
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Learning Generative Population Models From Multiple Clinical Datasets
Via Probabilistic Programming

Anonymous Authors1

Abstract
Accurate, efficient generative models of clini-
cal populations could accelerate clinical research
and improve patient outcomes. For example,
such models could infer probable treatment out-
comes for different subpopulations, generate
high-fidelity synthetic data that can be shared
across organizational boundaries, and discover
new relationships among clinical variables. Us-
ing Bayesian structure learning, we show that it
is possible to learn probabilistic program models
of clinical populations by combining data from
multiple, sparsely overlapping clinical datasets.
Through experiments with multiple clinical trials
and real-world evidence from census health sur-
veys, we show that our model generates higher
quality synthetic data than neural network base-
lines, supports more accurate inferences across
datasets than traditional statistical methods, and
can be queried more efficiently than both, open-
ing up new avenues for accessible and efficient
AI assistance in clinical research.

1. Introduction
Clinical research and practice both depend on patterns and
predictions gleaned from data. There has been growing inter-
est in using machine learning to analyze such data at scale
(Bourne et al., 2015), potentially accelerating clinical re-
search and improving treatment outcomes—for instance, by
analyzing heterogeneous treatment effects (Chernozhukov
et al., 2018; Goldstein & Rigdon, 2019), generating syn-
thetic control arms for clinical trials (Popat et al., 2022;
Yoshino et al., 2023), or discovering new relationships be-
tween clinical variables (Su et al., 2013).

A promising avenue to scale these analyses is to learn gen-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the ICML 2024 Workshop
on Accessible and Efficient Foundation Models for Biological
Discovery. Do not distribute.

erative models that draw on many data sources, such as
multiple clinical trials and real-world evidence stemming
from surveys or electronic health records (Sherman et al.,
2016). The traditional statistical methods used to analyze
clinical trials (Food and Drug Administration, 2023) are fast
and interpretable, but typically place restrictive assumptions
on the data distribution—such as linearity, homoskedasticity,
and normality—that are violated when integrating data from
multiple sources. Conversely, deep generative models pro-
vide a flexible framework for modeling the data-generating
process, achieving impressive results in unstructured do-
mains such as text and images (Kingma & Welling, 2013;
Vaswani et al., 2017; Goodfellow et al., 2020; Ho et al.,
2020; Papamakarios et al., 2021). But they struggle with
mixed types and sparse data, and lack efficient efficient
ways to perform operations such as computing probabilities,
conditioning, or marginalizing.

We build upon Generative Population Models
(GPMs) (Saad & Mansinghka, 2016), a method that
marries the approaches’ strengths: like traditional statistics,
our models can be queried efficiently; like deep generative
models, they can pool heterogeneous data sources and
accurately model rich multivariate probability distributions.
But unlike (Saad & Mansinghka, 2016), our approach is
implemented via probabilistic programming, particularly
the Sum-Product Programming Language (SPPL) (Saad
et al., 2021), allowing for compact, editable representations
of model and queries, and exact and efficient inference.

This extended abstract makes three contributions. First,
it shows that it is possible to learn generative population
models from multiple breast cancer trials combined with
real-world evidence from census health surveys, despite the
sparse overlaps between these datasets – and that the result-
ing models are more accurate than popular neural network
baselines for modeling tabular data. Second, it shows that
several important kinds of clinically relevant queries can
be encoded naturally in existing probabilistic programming
languages, equipped with generative population models.
Third, it shows that generative population models support
cross-dataset inferences, in some cases more accurately than
transitional statistical methods, and with significantly lower
compute costs for querying.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Learning Generative Population Models From Multiple Clinical Datasets Via Probabilistic Programming

Figure 1. Generative Population Models for clinical data. We build accurate generative models from multiple sparsely-overlapping
clinical datasets, using Bayesian structure learning (Saad, 2022; Mansinghka et al., 2016; Saad et al., 2019). Model and queries are
represented as probabilistic programs (Saad et al., 2021), making them modularly editable (both by humans and by structure learning
systems), unlike the entangled weights of a neural network model, and also allowing users to perform exact queries efficiently.

2. Generative Population Models (GPMs)
2.1. Tractable Probabilistic Circuits

In order to build generative models from heterogeneous
tabular data sources, we want a class of models that: (i)
supports missing data and mixed type distributions (with
continuous variables such as age and tumor size, and dis-
crete variables such as cancer stage and ethnicity), (ii) can
be conditioned both on discrete and continuous variables,
and (iii) permits fast inference for a broad class of queries.

Probabilistic circuits are a class of models that satisfy these
desiderata while still being universal approximators of prob-
ability densities (see Choi et al. (2020) for a comprehensive
review). A probabilistic circuit is represented as a tree
that serves both as a sampler and a density evaluator for a
fixed-dimensional probability distribution over Rn. The tree
contains three types of nodes: sum, product, and leaf. Sum
nodes are mixtures with density P+(x) =

∑n
i=1 wiPi(x);

when sampling, they are traversed by visiting one child i at
random with probability proportional to wi. Product nodes
are factorizations P∗(x) =

∏n
i=1 Pi(xscope(i)); when sam-

pling, they are traversed by visiting all children. Leaf nodes
PL(x) are “base distributions”, which admit both tractable
density computation and sampling.

We implement probabilistic circuits using the Sum-Product
Probabilistic Language (SPPL, Saad et al. (2021)). Beyond
the advantages of probabilistic circuits discussed above,
SPPL provides automated compositional queries, which we

use to instantiate complex queries as seen in Figure 1. One
can also use SPPL as a backend through different querying
frontends, such as GenSQL (Huot et al., 2024), which uses
a SQL-like DSL allowing more complex query workflows.

2.2. Bayesian Structure Learning

Although non-Bayesian structure learning algorithms exist
for probabilistic circuits (Gens & Pedro, 2013; Peharz et al.,
2020; Nock & Guillame-Bert, 2022; Watson et al., 2023;
Nock & Guillame-Bert, 2023), recent experiments have
shown that Bayesian structure learning with non-parametric
priors can—perhaps surprisingly—outperform these non-
Bayesian methods (Saad & Mansinghka, 2021). More-
over, clinical datasets are often messy and noisy, and only
sparsely overlapping after harmonization (i.e., the process
of bringing many disparate datasets to a shared space); in
this regime, it is natural to take a Bayesian structure learning
approach (Saad et al., 2019; Saad, 2022). We therefore infer
the structure and parameters of a nested product-of-sums
probabilistic circuit by doing Bayesian inference using a
hierarchical nonparametric prior (Mansinghka et al., 2016).

2.3. Additional Challenges

Aside from learning the model, there are two key challenges
to building generative models of clinical populations in
practice that warrant addressing.

Challenge 1: Integrating Heterogeneous Datasets. In or-
der to use data from multiple sources as input to our model,

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Learning Generative Population Models From Multiple Clinical Datasets Via Probabilistic Programming

Figure 2. Data harmonization: (a) Collected datasets: shared variables for the 7 datasets used. Columns are represented along the
x-axis, studies are color-coded. (b) Harmonized data matrix: block sparsity pattern for the full harmonized data matrix (n=21,221):
rows represent patients, columns represent variables. Rows are colored by study, transparent cells are missing data.

Figure 3. (a) Synthetic data quality: KL divergence between test data and synthetic data for the different models, for column pairs and
columns. (b) Example 1D distribution for the variable “Histological grade”, (c) Example 2D distribution for the pair of variables
“Highest degree” and “Health insurance coverage indicator”.

we need to harmonize the datasets such that they can be
coalesced into a single, block-sparse table (see Figure 2
(a) for an illustration of the different variables across the
data sources we used and (b) for the resulting data matrix).
Harmonization is an extremely time-consuming process,
especially for clinical trials, which vary greatly in their col-
lected information, variable coding, and even file structures.
We tackle harmonization by designing a domain-specific lan-
guage (DSL) that handles a wide range of the most common
variable transformations across datasets and crafting a novel
Large Language Model “in-the-loop” workflow to assist in
writing harmonization programs in our DSL (see Appendix).
All resulting harmonization programs are manually assessed
by two humans from our author team.

Challenge 2: Efficient Querying. A second key challenge
is querying a learned model: after learning from available
datasets, we must be able to express a wide range of ques-
tions we might ask the model, and efficiently compute an-
swers to those. Here, our model relies on SPPL both for
representing queries (see Figure 1) and for answering them
exactly with small runtimes (see Figure 4 (c)).

3. Experiments
Data

We harmonize five clinical trials in the Project DataSphere
platform (Green et al., 2015) as well as data from the Medi-
cal Expenditure Panel Survey (Cohen et al., 2009) collected
by the American Census Bureau, and a linked dataset which
connects patient information from a held-out clinical trial
with administrative data Cohen & Unangst (2018). Our
harmonized data comprises n=21221 rows, each represent-
ing a patient, and 45 columns, each representing a patient
attribute (e.g., histological grade, tumor size, age, highest
level of education attained; see Figure 2(a) and (b)). Addi-
tional details on our harmonization process are included in
the Appendix. We hold out the linked dataset for experiment
3.3, and for the rest of the data use a 70/30 train/test split,
randomized over all patients (across trials).

3.1. Synthetic Data Quality

We compare our model to two tabular neural networks gen-
erative models – a Generative Adversarial Network (CT-
GAN) and a Variational Autoencoder (TVAE) (Xu et al.,

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Learning Generative Population Models From Multiple Clinical Datasets Via Probabilistic Programming

Figure 4. (a) Cross-dataset prediction: Four randomly picked rows containing shared variables in the manually linked data from (Cohen
& Unangst, 2018) along with samples of GLM predictions of linked clinical trial variables conditioned on shared variables—the prediction
task in Experiment 3.3. (b) Cross-dataset prediction accuracy: Model-wise probability of clinical trial data variables conditioned on
survey data variables for held-out linked data. Higher log probability is better. Error bounds represent standard deviation across rows (i.e.,
patients). (c) Cross-dataset query efficiency: Model-wise bias – the absolute difference between a model’s true query probability and its
estimated probability – over time for the query “What is the probability of a black patient in the northeast with primary tumor stage T4
being progesterone receptor positive?”.

2019). Figure 2(a) shows GPMs consistently outperform
neural baselines. Figure 3(b) and (c) show examples of
marginal distributions on the test data: we find that the
neural baselines often exhibit mode-seeking behavior or
greatly underfit the data, whereas GPMs capture qualitative
patterns throughout. In particular, GPMs most improve fit
over neural baselines for the variables: cancer stage, health
insurance coverage, EQ-5D (a quality of life score), and
the survey questions of whether a patient thinks they can
overcome their illness without medical help and whether
health insurance was not worth the cost.

3.2. Query Efficiency

We assess the efficiency of querying each model by com-
puting the probability of an event under a rare condition.
Figure 4 (c) shows that the neural network baselines ad-
mit significant bias even after tens of seconds of inference
as they approximate the query by sampling, in contrast to
GPMs which can compute exact results after only a tenth
of a second. While GLMs also produce exact results, they
take rougly twice as much time as GPMs as they need to be
trained from scratch for every query.

3.3. Cross-Dataset Inferences

We assess GPM’s ability to perform cross-dataset inferences,
by evaluating against linked data which connects patient
information from a held-out clinical trial with administrative
data Cohen & Unangst (2018) (see Appendix A.3 and B.3).
We compare against Generalized Linear Models (GLMs),

which are commonly used in clinical trial analyses (Food
and Drug Administration, 2023). Figure 4 (b) shows that
the linked data is approximately three orders of magnitude
more likely under GPMs than under GLMs. GPMs also
achieve much tighter variance than GLMs.

4. Discussion
Our work demonstrates that it is possible to learn prob-
abilistic programs that (i) generatively model sparsely-
overlapping clinical datasets, (ii) predict clinically-
meaningful attributes as or more accurately than neural and
statistical baselines, and (iii) allow efficient probabilistic
querying about clinical sub-populations. More research is
needed to scale our approach into a global model of not
just cancer but clinical populations more broadly. Chal-
lenges include automating data harmonization; handling
high degrees of sparsity and low-overlap in Bayesian struc-
ture learning; simultaneously cleaning and modeling data
(perhaps leveraging probabilistic programming approaches
such as PClean (Lew et al., 2021)); and learning richer
probabilistic programs that simultaneously reduce compute
cost and improve predictive accuracy (Saad & Mansinghka,
2021). GPMs are poised to unlock new possibilities for
AI chatbots that can help empower doctors and patients to
better navigate diagnosis, prognosis, and personalized treat-
ment. For instance, GPMs could be used as “world models”
of cancer to ground conversational AI expert systems (Wong
et al., 2023) and support controlled generation and parsing
between natural language and the probabilistic programs
illustrated in this paper (Lew et al., 2023).

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Learning Generative Population Models From Multiple Clinical Datasets Via Probabilistic Programming

References
Bourne, P. E., Bonazzi, V., Dunn, M., Green, E. D., Guyer,

M., Komatsoulis, G., Larkin, J., and Russell, B. The
NIH Big Data to Knowledge (BD2K) initiative. Journal
of the American Medical Informatics Association, 22(6):
1114–1114, 11 2015. ISSN 1067-5027. doi: 10.1093/
jamia/ocv136. URL https://doi.org/10.1093/
jamia/ocv136.

Chernozhukov, V., Demirer, M., Duflo, E., and Fernandez-
Val, I. Generic machine learning inference on heteroge-
neous treatment effects in randomized experiments, with
an application to immunization in india. Technical report,
National Bureau of Economic Research, 2018.

Choi, Y., Vergari, A., and Van den Broeck, G. Probabilistic
circuits: A unifying framework for tractable probabilistic
models. pp. 6, 2020. URL http://starai.cs.
ucla.edu/papers/ProbCirc20.pdf.

Cohen, J. W., Cohen, S. B., and Banthin, J. S. The medical
expenditure panel survey: a national information resource
to support healthcare cost research and inform policy and
practice. Medical care, 47(7 Supplement 1):S44–S50,
2009.

Cohen, S. B. and Unangst, J. Data integration innovations to
enhance analytic utility of clinical trial content to inform
health disparities research. Frontiers in Oncology, 8:365,
2018.

Food and Drug Administration. Adjusting for covariates
in randomized clinical trials for drugs and biological
products. Technical Report FDA-2019-D-0934, 10001
New Hampshire Ave., Hillandale Bldg., 4th Floor, Silver
Spring, MD, 2023.

Gens, R. and Pedro, D. Learning the structure of sum-
product networks. In Dasgupta, S. and McAllester, D.
(eds.), Proceedings of the 30th International Conference
on Machine Learning, volume 28 of Proceedings of Ma-
chine Learning Research, pp. 873–880, Atlanta, Georgia,
USA, 17–19 Jun 2013. PMLR.

Goldstein, B. A. and Rigdon, J. Using machine learning
to identify heterogeneous effects in randomized clinical
trials—moving beyond the forest plot and into the forest.
JAMA network open, 2(3):e190004–e190004, 2019.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Green, A. K., Reeder-Hayes, K. E., Corty, R. W., Basch, E.,
Milowsky, M. I., Dusetzina, S. B., Bennett, A. V., and

Wood, W. A. The project data sphere initiative: accelerat-
ing cancer research by sharing data. The oncologist, 20
(5):464–e20, 2015.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in Neural Information Process-
ing Systems, 33:6840–6851, 2020.

Huot, M., Ghavamizadeh, M., Lew, A. K., Schaechtle, U.,
Freer, C. E., Shelby, Z., Rinard, M. C., Saad, F. A., and
Mansinghka, V. K. Gensql: A probabilistic programming
system for querying generative models of database tables.
In PLDI 2024: Proceedings of the 45th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, volume 8. ACM, 2024.

Kingma, D. P. and Welling, M. Auto-encoding variational
Bayes. arXiv preprint arXiv:1312.6114, 2013.

Lew, A., Agrawal, M., Sontag, D., and Mansinghka, V.
Pclean: Bayesian data cleaning at scale with domain-
specific probabilistic programming. In International Con-
ference on Artificial Intelligence and Statistics, pp. 1927–
1935. PMLR, 2021.

Lew, A. K., Zhi-Xuan, T., Grand, G., and Mansinghka,
V. K. Sequential monte carlo steering of large language
models using probabilistic programs. arXiv preprint
arXiv:2306.03081, 2023.

Mansinghka, V., Shafto, P., Jonas, E., Petschulat, C., Gasner,
M., and Tenenbaum, J. B. Crosscat: A fully bayesian
nonparametric method for analyzing heterogeneous, high
dimensional data. Journal of Machine Learning Research,
17(138):1–49, 2016.

Nock, R. and Guillame-Bert, M. Generative trees: Adver-
sarial and copycat. arXiv preprint arXiv:2201.11205,
2022.

Nock, R. and Guillame-Bert, M. Generative forests. arXiv
preprint arXiv:2308.03648, 2023.

OpenAI. ChatGPT, 2024. URL https://openai.
com/blog/chatgpt.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed,
S., and Lakshminarayanan, B. Normalizing flows for
probabilistic modeling and inference. Journal of Machine
Learning Research, 22(57):1–64, 2021.

Peharz, R., Vergari, A., Stelzner, K., Molina, A., Shao, X.,
Trapp, M., Kersting, K., and Ghahramani, Z. Random
sum-product networks: A simple and effective approach
to probabilistic deep learning. In Uncertainty in Artificial
Intelligence, pp. 334–344. PMLR, 2020.

5

https://doi.org/10.1093/jamia/ocv136
https://doi.org/10.1093/jamia/ocv136
http://starai. cs. ucla. edu/papers/ProbCirc20. pdf
http://starai. cs. ucla. edu/papers/ProbCirc20. pdf
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Learning Generative Population Models From Multiple Clinical Datasets Via Probabilistic Programming

Popat, S., Liu, S. V., Scheuer, N., Hsu, G. G., Lockhart,
A., Ramagopalan, S. V., Griesinger, F., and Subbiah, V.
Addressing challenges with real-world synthetic control
arms to demonstrate the comparative effectiveness of
pralsetinib in non-small cell lung cancer. Nature commu-
nications, 13(1):3500, 2022.

Saad, F. and Mansinghka, V. K. A probabilistic pro-
gramming approach to probabilistic data analysis. In
Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.
cc/paper_files/paper/2016/file/
46072631582fc240dd2674a7d063b040-Paper.
pdf.

Saad, F. A. and Mansinghka, V. K. Hierarchical infinite
relational model. In Uncertainty in Artificial Intelligence,
pp. 1067–1077. PMLR, 2021.

Saad, F. A., Cusumano-Towner, M. F., Schaechtle, U., Ri-
nard, M. C., and Mansinghka, V. K. Bayesian synthesis
of probabilistic programs for automatic data modeling.
Proceedings of the ACM on Programming Languages, 3
(POPL):1–32, 2019.

Saad, F. A., Rinard, M. C., and Mansinghka, V. K. SP-
PLs: probabilistic programming with fast exact symbolic
inference. In Proceedings of the 42nd acm sigplan in-
ternational conference on programming language design
and implementation, pp. 804–819, 2021.

Saad, F. A. K. Scalable Structure Learning, Inference, and
Analysis with Probabilistic Programs. PhD thesis, Mas-
sachusetts Institute of Technology, 2022.

Sherman, R. E., Anderson, S. A., Dal Pan, G. J., Gray,
G. W., Gross, T., Hunter, N. L., LaVange, L., Marinac-
Dabic, D., Marks, P. W., Robb, M. A., et al. Real-world
evidence—what is it and what can it tell us. N Engl J
Med, 375(23):2293–2297, 2016.

Su, C., Andrew, A., Karagas, M. R., and Borsuk, M. E.
Using bayesian networks to discover relations between
genes, environment, and disease. BioData mining, 6:
1–21, 2013.

Van Buuren, S. and Groothuis-Oudshoorn, K. mice: Multi-
variate imputation by chained equations in r. Journal of
statistical software, 45:1–67, 2011.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Watson, D. S., Blesch, K., Kapar, J., and Wright, M. N.
Adversarial random forests for density estimation and
generative modeling. In Ruiz, F., Dy, J., and van de
Meent, J.-W. (eds.), Proceedings of The 26th Interna-
tional Conference on Artificial Intelligence and Statis-
tics, volume 206 of Proceedings of Machine Learn-
ing Research, pp. 5357–5375. PMLR, 25–27 Apr
2023. URL https://proceedings.mlr.press/
v206/watson23a.html.

Wong, L., Grand, G., Lew, A. K., Goodman, N. D., Mans-
inghka, V. K., Andreas, J., and Tenenbaum, J. B. From
word models to world models: Translating from natural
language to the probabilistic language of thought. arXiv
preprint arXiv:2306.12672, pp. arXiv–2306, 2023.

Xu, L., Skoularidou, M., Cuesta-Infante, A., and Veera-
machaneni, K. Modeling tabular data using conditional
gan. Advances in neural information processing systems,
32, 2019.

Yoshino, T., Shi, Q., Misumi, T., Bando, H., Wakabayashi,
M., Raeisi, M., Andre, T., and de Gramont, A. A synthetic
control arm for refractory metastatic colorectal cancer:
the no placebo initiative. Nature Medicine, 29(10):2389–
2390, 2023.

6

https://proceedings.neurips.cc/paper_files/paper/2016/file/46072631582fc240dd2674a7d063b040-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/46072631582fc240dd2674a7d063b040-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/46072631582fc240dd2674a7d063b040-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/46072631582fc240dd2674a7d063b040-Paper.pdf
https://proceedings.mlr.press/v206/watson23a.html
https://proceedings.mlr.press/v206/watson23a.html

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

Learning Generative Population Models From Multiple Clinical Datasets Via Probabilistic Programming

A. Additional Details on Data and Processing
A.1. DSL for Data Harmonization

As we discuss, a crucial first step to learning a model over multiple heterogenous data sets is to harmonize bring them to a
shared space. We introduce a new domain specific language (DSL) for reasoning about harmonization. In particular, we
support four fundamental harmonization operations remap, discretize, and identity. We sourced these operations
by taxonomizing the kinds of harmonization tasks that we found ourselves performing while manually harmonizing patient
data.

Our harmonization procedure works as follows. First, the harmonizer (or respective stakeholder) provides a series of target
variables that they want to be included in the final data, along with a set of target values that the variable takes on (e.g., all
possible cancer stages or the respective range of a continuous variable). Ideally, this would be any possible variable covered
in the data; for now, we filter these to variables with reasonable coverage.

Harmonization for each dataset then proceeds with finding the variable(s) in the observed data that correspond to each
of the target variables (if present). Once matched, the form of corruption from the target variable to the emitted variable
is categorized. Herein, our harmonization DSL comes to the foreground. If the observed variable employs a different
categorization than the target (say, referring to a biomarker as being “on” or “off” rather than “positive” or “negative”)
or coarsens the variable (e.g., storing stage as a patient being “stage IV” or “not stage IV”), the remap operation lets
the harmonizer specify a dictionary mapping the target variables to how they are observed (see the LLM prompt for an
example). Relatedly, if the target variable is a continuous value (like age) but stored in the observed data in discrete bins,
the discretize type lets the user specify the binning transform. Lastly, if the target and observed variables share the
same space, the identity operation indicates no change is needed. We plan to extend our DSL to support opertions like
convert if the target and observed variables are both continuous but stored in different units, such that the user can specify
the transformation function (which is a common when reasoning about lab tests), combine to support reasoning about
cases where two variables are combined in the observed data (e.g., estrogen and progestrone markers) and aggregate to
support reasoning over aggregated population information.

We then read in the resulting harmonization record (a json) to our harmonization tool, which parses the resulting entries and
in the case of an ill-posed mapping (e.g, coarser observed variables), samples from a uniform distribution over the options.
Our tool then merges the resulting datasets into a single data file. We emphasize that this tool is preliminary; future work
could better automate type checking and handling of uncertainty (e.g., smarter priors). However, we see immense promise
in efficiency gains that can ensue from automating parts of the harmonization pipeline.

Additionally, our DSL supports more structured reasoning about the harmonization process. As a nice corrolate, we can
use an LLM (e.g., ChatGPT(OpenAI, 2024)) as a first-pass parsing module from relevant dataset documentation1. We
include our prompt below. We emphasize here, however, that LLMs are in-the-loop of a human-driven harmonization. Two
authors from our author team manually inspect and intervene on the resulting harmonization parsers, where necessary. We
observe several failure modes in the LLM parsing that necessitate human intervention, e.g., making up variables that did
not exist, inappropriately matching observed and target columns, or pulling the wrong coding information (as some data
dictionaries provide text on multiple coding schemes per variable). Nonetheless, we believe our harmonization pipeline –
and importantly, conceptual cast of a DSL – can support more principled, efficient harmonization going forwards.

A.2. LLM Prompting

We prompt ChatGPT with a variant of the following, where “breast cancer variables.pdf” is our target set of variables and
ideal target coding.

Prompt “Your task is to write a json file that maps all the idealized columns listed in the pdf “breast cancer vars.pdf” into
the corresponding materialized column names references in the data dictionary “data dictionary.pdf”. The json file should
have the following structure:

{"null_values": [str1, str2...], "emissions": [{ "idealized_column_name":
idealized_column1, "materialized_column_name": materialized_column1, "emission": "
identity" }, { "idealized_column_name": idealized_column2, "materialized_column_name":
materialized_column2, "emission": "remap", "mapping": {idealized_column_level1:

1Each PDS clinical trial often comes with a “data dictionary” providing information on the variables collected.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Learning Generative Population Models From Multiple Clinical Datasets Via Probabilistic Programming

materialized_column_level1, idealized_column_level2: materialized_column_level2} }, {
"idealized_column_name": idealized_column3, "materialized_column_name":
materialized_column3, "emission": "discretize", "bins": [10, 20, 30], "names": ["0-10"
, "10-20", "20-30", ">30"] }, { "idealized_column_name": idealized_column4,

emission : None , },] }

null values should be a list of all strings that are to be read as missing values in the data dictionary.

emissions should contain column mappings for each of these idealized column names:

age
race
hispanic
country
cancer_stage
tumor_stage_T
tumor_stage_N
tumor_stage_M
er_status
pgr_status
bmi
mastectomy_surgery
survival
progression_free_survival
treatment
tumor_size
tumor_laterality
her2_status
histological_grade
menopause_status
visceral_progression
tissue_progression
bone_progression
treatment_end_reason
pepi_score
prior_hormonal_therapy
prior_chemotherapy
num_positive_lymph_nodes

If there is no matching column, remember to categorize it as None.

Columns mappings can have one of 4 types:

None
variable is not present in the other dataset (no field materialized_column_name)

Identity
no change in variable coding.
signature: {"emission": "identity"}

Remap
Change a categorical variables' levels. "mapping" is a dict mapping from the idealized

column's levels to the materialized column's levels
{"emission": "remap", "mapping": {idealized_column_level1: materialized_column_level1,

...}}
Discretize

Discretize a continuous variable. "bins" is a list of N values along which the
continuous variable will be split, "names" is a list of N+1 values which will be
the names of the resulting discrete variables.

{"emission": "discretize", "bins": [x1, x2...], "names": [name1, name2, name3...]}

First, write out a rationale for any tricky conversions. Then write your file below after the line ”—-FILE—“.

In the file, WRITE JSON ONLY. There should be one entry for each of the idealized column names listed above. And at
most one self-map for each entry (though there may be none). If you need to think while writing, feel free to add a new key
in each entry called ”comments“.”

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Learning Generative Population Models From Multiple Clinical Datasets Via Probabilistic Programming

A.3. Linked Data

In the context of our oncology data, linked data are datasets wherein patient information from clinical trials are “matched”
in some way with similar people from another dataset such that additional attributes are included for each patient. This takes
the form of adding more columns (variables) to the clinical trial, wherein each patient has more information “linked” to
them from another data source (e.g., bringing in their likely socioeconomic status, highest level of education attained, etc).
Here, we consider the Sanofi clinical trial linkage to MEPS administrative survey data from Cohen & Unangst (2018).

As can be seen in Figure 2, three variables are shared (“bmi”, “age”, and “race”) and nine other clinical variables are linked
which we predict (“estrogen receptor status”, “progesterone receptor status”, “survival”, “her-2 status”, “cancer stage”,
“tumor stage (T)”, “tumor stage (N)”, and two treatments – “taxane” and “anthracycline”).

B. Additional Modeling Details
B.1. Neural Baselines

We need to make a few amendments to our setup in order to assess the neural network baselines. As the neural network
models cannot model missing data, we need to run an additional step for the baselines; we use Multiple Imputation with
Chained Equations (Van Buuren & Groothuis-Oudshoorn, 2011) with a random forest regressor.

B.2. Evaluation of Synthetic Data Quality

Further, while the most natural way to assess the quality of the learned generative models is to compute the probability of
the test data under each model, unfortunately, the neural network baselines do not support that operation: the evidence
lower-bound in our TVAE baseline is just an approximation to that probability, and the CTGAN has no notion of the
probability of a sample. Since all models support sampling, we instead generate synthetic data from each model, and then
compute the KL divergence between columns and column pairs in the test data and the synthetic data—approximating the
joint distribution by way of marginals. We filter out columns and column pairs which have fewer than 100 patients with
recorded data, and discretize continuous columns by quintiles.

B.3. Additional Details on Linked Data Experiment

We consider the same set of clinical trials as in our synthetic data experiment, and add an additional component focused on
linked data (as described in A.3) to permit exploration of cross-dataset inferences. Importantly, this clinical trial was not
present in our training set. As such, we can use it to test our model’s ability to link clinical trial and MEPS data. Specifically,
we can compute the probability of the clinical trial variables for the linked patients conditioned on their MEPS variables
(which were observed in the training set).

We cannot directly compare to the two neural network generative models from Experiment 3 as they do not naturally support
conditional generation. Instead, we compare to Generalized Linear Models (GLMs), which are the norm in clinical trial
analyses (Food and Drug Administration, 2023). We fit a separate GLM to the training data to predict each PDS variable
using the MEPS variables, and handle missing predictors by performing complete case analysis. The linked Sanofi study has
10 variables that were not present in the MEPS data—to avoid mixing probabilities and densities in the analysis we drop the
single continuous column so that we’re predicting the joint probability of 9 categorical variables (barring missing entries)
for each row, as detailed in A.3 and Figure 1.

9

