (vertical) components of GANSpace.

Disentanglement Score We assessed a correlation between the unsupervised Distortion metric and
a supervised disentanglement score. Following the work of Wu et al. (2020), we adopted DCI score
(Eastwood & Williams, 2018) as the supervised disentanglement score for evaluation, and employed
40 binary attribute classifiers pre-trained on CelebA (Liu et al., 2015) to label generated images. Each
DCI score is assessed on 10k samples of latent variables with the corresponding attribute labels. In
Fig 7, StyleGAN1, StyleGAN2-e, and StyleGAN2 refer to StyleGAN1 and StyleGAN2s with config
E and F trained on FFHQ. Note that DCI experiments are all performed on FFHQ because the DCI
score requires attribute annotations. DCI and Distortion metrics show a strong negative correlation on
StyleGAN1 and StyleGAN2-e. The correlation is relatively moderate on StyleGAN2. This moderate
correlation is because Distortion metric is based on the Grassmannian metric. The Grassmannian
metric measures the distance between tangent spaces, while DCI is based on their specific basis.
Even if the tangent space is identical so that Distortion becomes zero, DCI can have a relatively low
value depending on the choice of basis. Hence, in StyleGAN2, the high-distorted layers showed low
DCI scores, but the low-distorted layers showed relatively high variance in DCI score. Nevertheless,
the strong correlation observed in the other two experiments suggests that, in practice, the basis
vector corresponding to a specific attribute has a limited variance in a given latent space. Therefore,
Distortion metric can be an unsupervised indicator for the supervised disentanglement score.

Traversal Comparison For a visual comparison of the global-basis-compatibility, we observed
the image traversal along the global basis on the max-distorted layer 3, min-distorted layer 7, and
layer 8 (W-space) of StyleGAN2 on FFHQ. Our global-basis-compatibility result implies that the
global basis would perform better in terms of image fidelity on the min-distorted layer. To impose
a more challenging condition, we introduced the subspace traversal (Choi et al., 2022b) along the
first and second components of the global basis with a perturbation intensity 4. In Fig 8, the global
basis shows visual artifacts at the corners in the subspace traversal on the max-distorted layer 3 and
W-space. Nevertheless, the min-distorted layer 7 shows the stable traversal without any failure. This
result proves that comparing Distortion scores can be a criterion for selecting a better latent space
with higher global-basis-compatibility. (See the appendix for additional results.)

5 CONCLUSION

In this paper, we proposed a local intrinsic dimension estimation algorithm for the intermediate
latent space in a pre-trained GAN. Using this algorithm, we analyzed the intermediate layers in the
mapping network of StyleGANs on various datasets. Moreover, we suggested an unsupervised global
disentanglement metric called Distortion. The analysis of the mapping network demonstrates that
Distortion metric shows a high correlation between the global-basis-compatibility and disentangle-
ment score. Although finding an optimal preprocessing hyperparameter θpre was beyond the scope
of this work, the proposed metric showed robustness to the hyperparameter. Moreover, our local
dimension estimation scheme has the potential to be applied to various models. For example, the
adversarial robustness of the classifier can be analyzed by projecting the adversarial noise onto the
estimated feature space. We consider this kind of research would be an interesting future research.
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A DEFINITION OF DISENTANGLED LATENT SPACE

Disentangled perturbation In the GAN disentanglement literature, several studies investigated
the disentanglement property of the latent space by finding disentangled perturbations that make a
disentangled transformation of an image in one generative factor, such as GANSpace (Härkönen
et al., 2020), SeFa (Shen & Zhou, 2021), and Local Basis (Choi et al., 2022b). To be more specific,
for a latent variable z ∈ Z ⊂ Rd, let f = (f1, f2, · · · , fd) be a generative factor of G(z) where G
denotes the generator. Tj(x) denotes a transformation of an image x in the j-th generative factor. The
disentangled perturbation vj(z) for the base latent variable z on the j-th generative factor is defined
as follows (The perturbation intensity ∥vj(z)∥ and the corresponding change in j-th generative factor
△fj is omitted for brevity.):

G(z + vj(z)) = Tj(G(z)). (18)

In this paper, the global basis refers to the sample-independent disentangled perturbations on a latent
space:

vj(z) = vj for all z ∈ Z. (19)

For example, consider a pre-trained GAN model that generates face images. Then, the disentangled
perturbation in this model is the latent perturbation direction that make the generated face change only
in the wrinkles or hair color as presented in Härkönen et al. (2020). This disentangled perturbation
is the global basis if all generated images show the same semantic variation when latent perturbed
along it.

Disentangled space The (globally) disentangled latent space is defined in terms of disentangled
perturbations. The latent space is globally disentangled if there exists the global basis for the
generative factors of data. In other words, for each generative factor fj for 1 ≤ j ≤ d, there exists
a corresponding latent perturbation direction vj such that all latent variables show the semantic
variation in fj when perturbed along vj . Then, we can interpret the vector component of this global
basis vj as having a correspondence with the j-th generative factor fj .

fj ←→ cj when z =
∑

1≤j≤d

cj · vj and fj denotes the j-th generative factor of G(z). (20)

In this paper, we described the above correspondence as the representation of globally disentangled
latent space in the attribute-coordinate in Sec 4. This is consistent with the definition of disen-
tanglement, introduced in Bengio et al. (2013). For example, consider the dSprites dataset. The
dSprites is a synthetic dataset consisting of two-dimensional shape images, which is widely used
for disentanglement evaluation. The generative factors of dSprites are shape, scale, orientation,
position on the x-axis, and position on the y-axis. Then, the (globally) disentangled latent space for
the dSprites dataset is a five-dimensional vector space Z = R5 where c1 represents the shape, c2
represents the scale, and so on.

B NOISE ESTIMATION OF PSEUDORANK ALGORITHM

For completeness, we include the convergence theorem for the largest eigenvalue of the empirical
covariance matrix for Gaussian noise in Johnstone (2001) and the noise estimation algorithm provided
in Kritchman & Nadler (2008).

Theorem 1 ((Johnstone, 2001)). The distribution of the largest eigenvalue λ1 of the empirical
covariance matrix for n-samples of N (0, Ip) converges to a Tracy-Widom distribution:

P
(
λ1 < σ2 (µn,p + s · σn,p)

)
→ Fβ(s) as n, p→∞ with c = p/n fixed. (21)

where µn,p =
1

n

(√
n− 1

2
+

√
p− 1

2

)2

, (22)

σn,p =
1

n

(√
n− 1

2
+

√
p− 1

2

)(
1√

n− 1/2
+

1√
p− 1/2)

)1/3

, (23)

where Fβ denotes the Tracy-Widom distribution of order β = 1 for real-valued observations.
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Algorithm Solve the following non-linear system of K+1 equations involving the K+1 unknowns
ρ̂1, · · · , ρ̂K and σ2

est:

σ2
KN −

1

p−K

 p∑
j=K+1

λj +

K∑
j=1

(λj − ρ̂j)

 = 0, (24)

ρ̂2j − ρ̂j

(
λj + σ2

est − σ2
est

p−K

n

)
+ λjσ

2
est = 0. (25)

This system of equations can be solved iteratively. Check Kritchman & Nadler (2008) for detail.

C RELATION BETWEEN RANK ESTIMATION ALGORITHM AND OPTIMIZATION

Theorem 2. The following optimization problem, called Nuclear-Norm Penalization (NNP),

minimizeL,S ∥L∥∗ + γ · ∥E∥F s.t. L+ E = (∇zf)(z), (26)

has a solution

L∗ = U

(
Σ− 1

2γ
· I
)

+

V ⊺, (27)

where (∇zf)(z) = UΣV ⊺ (SVD) and (M+)i,j = max (Mi,j , 0).

Proof. Denote Y := ∇zf and h(L) := ∥L∥∗ + γ∥Y − L∥F . We want to show that L∗ minimizes
h(L). Then, the necessary and sufficient condition for this is:

0 ∈ ∂h(L̂∗) = {2γ(L∗ − Y ) + z : z ∈ ∂∥L̂∗∥∗} ⇐⇒ 2γ(Y − L∗) ∈ ∂∥L̂∗∥∗. (28)

Note that Y = UΣV ⊺ and L̂ = U(Σ− 1
2γ I)+V

⊺. We can write

Y = U1Σ1V
⊺
1 + U2Σ2V

⊺
2 , (29)

with diag(Σ1) >
1
2γ and diag(Σ2) ≤ 1

2γ . Then,

L̂∗ = U1

(
Σ− 1

2γ
I

)
V ⊺
1 , (30)

Y − L̂∗ = U2Σ2V
⊺
2 +

1

2γ
U1V

⊺
1 =

1

2γ
(U1V

⊺
1 + 2γU2Σ2V

⊺
2 ) . (31)

By doing tedious calculation, we can verify that U1V
⊺
1 + 2γU2Σ2V

⊺
2 meet the condition of Lemma

1, so that U1V
⊺
1 + 2γU2Σ2V

⊺
2 ∈ ∂∥L̂∗∥. Therefore, 0 ∈ ∂h(L̂∗) and it completes the proof.

Lemma 1. Let X ∈ Rm×n and f(x) = ∥X∥∗. Then,

∂f(X) = ∂∥X∥∗ = {Z ∈ Rm×n : ∥Z∥2 ≤ 1 and ⟨Z,X⟩ = ∥X∥∗}. (32)

Proof. If Z ∈ ∂f(X), then

f(Y ) ≥ f(X) + ⟨Z, Y −X⟩, ∀Y ∈ Rm×n, (33)

⇔ ⟨Z,X⟩ − ∥X∥∗ ≥ ⟨Z, Y ⟩ − ∥Y ∥∗, ∀Y ∈ Rm×n, (34)

⇔ ⟨Z,X⟩ − ∥X∥∗ ≥ sup
Y ∈Rm×n

(⟨Z, Y ⟩ − ∥Y ∥∗) =
{
0, if ∥Z∥2 ≤ 1,

∞, otherwise.
(35)

And 0 ≤ ⟨Z,X, ⟩ − ∥X∥∗ = ⟨Z,X, ⟩ − sup∥M∥2≤1⟨M,X, ⟩ ≤ 0, thus ⟨Z,X, ⟩ = ∥X∥∗.

14



Under review as a conference paper at ICLR 2023

D GRASSMANNIAN METRIC FOR DISTORTION - GEODESIC VS. PROJECTION

Our proposed Distortion metric D = Irand/Ilocal is defined as the relative inconsistency of intrinsic
tangent spaces on a latent manifold (Sec 4). The inconsistency (Irand, Ilocal) is measured by the
Grassmannain (Boothby, 1986) distance between tangent spaces, particularly by Geodesic Metric
(Ye & Lim, 2016). In this section, we present why we choose the Geodesic Metric instead of the
Projection Metric (Karrasch, 2017) among Grassmannian distances. Informally, the Geodesic Metric
provides a better discriminability compared to the Projection Metric. For completeness, we begin
with the definitions of the Grassmannian manifold and two distances defined on it.

Definitions Let V be the n-dimensional vector space. The Grassmannian manifold Gr(k, V )
(Boothby, 1986) is defined as the set of all k-dimensional linear subspaces of V . Then, for two
k-dimensional subspaces W,W ′ ∈ Gr(k, V ), two Grassmannian metrics are defined as follows:

dproj (W,W ′) = ∥PW − PW ′∥ , dgeo(W,W ′) =

(
k∑

i=1

θ2i

)1/2

. (36)

For the Projection Metric dproj (W,W ′), PW and PW ′ denote the projection into each subspaces
and ∥ · ∥ represents the operator norm. For the Geodesic Metric dgeo(W,W ′), θi denotes the i-
th principal angle between W and W ′. To be more specific, θi = cos−1(σi(M

⊤
W MW ′)) where

MW ,MW ′ ∈ Rn×k are the column-wise concatenation of orthonormal basis for W,W ′ and σi

represents the i-th singular value.

Experiments To test the discriminability of these two metrics, we designed a simple experiment.
Let W,W ′ be the two 50-dimensional subspaces of R512 because the dimension of intermediate
layers in the mapping network is 512. We measure the Grassmannian distance between two subspaces
as we vary dim (W ∩W ′) = k0,

W = ⟨e1, e2, · · · , ek⟩, W = ⟨{e1, e2, · · · , ek0} ∪ {ek+1, · · · , e2k−k0}⟩ (37)

where {ei}1≤i≤n denotes the standard basis of Rn. Fig 9 reports the results. The Geodesic Metric re-
flects the degree of intersection between two subspaces. As we increase the dimension of intersection,
the Geodesic Metric decreases. However, the Projection Metric cannot discriminate the intersected
dimension until it reaches the entire space.
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Figure 9: Grassmannian metric between two 50-dimensional subspaces W,W ′ ∈ Gr(50,R512)
for each intersected dimension k0 = dim (W ∩W ′). While the Geodesic Metric monotonically
decreases as more dimensions intersect, the Projection Metric cannot discriminate 0 ≤ k0 ≤ 49.
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E ROBUSTNESS TO PREPROCESSING

In this section, we assessed the robustness of Distortion DM to preprocessing hyperparameter θpre.
Figure 10 presents the distribution of 1k samples of distortion before taking an expectation, i.e.,(
dkgeo

(
Tw1
Mk

w1
, Tw2

Mk
w2

)
/Ilocal

)
, for each intermediate layer. In Fig 10, increasing θpre makes

an overall translation of Distortion. However, the relative ordering between the layers remains the
same. The low Distortion score of layer 8 provides an explanation for the superior disentanglement
ofW-space observed in many literatures (Karras et al., 2019; Härkönen et al., 2020). Moreover, the
results suggest that the min-distorted layer 7 can serve as a similar-or-better alternative.
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(c) θpre = 0.01

Figure 10: Robustness of Distortion metric D (↓) to θpre of StyleGAN2 on FFHQ.

F ARCHITECTURE DIAGRAM OF STYLEGANS

A

A

A

A

B

B

B

B

Synthesis

Network

NoiseLatent z ∈ 𝒵

𝑤 ∈ 𝒲

Normalize

Target

Latent

Spaces

Figure 11: Architecture of StyleGANs. Our analysis in Sec 4 is performed in the intermediate layers
of the mapping network.
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G ADDITIONAL EXPERIMENTAL RESULTS
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Figure 12: Off-manifold Results inW-space of StyleGAN2 on FFHQ. The red vertical lines denote
the estimated local dimension for various θpre. The small final loss implies that the linear perturbation
along that Local Basis component stays inside the learned latent manifold. For every perturbation
intensity, there is a transition point from a slow increase to a sharp increase, which is interpreted as an
escape from the manifold. The results demonstrate that the proposed dimension estimation algorithm
finds a reasonable point without crossing the transition point. In our case, these results are interpreted
as choosing the principal part of the manifold without overestimating its dimension.
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(b) θpre = 0.001
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(c) θpre = 0.005
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(d) θpre = 0.01

Figure 13: Local Dimension Distribution of the intermediate layers in the mapping network of
StyleGAN2 on FFHQ. Each figure presents the distribution of estimated local dimension at each
intermediate layer as we vary θpre. The distributions are illustrated for 1k samples, respectively. The
algorithm gives a rather unstable dimension estimate on the most unsparse first layer (Fig 1b) due
to its isotropic gaussian assumption. However, this phenomenon is not observed in the layers with
moderate depth, i.e., from 3 to 8. As we introduce the higher preprocessing ratio θpre, the algorithm
gives more strict, i.e., smaller, dimension estimates. Nevertheless, the relative trend between layers is
the same. The deeper the latent manifold, the smaller its dimension.
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(a) Traversal along Axis 0 and 1 (b) Traversal along Axis 34 and 35 - θpre = 0.01

(c) Traversal along Axis 43 and 44 - θpre = 0.005 (d) Traversal along Axis 67 and 68 - θpre = 0.001

(e) Traversal along Axis 78 and 79 - θpre = 0.0005
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(f) Image variation intensity

Figure 14: Local Dimension Evaluation in Image Space of StyleGAN2 on FFHQ. Figure 14b-
14e show image traversals along the (d − 1)-th and d-th axis where d denotes the estimated local
dimension for each θpre. Fig 14f presents the image variation intensity ∥∇vw

i
g(w)∥F along each

Local Basis vi. ∥∇vw
i
g(w)∥F is evaluated by the finite difference with stepsize=0.01. Note that

while Local Basis is discovered by analyzing only the subnetwork from the input to target latent space,
the corresponding image variation monotonically decreases and saturates. Moreover, the estimated
local dimension includes the major variations in the image space. This can be observed in the image
traversals. The image traversals around the estimated dimension (Fig 14b-14e) show much smaller
image variations compared to Axis 0 and 1 (Fig 14a).
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(a) θpre = 0.0005
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(c) θpre = 0.005
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(d) θpre = 0.01

Figure 15: Robustness of Distortion metric D to θpre of StyleGAN2 on FFHQ. Each
boxplot shows the distribution of 1k samples of Distortion before taking an average, i.e.,(
dkgeo

(
Tw1Mk

w1
, Tw2Mk

w2

)
/Ilocal

)
(Sec 4), for each intermediate layer. Increasing θpre makes a

slight increase in Distortion for all layers. Nevertheless, the relative ordering between layers is robust
under the change of θpre.
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(a) θpre = 0.0005, ρ = 0.706

9.0 9.5 10.0 10.5 11.0 11.5
Distortion

6

7

8

9

10

FI
D 

Ga
p

3
4
5

6
7
8

(b) θpre = 0.001, ρ = 0.706
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(c) θpre = 0.005, ρ = 0.701
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(d) θpre = 0.01, ρ = 0.715

Figure 16: Correlation between Distortion metric and FID gap of StyleGAN2 on FFHQ. FID
gap represents the difference between FID (Heusel et al., 2017) score of Local Basis (Choi et al.,
2022b) and the global basis (Härkönen et al., 2020). Each FID score is measure for 50k samples of
latent-perturbed images along the first component of Local Basis and GANSpace. The perturbation
intensity is fixed to 3. Each point represents a i-th intermediate layer in the mapping network, and the
red-line illustrates the linear regression of these points. ρ denotes the Pearson correlation coefficient
of Distortion and FID. The positive correlation between Distortion and FID remains robust regardless
of θpre.
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(a) θpre = 0.0005, ρ = 0.777
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(b) θpre = 0.001, ρ = 0.786
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(c) θpre = 0.005, ρ = 0.811
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(d) θpre = 0.01, ρ = 0.775

Figure 17: Correlation between Distortion metric and FID gap of StyleGAN2 with config E on
FFHQ.
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(a) θpre = 0.0005, ρ = 0.98
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(b) θpre = 0.001, ρ = 0.986
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(c) θpre = 0.005, ρ = 0.978
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(d) θpre = 0.01, ρ = 0.859

Figure 18: Correlation between Distortion metric and FID gap of StyleGAN2 on LSUN Cat.
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(a) θpre = 0.00005, ρ = 0.926
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(b) θpre = 0.0001, ρ = 0.945
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(c) θpre = 0.0005, ρ = 0.883
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(d) θpre = 0.001, ρ = 0.907

Figure 19: Correlation between Distortion metric and FID gap of StyleGAN2 on LSUN Horse.
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(a) θpre = 0.00005, ρ = 0.496
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(b) θpre = 0.0001, ρ = 0.430
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(c) θpre = 0.0005, ρ = 0.494

9.0 9.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6
Distortion

0

2

4

6

8

10

FI
D

 G
ap

3
4
5

6
7
8

(d) θpre = 0.001, ρ = 0.437

Figure 20: Correlation between Distortion metric and FID gap of StyleGAN2 on LSUN Church.
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(a) θpre = 0.001, ρ = −0.545
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(b) θpre = 0.01, ρ = −0.555
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(c) θpre = 0.0005, ρ = −0.574
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(d) θpre = 0.005, ρ = −0.569

Figure 21: Correlation between Distortion metric and DCI of StyleGAN2 on FFHQ. Each DCI
(Eastwood & Williams, 2018) score is evaluated for 10k samples of generated images, while the
attribute label is generated by 40 attribute classifiers pre-trained on CelebA (Liu et al., 2015). As in
Fig 16, each point and red-line represents the intermediate layers and linear regression, respectively.
The Distortion and DCI score show a negative correlation.
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(a) θpre = 0.001, ρ = −0.896
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(b) θpre = 0.01, ρ = −0.868
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(c) θpre = 0.0005, ρ = −0.887
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(d) θpre = 0.005, ρ = −0.910

Figure 22: Correlation between Distortion metric and DCI of StyleGAN2 with config E on FFHQ.
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(a) θpre = 0.001, ρ = −0.756

9.5 10.0 10.5 11.0 11.5 12.0
Distortion

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

D
C

I

3
4

5
6

7
8

(b) θpre = 0.01, ρ = −0.740
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(c) θpre = 0.0005, ρ = −0.752
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(d) θpre = 0.005, ρ = −0.742

Figure 23: Correlation between Distortion metric and DCI of StyleGAN1 on FFHQ.

(a) Axes {0, 1, 15, 30, 43, 44} from top to bottom (b) Axes {100, 150, 200, 300, 400, 500}

Figure 24: Linear Traversals along the various LB axis on StyleGAN2-FFHQ. At this latent
variable, the estimated dimension with θpre = 0.01 is d = 44. When we traverse along the axis
i ≫ d, the images present minor variations compared to the axis i ≤ d. Traversals along the 1 44
axes display various semantic variations such as gender, skin color, age, etc.
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(a) Min-distorted layer - Global Basis (b) Min-distorted layer - Local Basis

(c) Max-distorted layer - Global Basis (d) Max-distorted layer - Local Basis

Figure 25: Subspace Traversal (Choi et al., 2022b) on the min-distorted (7th) and max-distorted
(3rd) intermediate layers along the global basis (Härkönen et al., 2020) and Local Basis (Choi et al.,
2022b) of StyleGAN2 on FFHQ. The initial image (center) is traversed along the 1st (horizontal)
and 2nd (vertical) components of the chosen traversal directions with the perturbation intensity 9.
The global basis shows a decent image quality on the min-distorted layer, similar to Local Basis.
However, on the max-distorted layer, the subspace traversal along global basis exhibits significant
failures at corners, such as image collapse (lower-left), visual artifacts (lower-right), and unnatural
transformations (top-left).
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(a) Max-distorted layer 3 (b) Min-distorted layer 7 (c) Layer 8 (W-space)

Figure 26: Subspace Traversal on StyleGAN2-FFHQ. The upper-left corner of layer 3 is severely
deteriorated.

(a) Max-distorted layer 3 (b) Min-distorted layer 7 (c) Layer 8 (W-space)

Figure 27: Subspace Traversal on StyleGAN2-FFHQ. The lower sides of layer 3 are severely
deteriorated. Also, the upper sides of layer 8 are more deteriorated than layer 7.

(a) Max-distorted layer 3 (b) Min-distorted layer 6 (c) Layer 8 (W-space)

Figure 28: Subspace Traversal on StyleGAN2-LSUN Cat. The lower-left corner of layer 3 are
severely deteriorated.
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(a) Max-distorted layer 3 (b) Min-distorted layer 6 (c) Layer 8 (W-space)

Figure 29: Subspace Traversal on StyleGAN2-LSUN Church. The upper-left corner of layer 3 are
severely deteriorated.

(a) Max-distorted layer 3 (b) Min-distorted layer 6 (c) Layer 8 (W-space)

Figure 30: Subspace Traversal on StyleGAN2-LSUN Horse. The right sides of layer 3 are severely
deteriorated.

(a) Max-distorted layer 3 (b) Min-distorted layer 7 (c) Layer 8 (W-space)

Figure 31: Linear Traversal on StyleGAN2-LSUN Cars. The left sides of layer 3 are severely
deteriorated.
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