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Abstract
Accurate, efficient generative models of clini-
cal populations could accelerate clinical research
and improve patient outcomes. For example,
such models could infer probable treatment out-
comes for different subpopulations, generate
high-fidelity synthetic data that can be shared
across organizational boundaries, and discover
new relationships among clinical variables. Us-
ing Bayesian structure learning, we show that it
is possible to learn probabilistic program models
of clinical populations by combining data from
multiple, sparsely overlapping clinical datasets.
Through experiments with multiple clinical trials
and real-world evidence from census health sur-
veys, we show that our model generates higher
quality synthetic data than neural network base-
lines, supports more accurate inferences across
datasets than traditional statistical methods, and
can be queried more efficiently than both, open-
ing up new avenues for accessible and efficient
AI assistance in clinical research.

1. Introduction
Clinical research and practice both depend on patterns and
predictions gleaned from data. There has been growing inter-
est in using machine learning to analyze such data at scale
(Bourne et al., 2015), potentially accelerating clinical re-
search and improving treatment outcomes—for instance, by
analyzing heterogeneous treatment effects (Chernozhukov
et al., 2018; Goldstein & Rigdon, 2019), generating syn-
thetic control arms for clinical trials (Popat et al., 2022;
Yoshino et al., 2023), or discovering new relationships be-
tween clinical variables (Su et al., 2013).

A promising avenue to scale these analyses is to learn gen-
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erative models that draw on many data sources, such as
multiple clinical trials and real-world evidence stemming
from surveys or electronic health records (Sherman et al.,
2016). The traditional statistical methods used to analyze
clinical trials (Food and Drug Administration, 2023) are fast
and interpretable, but typically place restrictive assumptions
on the data distribution—such as linearity, homoskedasticity,
and normality—that are violated when integrating data from
multiple sources. Conversely, deep generative models pro-
vide a flexible framework for modeling the data-generating
process, achieving impressive results in unstructured do-
mains such as text and images (Kingma & Welling, 2013;
Vaswani et al., 2017; Goodfellow et al., 2020; Ho et al.,
2020; Papamakarios et al., 2021). But they struggle with
mixed types and sparse data, and lack efficient efficient
ways to perform operations such as computing probabilities,
conditioning, or marginalizing.

We build upon Generative Population Models
(GPMs) (Saad & Mansinghka, 2016), a method that
marries the approaches’ strengths: like traditional statistics,
our models can be queried efficiently; like deep generative
models, they can pool heterogeneous data sources and
accurately model rich multivariate probability distributions.
But unlike (Saad & Mansinghka, 2016), our approach is
implemented via probabilistic programming, particularly
the Sum-Product Programming Language (SPPL) (Saad
et al., 2021), allowing for compact, editable representations
of model and queries, and exact and efficient inference.

This extended abstract makes three contributions. First,
it shows that it is possible to learn generative population
models from multiple breast cancer trials combined with
real-world evidence from census health surveys, despite the
sparse overlaps between these datasets – and that the result-
ing models are more accurate than popular neural network
baselines for modeling tabular data. Second, it shows that
several important kinds of clinically relevant queries can
be encoded naturally in existing probabilistic programming
languages, equipped with generative population models.
Third, it shows that generative population models support
cross-dataset inferences, in some cases more accurately than
transitional statistical methods, and with significantly lower
compute costs for querying.
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Learning Generative Population Models From Multiple Clinical Datasets Via Probabilistic Programming

Figure 1. Generative Population Models for clinical data. We build accurate generative models from multiple sparsely-overlapping
clinical datasets, using Bayesian structure learning (Saad, 2022; Mansinghka et al., 2016; Saad et al., 2019). Model and queries are
represented as probabilistic programs (Saad et al., 2021), making them modularly editable (both by humans and by structure learning
systems), unlike the entangled weights of a neural network model, and also allowing users to perform exact queries efficiently.

2. Generative Population Models (GPMs)
2.1. Tractable Probabilistic Circuits

In order to build generative models from heterogeneous
tabular data sources, we want a class of models that: (i)
supports missing data and mixed type distributions (with
continuous variables such as age and tumor size, and dis-
crete variables such as cancer stage and ethnicity), (ii) can
be conditioned both on discrete and continuous variables,
and (iii) permits fast inference for a broad class of queries.

Probabilistic circuits are a class of models that satisfy these
desiderata while still being universal approximators of prob-
ability densities (see Choi et al. (2020) for a comprehensive
review). A probabilistic circuit is represented as a tree
that serves both as a sampler and a density evaluator for a
fixed-dimensional probability distribution over Rn. The tree
contains three types of nodes: sum, product, and leaf. Sum
nodes are mixtures with density P+(x) =

∑n
i=1 wiPi(x);

when sampling, they are traversed by visiting one child i at
random with probability proportional to wi. Product nodes
are factorizations P∗(x) =

∏n
i=1 Pi(xscope(i)); when sam-

pling, they are traversed by visiting all children. Leaf nodes
PL(x) are “base distributions”, which admit both tractable
density computation and sampling.

We implement probabilistic circuits using the Sum-Product
Probabilistic Language (SPPL, Saad et al. (2021)). Beyond
the advantages of probabilistic circuits discussed above,
SPPL provides automated compositional queries, which we

use to instantiate complex queries as seen in Figure 1. One
can also use SPPL as a backend through different querying
frontends, such as GenSQL (Huot et al., 2024), which uses
a SQL-like DSL allowing more complex query workflows.

2.2. Bayesian Structure Learning

Although non-Bayesian structure learning algorithms exist
for probabilistic circuits (Gens & Pedro, 2013; Peharz et al.,
2020; Nock & Guillame-Bert, 2022; Watson et al., 2023;
Nock & Guillame-Bert, 2023), recent experiments have
shown that Bayesian structure learning with non-parametric
priors can—perhaps surprisingly—outperform these non-
Bayesian methods (Saad & Mansinghka, 2021). More-
over, clinical datasets are often messy and noisy, and only
sparsely overlapping after harmonization (i.e., the process
of bringing many disparate datasets to a shared space); in
this regime, it is natural to take a Bayesian structure learning
approach (Saad et al., 2019; Saad, 2022). We therefore infer
the structure and parameters of a nested product-of-sums
probabilistic circuit by doing Bayesian inference using a
hierarchical nonparametric prior (Mansinghka et al., 2016).

2.3. Additional Challenges

Aside from learning the model, there are two key challenges
to building generative models of clinical populations in
practice that warrant addressing.

Challenge 1: Integrating Heterogeneous Datasets. In or-
der to use data from multiple sources as input to our model,
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Figure 2. Data harmonization: (a) Collected datasets: shared variables for the 7 datasets used. Columns are represented along the
x-axis, studies are color-coded. (b) Harmonized data matrix: block sparsity pattern for the full harmonized data matrix (n=21,221):
rows represent patients, columns represent variables. Rows are colored by study, transparent cells are missing data.

Figure 3. (a) Synthetic data quality: KL divergence between test data and synthetic data for the different models, for column pairs and
columns. (b) Example 1D distribution for the variable “Histological grade”, (c) Example 2D distribution for the pair of variables
“Highest degree” and “Health insurance coverage indicator”.

we need to harmonize the datasets such that they can be
coalesced into a single, block-sparse table (see Figure 2
(a) for an illustration of the different variables across the
data sources we used and (b) for the resulting data matrix).
Harmonization is an extremely time-consuming process,
especially for clinical trials, which vary greatly in their col-
lected information, variable coding, and even file structures.
We tackle harmonization by designing a domain-specific lan-
guage (DSL) that handles a wide range of the most common
variable transformations across datasets and crafting a novel
Large Language Model “in-the-loop” workflow to assist in
writing harmonization programs in our DSL (see Appendix).
All resulting harmonization programs are manually assessed
by two humans from our author team.

Challenge 2: Efficient Querying. A second key challenge
is querying a learned model: after learning from available
datasets, we must be able to express a wide range of ques-
tions we might ask the model, and efficiently compute an-
swers to those. Here, our model relies on SPPL both for
representing queries (see Figure 1) and for answering them
exactly with small runtimes (see Figure 4 (c)).

3. Experiments
Data

We harmonize five clinical trials in the Project DataSphere
platform (Green et al., 2015) as well as data from the Medi-
cal Expenditure Panel Survey (Cohen et al., 2009) collected
by the American Census Bureau, and a linked dataset which
connects patient information from a held-out clinical trial
with administrative data Cohen & Unangst (2018). Our
harmonized data comprises n=21221 rows, each represent-
ing a patient, and 45 columns, each representing a patient
attribute (e.g., histological grade, tumor size, age, highest
level of education attained; see Figure 2(a) and (b)). Addi-
tional details on our harmonization process are included in
the Appendix. We hold out the linked dataset for experiment
3.3, and for the rest of the data use a 70/30 train/test split,
randomized over all patients (across trials).

3.1. Synthetic Data Quality

We compare our model to two tabular neural networks gen-
erative models – a Generative Adversarial Network (CT-
GAN) and a Variational Autoencoder (TVAE) (Xu et al.,

3
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Figure 4. (a) Cross-dataset prediction: Four randomly picked rows containing shared variables in the manually linked data from (Cohen
& Unangst, 2018) along with samples of GLM predictions of linked clinical trial variables conditioned on shared variables—the prediction
task in Experiment 3.3. (b) Cross-dataset prediction accuracy: Model-wise probability of clinical trial data variables conditioned on
survey data variables for held-out linked data. Higher log probability is better. Error bounds represent standard deviation across rows (i.e.,
patients). (c) Cross-dataset query efficiency: Model-wise bias – the absolute difference between a model’s true query probability and its
estimated probability – over time for the query “What is the probability of a black patient in the northeast with primary tumor stage T4
being progesterone receptor positive?”.

2019). Figure 2(a) shows GPMs consistently outperform
neural baselines. Figure 3(b) and (c) show examples of
marginal distributions on the test data: we find that the
neural baselines often exhibit mode-seeking behavior or
greatly underfit the data, whereas GPMs capture qualitative
patterns throughout. In particular, GPMs most improve fit
over neural baselines for the variables: cancer stage, health
insurance coverage, EQ-5D (a quality of life score), and
the survey questions of whether a patient thinks they can
overcome their illness without medical help and whether
health insurance was not worth the cost.

3.2. Query Efficiency

We assess the efficiency of querying each model by com-
puting the probability of an event under a rare condition.
Figure 4 (c) shows that the neural network baselines ad-
mit significant bias even after tens of seconds of inference
as they approximate the query by sampling, in contrast to
GPMs which can compute exact results after only a tenth
of a second. While GLMs also produce exact results, they
take rougly twice as much time as GPMs as they need to be
trained from scratch for every query.

3.3. Cross-Dataset Inferences

We assess GPM’s ability to perform cross-dataset inferences,
by evaluating against linked data which connects patient
information from a held-out clinical trial with administrative
data Cohen & Unangst (2018) (see Appendix A.3 and B.3).
We compare against Generalized Linear Models (GLMs),

which are commonly used in clinical trial analyses (Food
and Drug Administration, 2023). Figure 4 (b) shows that
the linked data is approximately three orders of magnitude
more likely under GPMs than under GLMs. GPMs also
achieve much tighter variance than GLMs.

4. Discussion
Our work demonstrates that it is possible to learn prob-
abilistic programs that (i) generatively model sparsely-
overlapping clinical datasets, (ii) predict clinically-
meaningful attributes as or more accurately than neural and
statistical baselines, and (iii) allow efficient probabilistic
querying about clinical sub-populations. More research is
needed to scale our approach into a global model of not
just cancer but clinical populations more broadly. Chal-
lenges include automating data harmonization; handling
high degrees of sparsity and low-overlap in Bayesian struc-
ture learning; simultaneously cleaning and modeling data
(perhaps leveraging probabilistic programming approaches
such as PClean (Lew et al., 2021)); and learning richer
probabilistic programs that simultaneously reduce compute
cost and improve predictive accuracy (Saad & Mansinghka,
2021). GPMs are poised to unlock new possibilities for
AI chatbots that can help empower doctors and patients to
better navigate diagnosis, prognosis, and personalized treat-
ment. For instance, GPMs could be used as “world models”
of cancer to ground conversational AI expert systems (Wong
et al., 2023) and support controlled generation and parsing
between natural language and the probabilistic programs
illustrated in this paper (Lew et al., 2023).
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A. Additional Details on Data and Processing
A.1. DSL for Data Harmonization

As we discuss, a crucial first step to learning a model over multiple heterogenous data sets is to harmonize bring them to a
shared space. We introduce a new domain specific language (DSL) for reasoning about harmonization. In particular, we
support four fundamental harmonization operations remap, discretize, and identity. We sourced these operations
by taxonomizing the kinds of harmonization tasks that we found ourselves performing while manually harmonizing patient
data.

Our harmonization procedure works as follows. First, the harmonizer (or respective stakeholder) provides a series of target
variables that they want to be included in the final data, along with a set of target values that the variable takes on (e.g., all
possible cancer stages or the respective range of a continuous variable). Ideally, this would be any possible variable covered
in the data; for now, we filter these to variables with reasonable coverage.

Harmonization for each dataset then proceeds with finding the variable(s) in the observed data that correspond to each
of the target variables (if present). Once matched, the form of corruption from the target variable to the emitted variable
is categorized. Herein, our harmonization DSL comes to the foreground. If the observed variable employs a different
categorization than the target (say, referring to a biomarker as being “on” or “off” rather than “positive” or “negative”)
or coarsens the variable (e.g., storing stage as a patient being “stage IV” or “not stage IV”), the remap operation lets
the harmonizer specify a dictionary mapping the target variables to how they are observed (see the LLM prompt for an
example). Relatedly, if the target variable is a continuous value (like age) but stored in the observed data in discrete bins,
the discretize type lets the user specify the binning transform. Lastly, if the target and observed variables share the
same space, the identity operation indicates no change is needed. We plan to extend our DSL to support opertions like
convert if the target and observed variables are both continuous but stored in different units, such that the user can specify
the transformation function (which is a common when reasoning about lab tests), combine to support reasoning about
cases where two variables are combined in the observed data (e.g., estrogen and progestrone markers) and aggregate to
support reasoning over aggregated population information.

We then read in the resulting harmonization record (a json) to our harmonization tool, which parses the resulting entries and
in the case of an ill-posed mapping (e.g, coarser observed variables), samples from a uniform distribution over the options.
Our tool then merges the resulting datasets into a single data file. We emphasize that this tool is preliminary; future work
could better automate type checking and handling of uncertainty (e.g., smarter priors). However, we see immense promise
in efficiency gains that can ensue from automating parts of the harmonization pipeline.

Additionally, our DSL supports more structured reasoning about the harmonization process. As a nice corrolate, we can
use an LLM (e.g., ChatGPT(OpenAI, 2024)) as a first-pass parsing module from relevant dataset documentation1. We
include our prompt below. We emphasize here, however, that LLMs are in-the-loop of a human-driven harmonization. Two
authors from our author team manually inspect and intervene on the resulting harmonization parsers, where necessary. We
observe several failure modes in the LLM parsing that necessitate human intervention, e.g., making up variables that did
not exist, inappropriately matching observed and target columns, or pulling the wrong coding information (as some data
dictionaries provide text on multiple coding schemes per variable). Nonetheless, we believe our harmonization pipeline –
and importantly, conceptual cast of a DSL – can support more principled, efficient harmonization going forwards.

A.2. LLM Prompting

We prompt ChatGPT with a variant of the following, where “breast cancer variables.pdf” is our target set of variables and
ideal target coding.

Prompt “Your task is to write a json file that maps all the idealized columns listed in the pdf “breast cancer vars.pdf” into
the corresponding materialized column names references in the data dictionary “data dictionary.pdf”. The json file should
have the following structure:

{"null_values": [str1, str2...], "emissions": [ { "idealized_column_name":
idealized_column1, "materialized_column_name": materialized_column1, "emission": "
identity" }, { "idealized_column_name": idealized_column2, "materialized_column_name":
materialized_column2, "emission": "remap", "mapping": {idealized_column_level1:

1Each PDS clinical trial often comes with a “data dictionary” providing information on the variables collected.
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materialized_column_level1, idealized_column_level2: materialized_column_level2} }, {
"idealized_column_name": idealized_column3, "materialized_column_name":
materialized_column3, "emission": "discretize", "bins": [10, 20, 30], "names": ["0-10"
, "10-20", "20-30", ">30"] }, { "idealized_column_name": idealized_column4,

emission : None , }, ] }

null values should be a list of all strings that are to be read as missing values in the data dictionary.

emissions should contain column mappings for each of these idealized column names:

age
race
hispanic
country
cancer_stage
tumor_stage_T
tumor_stage_N
tumor_stage_M
er_status
pgr_status
bmi
mastectomy_surgery
survival
progression_free_survival
treatment
tumor_size
tumor_laterality
her2_status
histological_grade
menopause_status
visceral_progression
tissue_progression
bone_progression
treatment_end_reason
pepi_score
prior_hormonal_therapy
prior_chemotherapy
num_positive_lymph_nodes

If there is no matching column, remember to categorize it as None.

Columns mappings can have one of 4 types:

None
variable is not present in the other dataset (no field materialized_column_name )

Identity
no change in variable coding.
signature: {"emission": "identity"}

Remap
Change a categorical variables' levels. "mapping" is a dict mapping from the idealized

column's levels to the materialized column's levels
{"emission": "remap", "mapping": {idealized_column_level1: materialized_column_level1,

...}}
Discretize

Discretize a continuous variable. "bins" is a list of N values along which the
continuous variable will be split, "names" is a list of N+1 values which will be
the names of the resulting discrete variables.

{"emission": "discretize", "bins": [x1, x2...], "names": [name1, name2, name3...]}

First, write out a rationale for any tricky conversions. Then write your file below after the line ”—-FILE—“.

In the file, WRITE JSON ONLY. There should be one entry for each of the idealized column names listed above. And at
most one self-map for each entry (though there may be none). If you need to think while writing, feel free to add a new key
in each entry called ”comments“.”
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A.3. Linked Data

In the context of our oncology data, linked data are datasets wherein patient information from clinical trials are “matched”
in some way with similar people from another dataset such that additional attributes are included for each patient. This takes
the form of adding more columns (variables) to the clinical trial, wherein each patient has more information “linked” to
them from another data source (e.g., bringing in their likely socioeconomic status, highest level of education attained, etc).
Here, we consider the Sanofi clinical trial linkage to MEPS administrative survey data from Cohen & Unangst (2018).

As can be seen in Figure 2, three variables are shared (“bmi”, “age”, and “race”) and nine other clinical variables are linked
which we predict (“estrogen receptor status”, “progesterone receptor status”, “survival”, “her-2 status”, “cancer stage”,
“tumor stage (T)”, “tumor stage (N)”, and two treatments – “taxane” and “anthracycline”).

B. Additional Modeling Details
B.1. Neural Baselines

We need to make a few amendments to our setup in order to assess the neural network baselines. As the neural network
models cannot model missing data, we need to run an additional step for the baselines; we use Multiple Imputation with
Chained Equations (Van Buuren & Groothuis-Oudshoorn, 2011) with a random forest regressor.

B.2. Evaluation of Synthetic Data Quality

Further, while the most natural way to assess the quality of the learned generative models is to compute the probability of
the test data under each model, unfortunately, the neural network baselines do not support that operation: the evidence
lower-bound in our TVAE baseline is just an approximation to that probability, and the CTGAN has no notion of the
probability of a sample. Since all models support sampling, we instead generate synthetic data from each model, and then
compute the KL divergence between columns and column pairs in the test data and the synthetic data—approximating the
joint distribution by way of marginals. We filter out columns and column pairs which have fewer than 100 patients with
recorded data, and discretize continuous columns by quintiles.

B.3. Additional Details on Linked Data Experiment

We consider the same set of clinical trials as in our synthetic data experiment, and add an additional component focused on
linked data (as described in A.3) to permit exploration of cross-dataset inferences. Importantly, this clinical trial was not
present in our training set. As such, we can use it to test our model’s ability to link clinical trial and MEPS data. Specifically,
we can compute the probability of the clinical trial variables for the linked patients conditioned on their MEPS variables
(which were observed in the training set).

We cannot directly compare to the two neural network generative models from Experiment 3 as they do not naturally support
conditional generation. Instead, we compare to Generalized Linear Models (GLMs), which are the norm in clinical trial
analyses (Food and Drug Administration, 2023). We fit a separate GLM to the training data to predict each PDS variable
using the MEPS variables, and handle missing predictors by performing complete case analysis. The linked Sanofi study has
10 variables that were not present in the MEPS data—to avoid mixing probabilities and densities in the analysis we drop the
single continuous column so that we’re predicting the joint probability of 9 categorical variables (barring missing entries)
for each row, as detailed in A.3 and Figure 1.
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