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SUMMARY

The identity and degree of heterogeneity of glial
progenitors and their contributions to brain tumor
malignancy remain elusive. By applying lineage-tar-
geted single-cell transcriptomics, we uncover an
unanticipated diversity of glial progenitor pools
with unique molecular identities in developing brain.
Our analysis identifies distinct transitional interme-
diate states and their divergent developmental
trajectories in astroglial and oligodendroglial line-
ages. Moreover, intersectional analysis uncovers
analogous intermediate progenitors during brain
tumorigenesis, wherein oligodendrocyte-progenitor
intermediates are abundant, hyper-proliferative,
and progressively reprogrammed toward a stem-
like state susceptible to further malignant transfor-
mation. Similar actively cycling intermediate
progenitors are prominent components in human
gliomas with distinct driver mutations. We further
unveil lineage-driving networks underlying glial
fate specification and identify Zfp36l1 as necessary
for oligodendrocyte-astrocyte lineage transition and
glioma growth. Together, our results resolve the
dynamic repertoire of common and divergent glial
progenitors during development and tumorigenesis
and highlight Zfp36l1 as a molecular nexus for
balancing glial cell-fate decision and controlling
gliomagenesis.
INTRODUCTION

Abnormal development of glial progenitors, including astrocyte

lineage precursors and oligodendrocyte precursor cells

(OPCs), contributes to tumorigenesis and various neurological

diseases (Gallo and Deneen, 2014; Zong et al., 2015). Although

single-cell analysis of human glioma tissues has been reported

(Filbin et al., 2018; Patel et al., 2014; Tirosh et al., 2016; Ven-

teicher et al., 2017), the tumorigenic cell of origin and the molec-

ular links between native glial progenitors and pre-cancerous or

neoplastic cells during glioma transformation have not been fully

defined. Understanding the transformation potential of diverse

glial progenitors during brain tumorigenesis should reveal ave-

nues to selectively target transformed cells for cancer therapy.

Until recently, studies of glial cells had largely been limited to

the analysis of in vitro cultures or bulk tissues confounded by

heterogeneity (Dugas et al., 2006; Zhang et al., 2014). Astrocytes

can be derived from radial glia or neural stem cells in the devel-

oping CNS (Kriegstein and Alvarez-Buylla, 2009; Molofsky et al.,

2012), although the identity of astrocyte lineage precursors and

their diversity in the developing cortex remain elusive. Astrocyte

heterogeneity has been characterized in different regions of the

adult brain based on cell surface markers (Lin et al., 2017), but

such population-based approaches have likely failed to resolve

the full extent of underlying heterogeneity and progenitor cell

identity. Recent single-cell studies indicate that there is regional

diversity among oligodendrocyte lineage cells in the murine CNS

(Marques et al., 2016, 2018); however, whether the OPC pool ex-

hibits diverse states and lineage plasticity at the specific time

window during brain development and malignancy has not

been entirely defined. These unresolved issues impelled us to
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explore lineage-targeted transcriptomics and intersectional

analysis of glial progenitors and glioma-forming cells at the

single-cell level to identify key cellular components and molecu-

lar determinants for brain tumorigenesis.

Here, we describe targeted high-throughput, single-cell RNA

sequencing (scRNA-seq) on prospective astrocyte lineage cells

and OPC populations isolated by fluorescence-activated cell

sorting (FACS) from neonatal mouse cortices. We found that

astrocyte lineage cells are much more dynamic than previously

appreciated in the developing cortex and uncovered a transi-

tional progenitor population during astrocyte lineage develop-

ment. In contrast to the astrocyte lineage, the progenitors of

oligodendrocytes exhibited a fate-restricted continuum that en-

compassed a primitive OPC intermediate population prior to

OPC commitment in the neonatal cortex. Application of

scRNA-seq to a murine model of glioblastoma (GBM) revealed

that primitive OPC intermediates disproportionately contributed

to glioma formation. Analyses of different tumorigenic phases

suggested that reprogramming of the OPC intermediates into a

stem-like state, rather than direct stem-cell proliferation,

resulted in malignant transformation. Similar actively cycling

oligodendrocyte-progenitor intermediates were prominent com-

ponents in human gliomas caused by distinct driver mutations. A

machine-learning algorithm identified an RNA-binding protein,

Zfp36l1, as a critical regulator of glial fate specification and

glioma growth, suggesting that this network could be targeted

to develop a lineage-specific therapy for malignant glioma.

RESULTS

Single-Cell Transcriptomics Reveals Distinct Glial
Progenitors in Developing Brain
Human GFAP promoter-driven GFP expression in hGFAP-GFP

transgenic brains has been previously shown to mark astrocyte

lineage cells (Ge et al., 2012; Zhuo et al., 1997). We performed

droplet-based scRNA-seq (Macosko et al., 2015) on FACS-

sorted GFP+ cells from the neonatal cortices of hGFAP-GFP

animals at P5 and P6, when astrocyte precursors undergo prolif-

eration and differentiation (Ge et al., 2012; Sauvageot and Stiles,

2002; Figure 1A).

Unsupervised clustering using t-distributed stochastic

neighbor embedding (t-SNE) (Macosko et al., 2015) revealed

nine clusters with distinct gene expression signatures (Figures

1B and 1C). Gene ontology analysis (Chen et al., 2009) classified

these clusters into discrete subpopulations, including radial-glia-

like cells, astrocytes, OPCs, neuroblasts, neurons (GABAergic

and glutamatergic), and ependymal cells (Figures 1B and 1C).

Clustering was independently verified with BackSPIN (Marques

et al., 2016) and PAGODA (Fan et al., 2016; Figure S1A).

Among hGFAP-GFP+ cells, 14.6% were astrocytes and 5.4%

were radial glia like (Figure 1D). By subclustering of the astrocyte

lineage group, we identified a cell cluster expressing themarkers

of both astrocytic signature genes (e.g., Slc1a3 and Aldh1l1) and

oligodendrocyte lineage genes (e.g., Olig1 and Olig2; Figures

1B–1D; Lu et al., 2000; Zhou et al., 2000), suggesting that these

may be transitional intermediate glial progenitor cells (iGCs).

A subgroup of iGC population, but not mature astrocytes, that

expressed cell-cycle-related genes (e.g., Mki67) was defined

as cycling iGCs (Figure 1C). The signature genes are highly cell
708 Cell Stem Cell 24, 707–723, May 2, 2019
type specific in distinct glial progenitor cells (Figure 1E). More-

over, t-SNE visualization showed that the astrocyte lineage cells

were segregated into astrocyte, radial-glia-like, and iGC sub-

populations, exhibiting specific signature (Figures 1F and 1G).

We next compared the neonatal astrocytic populations to five

previously identified populations of adult astrocytes. The astro-

cytes in the neonatal cortex were highly correlated with the adult

astrocyte population C (Lin et al., 2017; Figure 1H). The iGC pop-

ulation resembled postnatal radial glia (Hochgerner et al., 2018)

and adult quiescent neural stem cells (NSCs) (Dulken et al., 2017;

Figure S1B), suggesting that iGCs are unique to the immature

astrocyte population in the developing cortex.

Unexpectedly, the hGFAP-GFP+ cells also included cells with

gene signatures associated with committed OPCs, marked by

Pdgfra, and a primitive OPC subpopulation (pri-OPCs), which

expressed low levels of Pdgfra and high levels ofOlig1/2 (Figures

1B–1E). A t-SNE plot based on differential gene expression

revealed these two distinct OPC clusters: OPCs (e.g., Pdgfra+

and Cspg4+) and pri-OPCs (e.g., Ppp1r14b+, Ascl1+, Btg2+,

and Hes6+; Figures 1I and 1J). The pri-OPC population most

closely resembled adult activated NSCs (Dulken et al., 2017; Fig-

ure S1B). An unsupervised pseudo-time analysis using Slingshot

(Fletcher et al., 2017) was consistent with a developmental tra-

jectory from pri-OPC to OPC (Figure 1K), with increased expres-

sion of Pdgfra over the trajectory and high levels of early lineage

genes (e.g., Ppp1r14b) in pri-OPCs (Figure S1C). A fraction of

pri-OPCs and OPCs expressed cell-cycle genes, indicating

that they are proliferating during early oligodendrogenesis (Fig-

ure 1C). The other cell clusters expressed the markers of

neuronal subpopulations, GABAergic (e.g., Dlx1) and glutama-

tergic (e.g., Neurod1) neurons, and ependymal cells (e.g.,

Foxj1 and Wdr52; Figures 1C and S1D).

Immunostaining also indicated the co-expression of neuronal

markers, Sp8 and Dlx2, in a fraction of hGFAP-GFP+ cells in the

developing cortex (Figures S1E–S1G). The presence of neurons

within hGFAP-GFP+ populations may result from perdurance of

GFP expression from ventricular zone neural progenitor cells.

Corroborating Drop-seq data, single-cell sequencing of FACS-

sorted hGFAP-GFP+ cells with SMART-seq of 110 sorted

hGFAP-GFP+ single cells revealed similar cellular clusters

(Figure S1H).

To further investigate cell trajectories during glial cell develop-

ment, we utilized Slingshot, a statistical framework for inferring

branching lineage assignments and developmental distances

(Fletcher et al., 2017) and principal-component analysis (PCA).

The cell lineage development was predicted to start from radial

glia passing through iGCs, after which two distinct trajectories

were identified that led to either anOPCor an astrocytic fate (Fig-

ure 1L). The intermediate iGC populations were located between

astrocytes and OPCs, supporting the hypothesis that iGCs are a

transitional cell type.

In Vivo Validation of Markers of Astrocytes and Their
Lineage Precursors
To validate single-cell clustering, we performed immunostaining

for the neural-cell-type-specific markers in the cortex of the

hGFAP-GFP mice at P5. The GFP+ cells were detected in astro-

cytes marked by GFAP and glutamine synthetase (GS) (Figures

2A and 2B). Consistent with transcriptome analysis, we also



Figure 1. Unsupervised Ordering of the hGFAP-GFP-Derived Cells Reveals Developmental Hierarchy

(A) Scheme for analysis of hGFAP-GFP+ cells using scRNA-seq from neonatal cortices (n = 5 mice).

(B) t-SNE analysis of hGFAP-GFP+ cell clusters.

(C) Heatmap of hGFAP-GFP+ cells ordered as t-SNE (n = 815). Columns, individual cells; rows, genes.

(D) The proportions of distinct clusters among total hGFAP-GFP+ cells.

(E) Dot plot of levels of selected marker genes in subpopulations.

(F and G) t-SNE plots of (F) astrocyte (Astro), radial glia (RG), and iGC and (G) marker genes.

(H) Comparison of astrocyte and iGC clusters with adult astrocyte populations.

(I and J) t-SNE plot of (I) OPC and pri-OPC cells and (J) marker genes.

(K) Pseudo-time ordering of pri-OPCs and OPCs in hGFAP-GFP+ dataset. Red line, the predicted trajectory.

(L) Predicted lineage trajectories from RG-like cells in hGFAP-GFP+ cells.

See also Figure S1 and Table S2.
detected a population of GFP+ cells expressing both astrocytic

markers (e.g., GFAP or Slc1a3) and the oligodendrocyte lineage

marker Olig2 (Figures 2C–2E), suggesting that these are the

transitional iGC population. Furthermore, a proportion of GFP+
cells expressed a radial glia marker Blbp, an OPC marker

PDGFRa, and a pri-OPC marker Ppp1r14b (Figures 2F–2H).

A recent study based on GFP expression in hGFAP-GFP

transgenic cortices at P6 suggested that cortical astroglia result
Cell Stem Cell 24, 707–723, May 2, 2019 709



Figure 2. Identification of hGFAP-GFP Clusters and Astrocyte-Enriched Transcription Factors
(A) Immunolabeling for GFAP and GS in the cortex of P5 hGFAP-GFP mice.

(B) The percentage of indicated cells among hGFAP-GFP+ cells in P5 mouse cortices (n = 4 for GFAP; n = 3 for GS and PDGFRa).

(C) Immunolabeling for GFAP, Olig2, and Slc1a3 from P5 hGFAP-GFP mice.

(D) Zoom on boxed area in (C).

(E) The percentage of Olig2+ and Olig2� cells among hGFAP-GFP+GFAP+ (left) or hGFAP-GFP+Slc1a3+ (right) cells in P5 mouse cortices (n = 3).

(F) Immunolabeling of Blbp in the cortices from hGFAP-GFP mice at P3.

(G) Expression of PDGFRa in the cortices of P5 hGFAP-GFP mice.

(H) Immunolabeling for Ppp1r14b and Olig2 in the cortices of hGFAP-GFP mice at P3.

(I) Immunolabeling for Olig2 and Ki67 from P5 hGFAP-GFP mice.

(J) (Left) Enlarged images of (I) show cells co-labeled with Ki67 (arrows) and cells without Ki67 (arrowheads). (Right) Percentage of Olig2+ and Olig2� cells among

Ki67+ hGFAP-GFP+ double-positive cells is shown (>300 cell counts from 3 cortices).

(legend continued on next page)
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from the local proliferation of astrocytes (Ge et al., 2012). We

therefore analyzed proliferating cells in the hGFAP-GFP cortex

at P5. Remarkably, among hGFAP-GFP+ cells that were prolifer-

ative (Ki67+), we found that 84.2% were positive for Olig2 (Fig-

ures 2I and 2J), indicating that these dividing cells are likely

iGCs or OPCs rather than differentiated astrocytes, consistent

with the gene expression profile clustering analysis (Figure 1C).

In contrast to the neonatal cortex, few iGC-like cells were

detected in adulthood (Figures 2K and 2L).

Single-cell analysis identified a set of regulatory genes en-

riched in astrocyte clusters (Figures S1I and S1J), including tran-

scriptional regulators Bhlhe40 and Prdm16 (Zhang et al., 2014).

To validate their specific expression in astrocytes, we performed

immunostaining in the developing cortex and spinal cord. The

majority of hGFAP-GFP+ cells in the mouse cortex at postnatal

day 5 (P5) (71.3%) were co-immunostained with BHLHE40 (Fig-

ure 2M). Expression of PRDM16 and BHLHE40 was also de-

tected in GS+ astrocyte in mouse spinal cord and human cortical

sections, respectively (Figures 2N–2P). These observations sug-

gest that PRDM16 and BHLHE40 are useful markers of mouse

and human astrocytes.

Single-Cell Analysis Reveals Distinct Oligodendroglial
Progenitor States and a Restricted Lineage Trajectory
To distinguish between two possible trajectories in early glial cell

development—that iGCs transition into pri-OPCs or vice versa—

we utilized scRNA-seq to characterize cellular heterogeneity of

platelet-derived growth factor receptor a (PDGFRa)-expressing

OPCs in the early neonatal cortex. PDGFRa expression has

been shown to mark OPCs in the brain (Woodruff et al., 2001),

so we isolated nuclear-GFP+ presumptive OPCs from the

cortices of PDGFRa-H2bGFP mice (Klinghoffer et al., 2002) at

P1 and P3, when most of the oligodendrocyte lineage cells are

at the immature precursor stage (Figure 3A).

Unsupervised clustering based on gene expression patterns

(Macosko et al., 2015) and gene ontology enrichment analyses

(Chen et al., 2009) revealed eight distinct groups: OPCs; pri-

OPCs; cycling OPCs with a cell-mitotic expression signature;

immature pre-myelinating oligodendrocytes (iOLs); neuroblasts;

cycling neuroblasts; astrocytes; and pericytes (Figures 3A, 3B,

S2A, and S2B). Their gene expression profiles were correlated

to previously identified neural cell types (Zhang et al., 2014; Fig-

ure S2C). The most abundant cell populations were OPCs,

pri-OPCs, and cycling OPCs; only about 1% were iOLs (Fig-

ure 3C). Another rare population (1.4%) had an astrocytic gene

signature (Figures 3B and 3C), consistent with the notion that

very few oligodendrocyte progenitors give rise to astrocyte

lineage cells during normal development (Kang et al., 2010).

Some additional rare cell types were also present, including peri-

cytes, likely derived from PDGFRa+ vasculature, and the lepto-

meninges. Based on incidence and amplitude of signature

gene expression, each delineated cellular cluster had a distinct
(K) Immunolabeling for Olig2 and GFAP or Slc1a3 in adult cortices at P60.

(L) The percentage of GFAP+ or Slc1a3+ among Olig2+ cells at P5 and P60 (>40

(M) Immunolabeling for BHLHE40 in P5 hGFAP-GFP cortices.

(N and O) Immunolabeling for (N) PRDM16 and GS in P14 mouse spinal cord and

(P) Percentage of BHLHE40+ or PRDM16+ in GS+ cells (>300 cell counts from 3

Data are presented as means ± SEM. Scale bars, 50 mm in (A), (C), (G), (I), (K), an
regulatory state (Figure 3D). Subclustering analysis further

showed that PDGFRa-GFP+ progenitors in the oligodendrocyte

lineage were separated into two main clusters of OPCs

(Pdgfrahigh or Cspg4high) and pri-OPCs (Olig2+ and Pdgfra low/

Cspg4low; Figures 3E, 3F, and S2D).

Pseudo-time analysis with Slingshot revealed a trajectory from

pri-OPCs (e.g., Ascl1, Ppp1r14b, and Btg2) to OPCs (e.g.,

Pdgfra, Cspg4, and Epn2) to iOLs (e.g., Plp1, Bmp4, and Neu4;

Figures 3G and 3H) and gene expression dynamics on the

pseudo-temporal axis (Figures 3H and 3I). scRNA-seq of

PDGFRa-GFP+ cells using SMART-seq confirmed this trajectory

(Figures S2E and S2F). Cell-cycle gene signatures appeared in

both pri-OPCs and OPCs, but not in iOLs (Figure 3I). Although

genes enriched in OPCs and iOLs were previously reported

(Marques et al., 2016; Zhang et al., 2014), our data provide a

high-resolution view during early postnatal cortical oligodendro-

genesis and defined the pri-OPC population (Figure 3J). The

gene signature of the cortical pri-OPC population resembled

that of pre-OPCs from the mouse hippocampus at P0 and P5

(Hochgerner et al., 2018; La Manno et al., 2018; Figures 3K

and 3L), although the cortical pri-OPCs are not exactly the

same as the hippocampal pre-OPCs.

Notably, a cluster of PDGFRa-H2bGFP+ cells exhibited gene

expression signatures characteristic of neuroblasts. These cells

had strong expression of the neuronal marker Sp8 but lacked

Olig2 expression (Figures S2G and S2H). The proportion of

Sp8+ cells among PDGFRa-GFP cells was much higher in the

embryonic cortex at embryonic day 14.5 (E14.5) than P3 (Figures

S2I and S2J). Transposase-accessible chromatin (ATAC-seq;

Buenrostro et al., 2015) of PDGFRa-GFP cells isolated from

E14.5 and P5 brains revealed that chromatin of neuronal genes,

such as Dcx, Dlx1/2, and Stmn2, was more accessible at E14.5

than at P5, whereas stronger ATAC-seq peak signals were

detected in OPC/iOL-associated genes (e.g., Olig2, Cnp, and

Nkx6-2) at P5 (Figures S2K–S2M). These observations suggest

that PDGFRa promoter activity is higher in neuroblasts at early

stages than late developmental stages and that GFP+ neuronal

cells are likely due to GFP perdurance from PDGFRa-GFP+

neuroblast precursor cells.

Identification of Transcriptional Regulatory Networks
that Drive Glial Lineage Specification
To identify the transcriptional regulators (TRs) that drive oligo-

dendrocyte or astrocyte lineage commitment, we developed a

machine-learning algorithm that interrogates cell-lineage-driving

TRs based on differentially expressed genes, target binding

potential, and cellular cluster relationships (Figure 4A). This anal-

ysis revealed sets of significantly enriched TRs in OPC and astro-

cyte populations (Figures 4B and 4C; Table S1). For OPC-driving

TR sets, we detected previously known transcriptional regula-

tors of oligodendrocyte fate commitment and differentiation,

including Olig1/2, Sox10, and Nkx2-2 (Dugas et al., 2006), which
0 cell counts from 3 cortices at each stage).

(O) BHLHE40 and GS in human cortices. DAPI, blue. Arrows, co-labeled cells.

samples).

d (M); 20 mm in (F), (N), and (O); 10 mm in (D), (H), (J), and (G) (inset).
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Figure 3. Identification of the Developmental Hierarchy of PDGFRa-GFP-Derived Cells

(A) t-SNE plot of PDGFRa-GFP+ populations (n = 5 per time point).

(B) Heatmap of PDGFRa-GFP+ cells ordered as t-SNE.

(C) The proportions of distinct clusters among total PDGFRa-GFP+ cells.

(D) Dot plot of the expression level of selected marker genes in subpopulations.

(E and F) t-SNE plot of (E) OPC lineage cells and (F) marker genes.

(G) Pseudo-time ordering of pri-OPCs, OPCs, and iOLs in the PDGFRa-GFP+ dataset.

(H) pri-OPC, OPC, and iOL-specific genes along the pseudo-timeline.

(I) Heatmap of expression dynamics among pri-OPCs, OPCs, and iOLs.

(legend continued on next page)
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validated our approach. We also identified factors not previously

shown to function in oligodendrocyte lineage development (e.g.,

Ppp1r14b, Zfp36l1, and Ostf1; Figures 4B and S3A). Among the

candidate driving factors for astrocyte lineage development

were astrocyte-differentiation-associated genes (e.g., Id3, Nfia,

and Sox9), Notch signaling effectors (e.g., Hes5, Hey2, and

Hes1), astrocyte-enriched Prdm16 and Bhlhe40, and potential

developmental regulators (e.g., Rfx4, Trps1, and Gli3; Figures

4C and S3B).

To identify the potential regulators of glial lineage choice,

we focused on a subset of candidate lineage-driving transcrip-

tional regulators that are shared for both OPC and astrocyte

lineage cells (Figures 4D and S3C). Among them, Zfp36l1, en-

coding an RNA-binding zinc-finger protein of the C3H type

(Stumpo et al., 2004), had a much higher lineage-driving poten-

tial in OPCs than astrocytes (Figure 4D). Zfp36l1 is mainly ex-

pressed in oligodendrocyte progenitors (Figure S3D; Marques

et al., 2016). Although a suitable Zfp36l1 antibody for immuno-

histochemistry is not available, mRNA in situ hybridization indi-

cates that Zfp36l1 expression is expressed in subventricular

zone (SVZ) progenitors during early developmental stages

(Figure S3E). Zfp36l1 expression was detected in Ascl1+ SVZ

progenitors and Olig2+ oligodendrocyte lineage cells at the

edge of the SVZ and the boundary of the corpus callosum at

P7 (Figure 4E), suggesting a potential role of Zfp36l1 in regulating

oligodendroglial cell fate commitment.

Lineage-Driving Factor Zfp36l1 Controls
Oligodendrocyte-Astrocyte Lineage Transition
To determine the role of Zfp36l1 in glial fate specification in the

developing brain, we selectively ablated Zfp36l1 floxed alleles

in neural progenitors and radial glia in a Nestin-Cre line (Zhuo

et al., 2001) to generate Zfp36l1fl/fl; Nestin-Cre+/� mice

(Zfp36l1-cKO; Figure 4F). mRNA in situ hybridization revealed

substantial reduction in Zfp36l1 in neural progenitors in the

SVZ and the cortical region at P1 in Zfp36l1-cKOmice compared

to controls (Figure 4G). Zfp36l1-cKO animals were born at the

expected Mendelian frequency; however, Zfp36l1-cKO mice

exhibited substantially enlarged lateral ventricles (Figure 4H).

Immunostaining indicated that numbers of Olig2+ and

PDGFRa+-OPCs and pri-OPCs were reduced in the cortices of

the Zfp36l1-cKO mice at P7 compared to controls (Figures 4I–

4K). Expression of the myelin protein MBP was also diminished

in both the corpus callosum and cortical regions (Figure 4I).

Zfp36l1-cKO mice exhibited generalized tremors, likely due to

the myelination deficiency. Expression of astrocytic markers

GFAP and GS were increased in Zfp36l1-cKO cortices

compared to controls (Figures 4L and 4M), although the numbers

of iGCs were comparable (Figure 4N). To confirm that GS+ and

GFAP+ cells were derived from the Cre-mediated Zfp36lfl/fl

recombined cells, we bred mice bearing Zfp36l1fl/fl and Nestin-

Cre with a tdTomato Cre reporter line. The immunostaining

results showed that the GFAP- and GS-positive cells were co-

labeled with tdTomato+ cells (Figure 4O), indicating that these
(J) Comparison of clusters in PDGFRa-GFP+ profiles with the expression signatu

(K) PCA comparison of iOL, OPC, and pri-OPC clusters in PDGFRa-GFP+ cortex

(L) Correlations based on scaled expression values for comparisons shown in (K

See also Figure S2 and Table S2.
ectopic astrocytes were descended from the Zfp36l1-deleted

progenitors at the expense of OPCs. These results suggest

that Zfp36l1 controls oligodendrocyte-astrocyte fate transition

in the developing brain.

To further validate the machine learning approach, we exam-

ined the function of Ppp1r14b, which exhibits a high potential

for driving OPC lineage progression (Figure 4B). We found that

knockdown of Ppp1r14b in primary OPCs inhibited expression

of myelin genes as well as OPC differentiation into mature oligo-

dendrocytes (Figures 4P–4R), suggesting that Ppp1r14b regu-

lates OPC lineage progression.

Heterogeneous Glial Progenitors in Glioma Revealed by
Single-Cell RNA-Seq
To investigate the cellular diversity in glioma and their relation-

ship with native glial progenitors, we established an animal

model of malignant glioma induced by a DNp53-PDGFB retro-

virus-expressing dominant-negative p53 (DN-p53) and PDGFB,

potent inducers of proneural GBM formation (Lei et al., 2011;

Lu et al., 2016). Brain tumors formed around 3 weeks after ste-

reotaxic delivery ofDN-p53-PDGFB retroviruses into the cortical

white matter at a gliogenic stage P2 (Figure 5A). Tumor tissues

harvested 35 days post-injection (dpi), in the aggressive tumor-

igenic phase, were dissociated into single-cell suspensions

and analyzed by scRNA-seq.

Unsupervised clustering analysis identified eight different

clusters with distinct gene expression signatures characteristic

of pri-OPC-like and iGC-like populations, committed OPCs

(COPs), and immune cell populations, but with low abundance

of astrocytes, radial glia, mature oligodendrocytes, neuronal

cells, and endothelial cells (Figures 5B, S4A, and S4B). The pri-

OPC-like cells scored highly for the proneural GBM gene signa-

ture but low for neural, classical, and mesenchymal signatures

(Verhaak et al., 2010; Figure 5C). The subclustering for neural

cell types identified cellular characteristics that parallel that of

the normal neonatal cortex, including astrocyte-like, iGC-like,

COP-like, pri-OPC-like, cycling OPC (G1/S and G2/M), ependy-

mal cells, and cell populations unique to tumor cells with stress

and hypoxia signatures (Figure 5D). We next compared the

gene expression signatures of glial lineage cells in normal and

malignant brain tumor tissues. A population of cells in the tumor

tissues exhibited a stronger similarity of expression patterns to

pri-OPCs than normal OPCs or iOLs in the developing cortex

(Figure 5E). These ‘‘pri-OPC-like’’ cells had a partial OPC signa-

ture, including PDGFRa expression (Figure 5E). In addition, a cell

population appeared to be correlated to both OPCs and iOLs

(Figure 5E) as COP-like cells. The gene expression profiles of

iGC-like precursors and astrocytes resembled those of the

native developmental counterparts (Figure 5E).

Strikingly, pri-OPC-like cells (e.g., Olig1/2, Ascl1, and

Ppp1r14b) and their mitotic cells in G1/S and G2/M phases

were present in the highest abundance in neural cell types in

the tumor tissues (72.6%; Figure 5F). In addition, the pri-OPC

signature score and their proportion were higher in tumors
res of neural and oligodendrocyte lineage progenitors.

with pre-OPC and OPC populations in P0 and P5 hippocampi.

).
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than in neonatal brains (Figures 5G and 5H), suggesting the

expansion and amplification of pri-OPC-like populations during

tumorigenesis. The unique gene sets in PDGFRa-GFP cell pop-

ulations showed gene signatures enriched in gliogenesis and

oligodendrocyte development (Figures 5I and 5J). In contrast,

the unique gene sets in tumors exhibited pathway components

enriched in GBM, astrocytoma, and stem-cell-related genes

(Figure 5J), suggesting that pri-OPC analogs in the proneural-

like glioma tissues contribute to malignant transformation during

tumorigenesis.

pri-OPC-like Intermediates Exhibit a Transit-Amplifying
Property during Gliomagenesis
t-SNE visualization of glioma cell populations showed that a

large majority of the cells exhibited expression of the signature

genes for pri-OPCs (Figures 6A, 6B, and S4C). To further explore

the identity of pri-OPC-like cells in tumor tissues, we evaluated

expression of stemness signature gene sets related to glioma

formation (Tirosh et al., 2016) in our dataset. Strikingly, we found

that most pri-OPC-like cells expressed stemness signature

markers, such as Sox2, Ccnd2, Sox11, and Chd7, and exhibited

a higher stemness score than committed OPCs, iGC-like cells,

and astrocytes (Figures 6C and 6D). In addition, gene expression

of pri-OPC-like cells in tumors correlated most strongly with the

adult activated NSC signature (Figure S4D) and exhibited the

highest stemness score (Figure S4E). These observations sug-

gest that the pri-OPC-like cells are amplified in the tumor tissues

and acquire stem-cell-like properties.

Further subclustering analysis based on cell-cycle markers

indicated that themajority of pri-OPCs also expressing cell-cycle

genes in G1/S and G2/M phases (Figure 6E). The fraction of

cycling OPCs in G1/S or G2/M phases (34.4%) was substantially

higher than that in PDGFRa-GFP+ or hGFAP-GFP+ OPC popula-

tions from normal neonatal brains (Figure 6F). This increase in

mitotic pri-OPC-like cells in tumors suggests that pri-OPC-like

cells are the transit-amplifying cell population that fuels tumor

growth.

In contrast to native glial populations isolated from normal

developing cortex, in tumors, we detected cells expressing

stress-associated signature genes (Figures 6A, S5A, and S5B)

and hypoxia-associated genes (Figures 6A, S5C, and S5D).
Figure 4. Regulatory Networks Underlying Glial Lineage Specification

(A) Workflow to identify driver genes.

(B and C) The top representative TRs ranked by Z score in (B) OPC and (C) astro

(D) Intersection Z scores of OPC and astrocyte TRs.

(E) Zfp36l1 in situ hybridization combined with Olig2 and Ascl1 immunostaining a

(F) Diagram depicting Nestin-Cre-mediated excision of Zfp36l1 floxed alleles.

(G) In situ hybridization analysis of Zfp36l1 mRNA in the cortical ventricular zone

(H) H&E-stained brain sections from control and Zfp36l1 iKO mice at P14.

(I) Immunolabeling of OLIG2, PDGFRa, and MBP from control and Zfp36l1-cKO

(J and K) The numbers of (J) Olig2+ (left) or PDGFRa+ (right) cells and (K) Ppp1r1

(L) Immunolabeling for GFAP and GS in control and Zfp36l1-cKO cortices at P7.

(M and N) The numbers of (M) GS+ cells and (N) GFAP+/Olig2+ iGC-like cells in

(O) Immunostaining for GFAP and GS with tdTomato in Zfp36l1-cKO;tdTomato c

(P) qRT-PCR analysis of indicated gene expression from rat OPCs after Ppp1r14

(Q and R) Rat OPCs treated with control and Ppp1r14b siRNAs were (Q) immunos

Cells were differentiated with or without T3 after PDGF-AA withdrawal for 72 h.

Data are presented as means ± SEM; n = 3 independent experiments or animals p

1 mm in (H); 100 mm in (G) and (Q); 50 mm in (E), (I), (L), and (O).

See also Figure S3 and Table S1.
These signatures were present in a subpopulation of OPC-like

cells (Figure S5E), consistent with observations in human

gliomas and other tumor tissues (Patel et al., 2014; Puram

et al., 2017). Among glial progenitors, the frequency of Mki67+

cells among Olig2+ or Sox2+ OPC-like intermediates was higher

in tumor tissues compared with frequencies in the developing

cortex (Figure 6G), consistent with an expansion of the pri-

OPC progenitor population during tumorigenesis.

Similar to the heterogeneity of astroglial cells in the developing

cortex, we also identified both astrocyte-like cells (expressing

Gja1 and Aqp4) and iGC-like populations (expressing Olig2

and astrocyte markers Slc1a2 and Slc1a3; Figures S4, S5F,

and S5G). The iGC-like cluster was present at a higher propor-

tion in tumor tissues than normal developing cortex (Figure S5H).

Intriguingly, radial glia markers were hardly detectable in the tu-

mor tissues (Figure S5I), suggesting that radial glia or NSC-like

cells do not actively divide during tumorigenesis in the malignant

glioma model.

Reprogramming of Oligodendrocyte-Progenitor-like
Intermediates toward a Tumorigenic Phenotype during
Tumorigenesis
To better understand the progression of distinct cells during

different phases of gliomagenesis, we examined cellular compo-

sitions of tumor tissues at an early stage of tumorigenesis at dpi

25 in the animal model by scRNA-seq. The clusters of tumor cells

at dpi 25 were similar to those at dpi 35 (Figures S5J–S5L),

whereas immune cells (mainly microglia or macrophages) were

more abundant at dpi 35 than dpi 25 (Figure 6H), suggesting

that the complexity of the tumor microenvironment is higher at

the late stage of tumorigenesis. Interestingly, although the per-

centage of pri-OPC populations among neural cell groups was

comparable (Figure S5M), the pri-OPC-like cells at the late phase

at dpi 35 had a higher correlation coefficient score with respect

to stemness signature genes than at dpi 25 (Figure 6I). In addi-

tion, the ratio of actively cycling cells among pri-OPC-like cells

was significantly higher at dpi 35 than dpi 25, indicating that, at

the later stage, pri-OPC-like cells have higher proliferative

capacity (Figures 6J and 6K). These data suggested that pri-

OPC-like cells undergo reprogramming into a more stem-like

state during the progression of tumorigenesis.
cyte clusters.

t P7.

region of P1 brain from control and Zfp36l1-cKO mice.

cortices at P7.

4b+/Olig2+ pri-OPC-like cells in P7 control and Zfp36l1-cKO cortices.

the cortices of P7 control and Zfp36l1-cKO mice.

ortices at P7. Arrows indicate co-labeled cells.

b depletion.

tained for MBP and Olig2, and (R) percentages of MBP+ OLs were determined.

er genotype; *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not significant. Scale bars,
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Figure 5. Cellular Heterogeneity of Murine Malignant Gliomas Revealed by scRNA-Seq

(A) H&E staining showing the malignant glioblastoma tissue (arrow) at dpi 35. Scale bar: 1 mm.

(B) t-SNE analysis of single cells from glioma core tissues at dpi 35.

(C) (Left) Comparison of OPC-like cells with human GBM subtypes based on TCGA datasets. (Right) Distributions of subtype scores are shown.

(D) Heatmap of mouse glioma cell clusters (excluding immune and endothelial cells). Selected marker genes are displayed on the right.

(E) Pearson’s correlation coefficient between normal and tumor cell populations.

(F) The proportions of distinct identified clusters in single-cell data from glioblastoma.

(G) Distributions of the pri-OPC scores across pri-OPC-like cells from tumors and OPC populations in normal cells.

(H) The ratio of OPC and COP-like to pri-OPC-like cells in PDGFRa, hGFAP-GFP+, and tumor scRNA-seq pools.

(I) Venn diagram depicting the intersection of top 100 marker genes (ranked by p value) in pri-OPC-like subpopulations between PDGFRa-GFP and tumor

datasets.

(J) Gene ontology analysis of unique genes showing p value (�log10) and representative terms.

***p < 0.001; one-way ANOVA with post hoc Tukey’s test.

See also Figure S4 and Tables S2 and S3.
Because glioma cells frequently harbor large-scale chromo-

somal alterations, we estimated copy number variations

(CNVs) from the average expression of genes in individual large

chromosomal regions within each cell (Patel et al., 2014).

Compared with microglia and macrophages within the tumor

lesion, which are non-malignant cells of a distinct lineage and
716 Cell Stem Cell 24, 707–723, May 2, 2019
presumably have ‘‘normal’’ copy numbers, the majority of pri-

OPC-like cells at dpi 35 had extensive copy number aberrations

(Figure 6L). Alterations included copy number gains at loci such

asCcna2,Ccne2, andMcm2, genetic alterations frequently seen

in human gliomas (Brennan et al., 2013). In contrast, at dpi 25,

few CNVs were detected in pri-OPC populations (Figure 6L),



Figure 6. pri-OPCs Are a Transit-Amplifying Tumorigenic Population during Tumorigenesis

(A–C) t-SNE analysis of (A) glia-related cells, (B) pri-OPC marker genes, and (C) stemness-related genes from 35 dpi glioma dataset.

(D) Distribution of stemness genes across major tumor subpopulations.

(E) (Left) Expression of selected cell cycle genes (rows) in individual tumor cells (columns). Cells were ordered by cell-cycle score. (Right) t-SNE plot of G1/S or

G2/M marker genes is shown.

(F) Percentage of cycling OPCs in PDGFRa-GFP, hGFAP-GFP, and tumor cell datasets.

(G) Percentage of proliferating (Ki67+) cells that were Olig2+ (left) and Sox2+ (right) in PDGFRa-GFP and tumor scRNA-seq pools.

(H) Proportions of immune-related cells in single-cell profiles from dpi 25 and 35 mouse gliomas.

(I) Major cell populations (dots) from dpi 25 and 35 tumors scored for the pri-OPC and stemness signatures. Correlation values are in the top right quadrant.

(J) The percentage of actively cycling cells among pri-OPC-like cells in dpi 25 and 35 tumors.

(K) The relative cycling scores of pri-OPC-like cells from dpi 25 and 35 gliomas. Data are presented as means ± SEM.

(L) Ratios of CNVs in pri-OPCs normalized against the ‘‘normal’’ cluster of macrophage and microglia at dpi 25 (above) and dpi 35 (below).

(M and N) t-SNE plot of (M) glia-related cells and (N) pri-OPC-like and stemness marker genes after excluding immune cells in human IDH-O dataset.

(O) Percentage of proliferating cells in pri-OPC-like and other neural cell populations in human glioma datasets.

***p < 0.001; one-way ANOVA with post hoc Tukey’s test in (D), Student’s t test in (K).

See also Figures S5 and S6 and Table S3.
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Figure 7. Zfp36l1 Is Critical for the Initiation and Growth of Glioma

(A) Expression of Zfp36l1 in seven clusters from mouse gliomas.

(B) qRT-PCR quantification of Zfp36l1 in mouse gliomas cells.

(C) Bromodeoxyuridine (BrdU) labeling in control and si-Zfp36l1-treated tumor cells.

(D) Percentages of BrdU+ cells in control and si-Zfp36l1-treated tumor cells.

(E and F) qRT-PCR analysis of (E) proneural and (F) classical tumor-associated genes in primary tumor cells infected by control or Zfp36l1 shRNA.

(G) H&E staining of brain sections of Zfp36l1fl/+ or Zfp36l1fl/fl mice at 30, 60, and 100 dpi. Arrows indicate tumor regions.

(H) Kaplan-Meier survival analysis of control Zfp36l1fl/+ (n = 13) and Zfp36l1fl/fl (n = 15) mice after injection of retrovirus. ***p < 0.001 (log rank test).

(I) Immunostaining of Ki67 within the tumor regions from control and Zfp36l1-iKO mice.

(J) Percentages of Ki67+ cells in control (n = 3) and Zfp36l1-iKO (n = 2) tumors.

(legend continued on next page)
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suggesting that oligodendrocyte progenitor-like cells are pro-

gressively reprogrammed toward a tumorigenic phenotype due

to an increase in genomic instability.

To investigate whether the observations in the mouse glioma

model reflect the tumorigenesis process in human brain tumors,

we analyzed the single-cell transcriptomic signatures of different

human gliomas with distinct driver mutations, including oligo-

dendrogliomas (IDH-O), astrocytoma (IDH-A), GBM, and diffuse

midline gliomas (Filbin et al., 2018; Patel et al., 2014; Tirosh et al.,

2016; Venteicher et al., 2017). We observed a prominent pri-

OPC-like progenitor population expressing pri-OPC markers

ASCL1, PDGFRA, BTG2, and OLIG2 in the human gliomas

compared to committed OPCs and oligodendrocytes (Figures

6M, 6N, and S6). Markedly, the pri-OPC-like populations from

distinct human gliomas exhibited a stemness-associated signa-

ture (Figures 6N and S6) and were the predominant mitotic cell

proportion among neural cells in tumor tissues (Figure 6O).

These observations suggest reprogramming of pri-OPCs to a

primitive and mitotic state endowed with stemness properties

during human glioma tumorigenesis, similar to that observed in

the animal model. Further, this suggests that these human gli-

omas may originate from the same intermediate glial progeni-

tors, particularly pri-OPC-like intermediates. Our observations

suggest that tumorigenesis influences the abundances of the

glial progenitor populations with substantial reprogramming of

OPC-like cells to adopt a ‘‘stemness’’ program during tumori-

genic progression.

Targeting Lineage-Driving Determinant Zfp36l1 Inhibits
the Initiation and Growth of Glioma
Given its requirement for OPC fate specification in the devel-

oping cortex (Figure 4), we hypothesized that Zfp36l1 is critical

for the growth of gliomas, such as proneural GBMs, which

display strong OPC signatures (Verhaak et al., 2010). Zfp36l1

was enriched in pri-OPC-like and cycling pri-OPC-like cells in

our murine proneural GBM model (Lu et al., 2016; Figure 7A).

We inhibited expression of Zfp36l1 in tumor cells isolated from

the mouse glioma tissues using small interfering RNA (siRNA).

Zfp36l1 deficiency significantly decreased the rate of glioma

cell proliferation (Figures 7B–7D). In addition, when tumor cells

were transduced with Zfp36l1 short hairpin RNA (shRNA)

lentiviral vectors, OPC-associated genes were downregulated,

whereas astrocyte-associated signature genes were upregu-

lated (Figures 7E, 7F, and S7A).

To further assess the tumorigenic function of Zfp36l1 in vivo,

we performed microinjection of retrovirus carrying DN-

P53;PDGFB-Cre into the cortical white matter of control and

Zfp36l1fl/fl mice. In the Zfp36l1fl/fl mice, the Cre recombinase

converted Zfp36l1-floxed alleles to complete knockout alleles.
(K) Levels of ZFP36L1 in normal brain (n = 207) and primary GBM (n = 163) from

(L and M) Survival probability of (L) GBM patients and (M) low-grade glioma pati

(N–P) Relative qPCR expression of (N) ZFP36L1 in humanGBMcells (GBM3264) in

qPCR for expression of ZFP36L1, (O) for sphere formation, and (P) sphere numb

(Q and R) Relative qPCR expression of (Q) cell cycle and proneural genes and (

GBM3264 with ZFP36L1 knockdown over control.

Data are presented as means ± SEM; n = 3; ***p < 0.001; **p < 0.01; *p < 0.05; St

(L)–(M). Scale bars, 1 mm in (G); 100 mm in (O); 10 mm in (C) and (I).

See also Figure S7.
Histological analysis revealed that the Zfp36l1-iKO had no

detectable tumormass at dpi 30 or 60, when all the virus-injected

control mice had developed tumors with full penetrance

(Figure 7G). Most control mice died before dpi 60 due to the

extensive growth of tumors; the Zfp36l1-iKO mice had a signifi-

cantly extended survival curve (Figure 7H). Although tumors

were detected in 2 of 15 Zfp36l1-iKOmice at 100 dpi (Figure 7G),

immunostaining showed greatly reduced Ki67+ proliferative cells

in these tumors (Figures 7I and 7J). In addition, there were higher

frequencies of GFAP+ astrocyte-like cells and iGC-like cells and

lower frequencies of pri-OPC-like cells in the Zfp36l1-iKO tumor

tissues than in control tumors (Figures S7B and S7C), consistent

with the role of Zfp36l1 in regulating oligodendroglial-astroglial

fate switch in the developing brain.

Analysis of TCGA (The Cancer Genome Atlas) datasets of

human gliomas showed that ZFP36L1 was expressed at higher

levels in humanGBMs than normal brain (Figure 7K). Importantly,

patients with GBM and low-grade gliomas with high levels of

ZFP36L1 expression exhibited a significantly lower survival

probability than those with low expression levels (Figures 7L

and 7M), indicating that ZFP36L1 may have a pro-oncogenic

role. To examine the effects of ZFP36L1 depletion on human

GBM cell growth, we transduced lentiviral vectors delivering

ZFP36L1 shRNA into patient-derived proneural GBM cells

TS543 and GBM3264 (Lu et al., 2016) to knockdown ZFP36L1

(Figure 7N). The size and number of spheres formed in sh-

ZFP36L1-transduced tumor cells were substantially diminished

compared to controls (Figures 7O and 7P). In addition, cell-cy-

cle-related genes and OPC-associated proneural genes charac-

teristic of GBM were downregulated and expression of

astrocyte-associated signature genes was increased upon

ZFP36L1 depletion (Figures 7Q and 7R). These observations

indicate that ZFP36L1 is critical for murine and human glioma

cell growth and tumor cell fate switch and suggest that a conver-

gent mechanism controls normal gliogenesis and glioma

tumorigenesis.

DISCUSSION

Lineage-Targeted Single-Cell Analysis Uncovered
Common and Divergent Molecular and Cellular
Dynamics of Glial Progenitors and Malignant
Counterparts
Malignant glioma is notoriously heterogeneous at the cellular

level, and tumors consist of a substantial proportion of glial

progenitor-like cells (Tirosh et al., 2016). The single-cell tran-

scriptomic analyses of targeted lineage precursor populations

presented here revealed glial progenitor heterogeneity and two

previously uncharacterized intermediate progenitor cells in the
the TCGA and the GTEx datasets.

ents with high and low or medium expression of ZFP36L1.

fectedwith control or Zfp36l1 shRNA lentivirus for 8 days were evaluated (N) by

er.

R) proneural and classical tumor genes in primary proneural GBM TS543 and

udent’s t test in (B), (D–(F), (J), (K), (N), and (P)–(R), and log-rank test in (H) and
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neonatal brain, namely, pri-OPCs and iGCs. Our unbiased sort-

ing approaches are more likely to capture the complete cell

lineage heterogeneity as compared to cell type assignment

based on known cell markers. Despite the distinct transcriptome

profiling among these glial progenitor populations, it is possible

that these progenitors could be transient states of a more limited

set of glia in a stage-dependentmanner, representing a develop-

mental continuum along the lineage.

Despite the dissimilarity of cell compositions between normal

brain and tumor tissues, we detected pri-OPC-like and iGC-like

cells in tumor tissues, which paralleled their counterparts

observed in the normal developing brain, suggesting that tumor-

igenesis mirrors ontogeny. Importantly, we found that actively

cycling pri-OPC intermediate progenitors are predominant

cellular components in human gliomas caused by distinct

genetic mutations, indicating common molecular and cellular

networks that link normal glial progenitors and their malignant

counterparts. Given that gliomas can occur in different regions

(e.g., hemispheric and midline structures; MacDonald et al.,

2011; Monje et al., 2011), it remains to be defined whether

specific glial precursor cells in different brain regions correlate

with the patterns of gliomagenesis during childhood and

adolescence.

scRNA-Seq Revealed Divergent Developmental
Trajectories and Proliferation Potentials of Glial
Progenitor Intermediates
In the neonatal cortex, hGFAP-GFP marks astrocyte lineage

cells (Ge et al., 2012). In contrast, hGFAP-GFP mainly labels

adult neural stem cells in subependymal zone, SVZ, and dentate

gyrus regions of adult mice (Beckervordersandforth et al., 2010;

Dulken et al., 2017; Hochgerner et al., 2018). Our single-cell anal-

ysis of neonatal cortices reveals that GFP+ cell populations

include astrocytes, OPCs, and neuroblasts, suggesting that a

population of GFP+ cells in the neonatal cortex is derived from

hGFAP-GFP-labeled neural stem cells. Strikingly, we identified

an unexpected iGC population related to the well-known astro-

glial and oligodendroglial cells in the neonatal brain. Cell trajec-

tory analyses indicated that these astroglial and oligodendroglial

lineage ‘‘double-positive cells’’ are most likely immature transi-

tional cells. A recent study suggested a local generation of astro-

cytes through proliferation in the developing cortex (Ge et al.,

2012). However, our single-cell data indicate that an Olig2+

iGC subpopulation, but not astrocytes, expresses cell-cycle-

related genes, suggesting that the proliferating astrocytic pro-

genitors are a population of transitional iGCs rather than

committed or differentiated astrocytes. Our pseudo-timeline

analysis predicted that the intermediate iGCs might lead to as-

trocytic and oligodendrocytic developmental trajectories; thus,

the Olig1/2-expressing iGCs might behave like bipotential glial

progenitors.

PDGFRa-GFP-derived progenitors are mainly confined to

oligodendrocyte lineage cells, suggesting a developmental

fate-restricted continuum along the oligodendrocyte lineage.

Lineage trajectory analysis identified a previously uncharacter-

ized progenitor population as pri-OPCs in the neonatal cortex.

These early pri-OPCs might serve as early oligodendrocyte pro-

genitors with lineage plasticity (Cai et al., 2007; Zhu et al., 2012).

They represent a small population in the adult brain (Figures S7D
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and S7E) and likely reflect a subset of Sox2+/Olig2+ oligoden-

droglial precursor cells (Figure S7F) in adulthood (Gibson et al.,

2014). It is possible that pri-OPCs are not fate restricted in certain

contexts, and theremay be additional layers of heterogeneity not

revealed by these analyses, although pri-OPCs do not appear to

produce astrocyte lineage cells.

FACS isolation of PDGFRa-GFP+ cells from the neonatal

cortex yielded a number of neuronal populations; this was not

the case in this population of cells isolated from juvenile and

adult brains (Marques et al., 2016). The presence of neuronal

markers diminishes over the course of development, suggesting

that PDGFRa-GFPlow cells are neuronal lineage cells driven by

transient PDGFRa promoter activity (Kang et al., 2010). Alterna-

tively, this could be the result of perdurance of GFP expression

from a common precursor of OPCs and neuroblasts expressing

PDGFRa (Rivers et al., 2008), expression of which is turned off in

neuroblasts, even though the GFP expression remains.

Lineage-Driving Determinant Zfp36l1 Is Critical for
Oligodendrocyte-Astrocyte Lineage Transition and
Gliomagenesis
We developed a machine-learning algorithm to identify the

regulatory networks that drive the specification of distinct glial

cell fates. We observed a potential bifurcation of glial sublineage

states that enabled us to identify putative regulators of glial fate

specification. Among the lineage-driving regulators expressed

by both oligodendrocyte and astrocyte lineages, we identified

an RNA-binding protein Zfp36l1 that appears to regulate oligo-

dendrocyte fate specification. Although Zfp36l1 is largely

restricted to OPCs within the oligodendrocyte lineage, it is de-

tected in other lineages, suggesting that Zfp36l1 might have a

function in other cell systems (Hodson et al., 2010; Nasir

et al., 2012).

We also demonstrated a critical role of Zfp36l1 for tumor cell

growth in the murine glioma model and patient-derived GBM

cells. Deletion or downregulation of Zfp36l1 increased astrocytic

gene expression and astrocyte differentiation, suggesting that

Zfp36l1 inhibition may divert the fate of the proliferating tumor

cells with OPC characteristics to astrocyte-like cells and main-

tain them in a postmitotic state. Thus, our data suggest a

commonality of gene regulation between gliogenesis and tumor-

igenesis and indicate that targeting the lineage-driving determi-

nant Zfp36l1 may inhibit glioma cell growth. Future studies of

how the lineage-specific regulatory networks regulate glial line-

age trajectories and brain tumorigenesis may reveal additional

selective treatment vulnerabilities for malignant gliomas.

Reprogramming of pri-OPC Intermediates Results in the
Stem-like Phenotype of Glioma
Although de-differentiation of mature neural cell types could

potentially induce glioma tumorigenesis (Friedmann-Morvinski

et al., 2012), our data suggest that pri-OPC intermediates

undergo a phenotypic shift through reprogramming into a

stem-like state susceptible to further tumor transformation in a

self-reinforcing loop. We observed that the actively cycling cells

were highly overrepresented among these pri-OPC progenitor

intermediates in gliomas. This is in contrast to the traditional can-

cer stem cell model, which posits stem cells as a minority of ma-

lignant cells. The increase of the intermediate iGC population in



tumor tissues compared to normal developing cortices suggests

that nascent astrocyte precursors like iGCs could be poised to

transition into a pri-OPC state, resulting in hyper-proliferation.

Thus, distinct cellular niches might undergo dynamic transitions

over the course of tumorigenesis and contribute to different tu-

mor phenotypes.

Notably, the pri-OPC-like cells were the predominant cycling

cell population in the human gliomas evaluated, resembling the

tumorigenesisprocess in theanimalmodel.Ourobservationssug-

gest that reprogramming and amplification of pri-OPCs to a

cancerous, stem-like phenotype, rather than direct proliferation

of neural stem cells, results in brain tumor pathogenesis and pro-

gression. This is consistent with previous observations that OPCs

are a cell of origin in anatomically distinct gliomas (Liu et al., 2011;

Monje et al., 2011) andwith our recent observation that elimination

ofOlig2+mitoticOPC-likeprogenitorsabrogates tumorgrowth ina

GBM animal model (Lu et al., 2016). Nonetheless, we cannot

conclude thatgliomagenesishasasinglecell of originas theactual

mutation, even in cases where these cells account for the bulk of

the proliferation could be in upstream progenitors.

The single-cell transcriptome data reported here will serve as a

resource for understanding the heterogeneity and identity of

distinct glial progenitors and their contributions to brain tumor

formation. Our findings demonstrate the importance of single-

cell mapping and reconstructing fundamental processes of

progenitor dynamics and plasticity during development and

tumorigenesis. Identification of lineage-specific vulnerabilities

for targeting malignant gliomas is an essential step toward a gli-

oma treatment avenue.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-Olig2 Millipore Cat#AB9610; RRID:AB_10141047

Mouse anti-Olig2 Millipore Cat#MABN50; RRID:AB_10807410

Rat anti-PDGFRa BD Bioscience Cat#558774; RRID:AB_397117

Mouse anti-APC (CC1) Oncogene Research Cat#OP80; RRID:AB_2057371

Goat anti-MBP Santa Cruz biotechnology Cat#sc-13914; RRID:AB_648798

Goat anti-Sp8 Santa Cruz Biotechnology Cat#sc-104661; RRID:AB_2194626

Rabbit anti-Dlx2 Abcam Cat#ab30339; RRID:AB_731969

Mouse anti-Glutamine Synthetase Millipore Cat#MAB302; RRID:AB_2110656

Rabbit anti-Sharp2 Abcam Cat#ab97525; RRID:AB_10680936

Rabbit anti-BHLHE40 Sigma Cat#HPA028922; RRID:AB_2672828

Rabbit anti-PRDM16 LifeSpan BioSciences Cat#LS-B4625; RRID:AB_10797227

Mouse anti-GFAP Sigma Cat#G3893; RRID:AB_477010

Rabbit anti-Ki67 Thermo Fisher Scientific Cat#RM-9106; RRID:AB_2335745

Mouse anti-BrdU BD PharMingen Cat#555627; RRID:AB_395993

Goat anti-GFP Novus Biologicals Cat#NB100-1770; RRID:AB_10128178

Rabbit anti-GFP Thermo Fisher Scientific Cat#A11122; RRID:AB_221569

Rabbit anti-Slc1a3 Novus Biologicals Cat#NB100-1869; RRID:AB_2190597

Rabbit anti-PHI-1 (Ppp1r14b) Santa Cruz Biotechnology Cat#sc-514759;RRID:AB_2797213

Rabbit anti-Ascl1 Abcam Cat#ab74065; RRID:AB_1859937

Rabbit anti-BLBP Abcam Cat#ab32423; RRID: AB_880078

Goat anti-Sox2 Santa Cruz Biotechnology Cat#sc-17320; RRID: AB_2286684

Biological Samples

Mouse cortex, spinal cord This study N/A

Human cortex tissue CCHMC pathology core N/A

Chemicals, Peptides, and Recombinant Proteins

PDGF AA PeproTech Cat#100-13A

bFGF PeproTech Cat#100-18B

Insulin from bovine pancreas Sigma-Aldrich Cat#I6634

DIG RNA Labeling Mix Roche Cat#11277073910

PolyJet SignaGen Laboratories Cat#SL100688

MinElute PCR Purification Kit QIAGEN Cat#28004

Heparin Solution Stem Cell Technologies Cat#07980

BCIP/NBT Alkaline Phosphatase Substrate Sigma Cat#B5655

T7 RNA polymerase Promega Cat#P207B

TRIzol reagent ThermoFisher Scientific Cat#15596018

iScript cDNA Synthesis Kit, 100 3 20 ml rxns Bio-Rad Cat#1708891

Fluoromount-G SouthernBiotech Cat#0100-01

RNAiMAX ThermoFisher Scientific Cat#13778030

NeuroCult NS-A Proliferation Kit (Human) Stem Cell Technologies Cat#05751

HBSS Sigma Cat#H6648

HEPES GIBCO Cat#15630-060

Glucose Sigma Cat#G8769

TrypLE GIBCO Cat#A12177

7-AAD+ Stem Cell Technologies Cat#75001

(Continued on next page)
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Human CNTF Peprotech Cat#450-13

Recombinant Human EGF Peprotech Cat#100-15

BM Purple Roche Cat#11442074001

Critical Commercial Assays

BioAnalyzer High Sensitivity Chip Agilent Technologies Cat#5067-4626

Hifi HotStart Readymix Kapa Biosystems Cat#KK2602

Chromium Single Cell 30 Library & Gel Bead Kit v2,

16 rxns PN

10x Genomics Cat#120237

Chromium Single Cell A Chip Kit, 48 rxns PN 10x Genomics Cat#120236

Chromium i7 Multiplex Kit, 96 rxns PN 10x Genomics Cat#120262

High Sensitivity DNA Kit Agilent Cat#5067-4626

Nextera XT DNA Library Preparation Kit Illumina Cat#FC-131-1024, Cat#FC-131-1096

NEBNext High-Fidelity 2X PCR Master Mix NEB Cat#M0541S

100 3 SYBR Green I Invitrogen Cat#S-7563

Nextera DNA Sample Preparation Kit (24 Samples) Illumina Cat#FC-121-1030

Deposited Data

Raw and processed data This paper GEO: GSE122871

Human GBM of single-cell rna-seq (Patel et al., 2014) GEO: GSE82211

IDH mutant oligodendroglioma of single-cell rna-seq (Tirosh et al., 2016) GEO: GSE70630

IDH mutant astrocytoma of single-cell rna-seq (Venteicher et al., 2017) GEO: GSE89567

H3K27M diffuse midline glioma of single-cell rna-seq (Filbin et al., 2018) GEO: GSE102130

P0 and P5 mouse OPC cells (Hochgerner et al., 2018) GEO: GSE95753

Experimental Models: Cell Lines

Human GBM cell line (TS543) (Lu et al., 2016) N/A

Human GBM cell line (GBM3264) Jeremy N. Rich N/A

Rat OPC primary culture This study N/A

Human: HEK293 cell ATCC CRL-11268

Mouse GBM cell line This study N/A

Experimental Models: Organisms/Strains

B6.129S4-Pdgfratm11(EGFP)Sor/J The Jackson Laboratory Stock No. 007669

FVB/N-Tg(GFAPGFP)14Mes/J The Jackson Laboratory Stock No. 003257

Zfp36l1 flox/flox (Stumpo et al., 2004) N/A

B6.Cg-Tg(Nes-cre)1Kln/J The Jackson Laboratory Stock No. 003771

Sprague Dawley Rats Charles River Laboratories N/A

Rosa26tdTomato, Ai14 The Jackson Laboratory Stock No. 007914

Oligonucleotides

Ppp1r14b siRNA-1 CAAACCCACUGAGGCCUUC[dT][dT] Sigma SASI_Rn01_00039926

Ppp1r14b siRNA-2 GGAAGGUCACCGUCAAGUA[dT][dT] Sigma SASI_Rn01_00039931

Zfp36l1 siRNA-1 GACCUCUUGGGCUCACCUA[dT][dT] Sigma SASI_ Mm01_00063508

Zfp36l1 siRNA-2 GCUUUCGAGACCGCUCUUU[dT][dT] Sigma SASI_Mm01_00063509

Zfp36l1 siRNA-3 GCCUCUUUGCUCCUAGCAU[dT][dT] Sigma SASI_Mm01_00063512

MISSION siRNA Universal Negative Control #1 Sigma Cat#: SIC001

See Table S4 for the primers for Genotyping, q-PCR N/A N/A

Recombinant DNA

pSicoR-shZfp36l1 (Nasir et al., 2012) N/A

PB-CAG-DNp53-PDGFB This paper N/A

PB-CAG-DNp53-PDGFB-Cre This paper N/A
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Software and Algorithms

Cell Ranger 10X Genomics https://support.10xgenomics.com/

single-cell-gene-expression/

software/overview/welcome

Seurat (Macosko et al., 2015) https://satijalab.org/seurat/

Altanalyze Cincinnati Children’s

Hospital Medical Center

http://www.altanalyze.org/

Slingshot Deconstructing Olfactory

Stem Cell Trajectories at

Single-Cell Resolution

https://github.com/kstreet13/slingshot

GraphPad Prism 6.00 GraphPad https://www.graphpad.com

PAGODA (SCDE R-package) (Fan et al., 2016) http://hms-dbmi.github.io/scde/

BackSPIN algorithm (Marques et al., 2016) https://github.com/linnarsson-lab/

BackSPIN

R language The R Project for Statistical

Computing

http://www.r-project.org

Toppfun Cincinnati Children’s Hospital

Medical Center

https://toppgene.cchmc.org/

enrichment.jsp

Toppcluster Cincinnati Children’s Hospital

Medical Center

https://toppcluster.cchmc.org/

Gene Set Enrichment Analysis (GSEA) Broad Institute http://software.broadinstitute.org/gsea/

index.jsp

MACS Liu Lab, Harvard University http://liulab.dfci.harvard.edu/MACS

HOMER Integrative Genomics and

Bioinformatics core at the

Salk Institute

http://homer.ucsd.edu/homer/

UCSC Genome Browser The human genome browser

at UCSC

http://genome.ucsc.edu/

DRIVE (for finding lineage driving TRs) This paper STAR Methods
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Qing

Richard Lu (richard.lu@cchmc.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
PDGFRa-H2BGFP knock-in male mice (the Jackson Laboratory, catalog no. 007669) and hGFAP-GFP mice (the Jackson Labora-

tory, catalog no. 003257) are purchased from Jackson Laboratory. Mice homozygous for floxed alleles of Zfp36l1 f/f (Stumpo

et al., 2004) were crossed with mice carrying Cre recombinase driven by the nestin promoter (Nestin-Cre+/�) to generate Zfp36l1

cKO (Zfp36l1f/f;Nestin-Cre+/�) and heterozygous control (Zfp36l1f/+;Nestin-Cre+/�)mice. Animals of either sex were used in the study

and littermates were used as controls unless otherwise indicated. The mouse strains used in this study were generated and

maintained on a mixed C57BL/6;129Sv;CD-1 background and housed (four or less animals per cage) in a vivarium with a 12-hour

light/dark cycle. All animal studies were approved by the Institutional Animal Care and Use Committees of the Cincinnati Children’s

Hospital Medical Center, USA.

Primary OPC and Culture
Primary rat OPCs were isolated and cultured as described previously with slight modifications (Chen et al., 2007). Briefly, mixed glial

cells were initially cultured in DMEM-F12 medium supplied with 15% FBS, then switched to B104 conditioned medium for 2 days

before isolating OPCs by mechanical detachment in an orbital shaker. Isolated rat OPCs were grown in Sato growth medium

supplemented with mitogens 10 ng/ml PDGF-AA and 20 ng/ml bFGF, and differentiated in OL Differentiation Medium (Sato medium

supplemented with 15 nM T3 and 10 ng/ml ciliary neurotrophic factor).
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Mouse and Human GBM Cell Culture
Mouse, human tumor cell (GBM3264) and sphere cultures were established and maintained in serum-free DMEM/F12 medium (Life

Technologies), containing B27 (without vitamin A, Invitrogen, Carlsbad, CA), epidermal growth factor (20 ng/mL, Peprotech), and

basic fibroblast growth factor (20 ng/mL; Peprotech). The human GBM proneural cell lines (TS543) were maintained in Neural

Stem Cell (NSC) Basal Medium with NSC proliferation supplements, 10 ng/ml EGF, 20 ng/ml basic-FGF and 2 mg/ml Heparin

(Stem Cell Technologies, Vancouver, Canada) as previously described (Lu et al., 2016).

Human Glioma Single Cell RNA-seq Datasets
We analyzed the single cell RNA-seq expression profiles of human GBM, IDH mutant oligodendroglioma, IDH mutant astrocytoma

and H3K27M diffuse midline glioma from the GEO public resource (https://www.ncbi.nlm.nih.gov/geo/) and the accession numbers

are GSE82211 (Patel et al., 2014), GSE70630 (Tirosh et al., 2016), GSE89567 (Venteicher et al., 2017) and GSE102130 (Filbin et al.,

2018). We performed clustering by R package Seurat (https://satijalab.org/seurat/). To exclude the batch effect of distinct patients,

we used unique marker genes for variable genes analysis, they were used for principle component analysis (PCA). The statistically

significant PCs were used for two-dimension t-distributed stochastic neighbor embedding (t-SNE).

Human glioma patient survival and gene expression data were analyzed from TCGA (https://tcga-data.nci.nih.gov/docs/

publications/tcga/), GTEx projects (http://gtexportal.org/home/), as well as http://gepia.cancer-pku.cn/ and http://ualcan.path.

uab.edu/.

METHOD DETAILS

Single-cell Isolation and Library Preparation
Neonatal pups are euthanized on the ice, decapitated, and the brain was immediately removed and submerged in fresh ice-cold

HBSS-HEPES (15 mM HEPES, GIBCO 15630-060 and 15 mM Glucose, Sigma G8769 dissolved in HBSS Sigma H6648), cortices

were carefully dissected and minced by blade. The tissue pieces were incubated with 3 mL of TrypLE 5 3 solution (dilute in

HBSS-HEPES by 103 TrypLE, GIBCOA12177) for 10min in a 37�C-incubator following by gentle trituration through Pasteur pipettes

with polished tip for ten times, filtered the suspension by 40mm strainer, centrifuge at 1300 rpm to get the single cell pellet.

Collect the GFP+ alive cell by excluding the population of GFP- and 7-AAD+ (Stemcell 75001) death cells performed on MoFloXDP

(Beckman Coulter). For droplet sequencing (Drop-seq), we followed the procedure as described by Macosko et al. (Macosko et al.,

2015). The cDNA libraries were purified, quantified, and then sequenced on the Illumina Hiseq 2500. In addition, GFP+ single cells

were prepared using the C1 Single-Cell Auto Prep System (Fluidigm) according to the manufacturer’s instructions. For single cell

RNA-seq data from Drop-seq and Fluidigm C1 platforms, we discarded low quality cells which obviously deviate from the major

cell population.

We performed two quality measurements: the number of genes and the average expression level (log2(TPM+1)) of a curated list of

housekeeping genes. In PDGFRa-GFP populations, we excluded the cells with either fewer than 500 detected genes or an average

housekeeping expression level below 0.35 (recovered 100%cells). In the hGFAP-GFP cells, we excluded those cells with either fewer

than 900 detected genes or an average housekeeping expression level below 1.6 (recovered 41% cells). On average, we recovered

2280, 4581 transcripts per cell, which represented 1301, and 2096 unique genes expressed per cell, respectively.

For single cell RNA-seq of tumor cells, the tumor tissueswere digested by TryplE with collagenase I, and single cell suspensionwas

treated by Red Blood Cell Lysis Buffer (Sigma, 11814389001). Cells from tumor tissues at dpi 25 and dpi 35were sequenced by drop-

seq or 10x genomics, respectively. Chromium Single Cell 30 Library & Gel Bead Kit v2 (120237), Chromium Single Cell A Chip Kit

(120236) and Chromium i7 Multiplex Kit (120262) were used along with a 10 3 GemCode Single Cell Instrument, per the manufac-

turer’s manuals (document CG00052; Rev A). Base on the distribution of cells ordered by percentage of mitochondrial genes,

housekeeping genes and detected gene numbers, we excluded those cells with either less than 600 detected genes or an average

housekeeping expression level below 1.3 in dpi 35 (recovered 100% cells), as well as excluded those cells with either more than 2800

detected genes or less than 700, and an average mitochondrial expression level more than 0.2 in dpi 25 (recovered 73% cells). For

each set of drop-seq, isolated cells at each stage were pooled together and processed to reduce the risk of batch effects. The histo-

grams of UMIs were shown in figshare (https://figshare.com/s/439405353ba2c51b5d51).

Cell Clustering and Visualization
We performed unsupervised clustering by R package Seurat (Macosko et al., 2015). The highly variable genes were identified from

these cells using Seurat with the default setting for mouse datasets, they were used for principle component analysis (PCA). The

statistically significant PCs were used for two-dimension t-distributed stochastic neighbor embedding (tSNE). Differentially

expressed gene (adjusted p value < 0.05 and more than 1.5-fold change or p value < 0.05) for scRNA-seq data were shown as Table

S2. The clustered cell matrix for hGFAP-GFP, PDGFRa-GFP and mouse glioma was shown in figshare (https://figshare.com/s/

439405353ba2c51b5d51). We verified the clustering by two other different methods: Backspin and PAGODA (Pathway and Geneset

Overdispersion Analysis). The hGFAP-GFP and PDGFRa-GFP datasets were clustered using the BackSPIN algorithm as previously

described (Marques et al., 2016). In short, the BackSPIN algorithm executed a bi-clustering by sorting the cells and genes into a one-

dimensional ordering where a binary split is performed based on the distribution of genes within each ordering. The algorithm repeat-

edly performs feature selection and subsequent splits until an appropriate threshold is achieved. For clustering the hGFAP-GFP and
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PDGFRa-GFP datasets using PAGODA (SCDE R-package) (Fan et al., 2016), First, the drop-out rate is determined and the amplifi-

cation noise is estimated to fit the error models for each single cell. Poor cells with abnormal fit will be removed. PAGODA estimates

the overdispersion in genes and gene sets for cell clustering analysis. The overdispersion in gene sets is defined as the amount of

variance explained by the first principal component exceed the background expectation. Gene annotation from GO terms are

used to facilitate the process by finding pathways with significantly excess of coordinated variability. Finally, cells are clustered ac-

cording to their patterns in all significant aspects.

For the dataset from Fluidigm C1 cells, we performed unsupervised clustering by ICGS in AltAnalyze (http://www.AltAnalyze.org).

All the ICGS, Marker Finder and PCA plot were following the guidance of toolkit AltAnalyze (http://www.AltAnalyze.org). For further

subclassification, Marker Finder was performed. After classification, PCA was conducted by Altanalyze using the clustered matrix.

Individual gene plot was executed by input distinct genes. For the minimum Pearson correlation cutoff, we used 0.4 for Fluidigm C1.

Analysis of Cell Lineages Trajectory
We used a recently developed cell lineage inference algorithm, Slingshot (Version 0.0.0.9005, https://github.com/kstreet13/

slingshot), to predict lineage trajectories and bifurcations by ordering cells along trajectories. Slingshot takes as input a matrix of

reduced dimension normalized expression measures using PCA and cell clustering assignments. Lineages are defined by ordered

sets of clusters beginning with the root node and terminating in the most distal cluster(s) with only one connection. Potential fitting

curves are drawn to the subsets of cells that potentially make up each lineage. The ordering provided by Slingshot, analogous to

pseudo developmental time points, is referred to herein as developmental order. The cluster representing RG was chosen as the

starting root node.

To analyze the timing of oligodendrocyte development, we extracted cells from OPC and immature oligodendrocyte clusters from

the original cell dataset. The subpopulations were pooled for analysis. The most variable genes among all the single cells were iden-

tified by Seurat. A pseudo developmental timeline of single cells was then calculated with the package Slingshot, using the most

variable genes as time ordering genes. Based on the established differentiation direction of oligodendrocyte (from pri-OPC to

OPC to iOL), the direction of pseudotime axis was determined. OPC and pri-OPC in hGFAP-GFP dataset were explored as the

same method.

Identification of Lineage-driving Transcriptional Regulators
1) Overview of the driving transcriptional regulator (TR) detection method: we call a set of TRs the driving TRs of a cell group if they

activate and regulate the cell group’s differentially expressed genes (DEGs). Because of the regulation relationships with the DEGs,

the driving TRs are expected to bind these genes more frequently than random bindings. Thus, in order to decide whether a TR is a

driving TR, we compare its binding frequency (to the DEGs) with the binding frequency due to randomness. To do this, for each given

cell group, we first detect a set of DEGs, then estimate the TR-DEG binding state matrix (binding or not binding) and the TR-DEG

binding probability matrix (due to randomness). 2) Differentially expressed genes: we identify DEGs of each cell group using EdgeR.

3) TR-gene binding statematrix and TR-DEG binding statematrix: In order to compute the binding frequency of each TR, we first infer

the TR-gene binding state (whether a TR is binding to a gene or not) based on association of TR-gene expression. Since TR-gene

regulation is tissue-specific, we consider the problem within the scope of a certain tissue. We assume that, in a specific tissue, a

gene should have similar expression pattern with a TR that regulates (binds) it. Pearson correlation coefficient is employed to assess

the association between expression of a TR and a gene, and Student’s t test of correlation coefficient is performed to decide if the TR-

gene pair is statistically significantly associated, namely, if the gene is bound by the TR. The inferred binding state of all TR-gene pairs

are organized into a TR-gene binding state matrix, and that of all TR-DEG pairs are organized into a TR-DEG binding state matrix.

4) TR-gene binding probability matrix and TR-DEG binding probability matrix: The binding probability, or the frequency of random

bindings, between a gene (or its enhancer regions) and a TR can be impacted by two factors: 1) the affinity of a gene to TRs (the

tendency that this gene is bound by any TR); and 2) the affinity of a TR to genes (the tendency that such TR binds any gene). Genes

may have different affinities to TRs because of their different properties such as gene length and GC content. Similarly, TRs have

different affinity to genes due to differences in features such as motif characteristics. TR with short motifs are more likely to bind

a gene by chance. However, all these causing factors can be hardly given as priori knowledge. We estimate the effects of all these

factors from the data. Regardless of all complex causes, the affinity of a gene to TRs can be captured by totally how many TRs can

bind the gene, and the affinity of a TR to genes can be indicated by totally how many genes it binds.

With the affinities of different genes and of different TRs taken into account, we assume that TR-gene pairs’ random binding states

follow a 2D Fisher’s noncentral hypergeometric distribution. Then the probability of a TR-gene pair’s random binding can be

estimated as:
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where Pij is the probability that the ith TR binds the jth gene. ni is conceptually the number of genes that the ith TR binds and compu-

tationally the sum of the ith row in TR-gene binding state matrix. Similarly,mj is the number of TRs that bind to the jth gene i.e., the sum

of the jth column in TR-gene binding state matrix. {ri} and {wj} are variables reflecting the ith TR’ affinity to genes and the jth gene’s

affinity to TRs, respectively. Pijs can be obtained by solving the equation system. It can be proved that the solution for Pijs is unique.

In practice, Pijs are obtained by first initializing {ri}, then updating {wj} and {ri} iteratively. All Pijs together form a TR-gene binding prob-

ability matrix, from which Pijs of only DEGs are selected to compose a TR-DEG binding probability matrix.

5) Driving TR detection: Having obtained the TR-DEG binding state matrix and TR-DEG random binding probability matrix, we

compare them to detect driving TRs of each given cell group. For each TR, we decide it as a driving TR if its binding frequency to

the cell group’s DEGs is statistically significantly higher than its random binding probability to these DEGs.

The test statistics, which indicates how higher the observed binding frequency is than the null random binding probability, is

computed as following:

Si =
XK
k = 1

"
log

1

PYik
ik

� log
1

ð1� PikÞ1�Yik

#

where k is the index of DEG; Yik is the binding state (1 for binding and 0 for non-binding) of the ith TR and kth DEG. Pik is the null random

binding probability of the ith TR and kth DEG. Yik and Pik are respectively from the TR-DEG binding state matrix and TR-DEG binding

probability matrix. Finally, to facilitate the evaluation of statistical significance, we transform the scoreSi into a Z-score of the ith TR:

Zi =
Si � E½Si�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½Si�
p

which approximately follows a standard Gaussian distribution and from which we can get p value for the TR.

Active cycling cell analysis
Gene sets representing five phases of the cell cycle (G1/S, S, G2/M, M andM/G1) were refined as previously described (Tirosh et al.,

2016). In short, we extracted cycling genes by examining the correlation between the expression pattern of each gene and the

average expression pattern of all genes in either dpi25 or dpi35 tumor dataset, and excluding genes with a low correlation

(R < 0.25). This step removed genes that were identified as phase-specific in HeLa cells but did not correlate with that phase in

our single-cell data.

Then the putative actively cycling cells were identified as previous method (Tirosh et al., 2016). Basically, the cells were defined as

actively cycling by at least a twofold upregulation and a t test P value < 0.01 for either the G1/S or the G2/M gene set compared to the

average of all cells. Relative proliferating score in both putative actively cycling cells and leftover pri-OPC-like cells were calculating,

the average actively cycling score in non-actively cycling cells were normalized to 1.

Stemness score and module calculation
To explore the stemness signature of pri-OPC-like cells in tumor tissues, we applied stemness signature gene sets related to glioma

formation (Tirosh et al., 2016) to our dataset, and calculated the average expression of stemness genes in each cell, which repre-

sented the stemness score. The stemness score of each groupwas then calculated. To compare the stemness score in tumor tissues

and normal neonatal glial cells, we employed all cells in hGFAP-GFP and PDGFRa-GFP dataset, and the stemness score of each cell

in either dataset was calculated and normalized to the average of stemness gene expression of all tumor cells. The stemness score of

each group was then calculated.

For pri-OPC score in Figure 5G, we selected all the OPC-lineage cells from PDGFRa-GFP dataset and employed Seurat to get the

variable genes. We excluded all the merged genes between pri-OPC and OPC from pri-OPC differential expressed genes (Table S3),

the pri-OPC score of each cell in either dataset was calculated and normalized to the average of pri-OPC gene expression of all tumor

cells. The pri-OPC score of each group was then calculated. For violin plots, the gene list for each referred gene module were shown

in Table S3.

Correlation analysis between cortical pri-OPC and hippocampal pre-OPC
To compare cortical pri-OPC/OPC/iOL with pre-OPC/OPC from the mouse hippocampus at P0 and P5, we first extracted gene

expression data of pre-OPC and OPC from previously published datasets (Hochgerner et al., 2018; La Manno et al., 2018), and

used the Seurat program to combine the datasets of cortical pri-OPC/OPC/iOL with hippocampal pre-OPC/OPC, normalized the

expression values, and conducted PCA. The data were then scaled by Seurat and regress to ‘‘nUMI’’ and ‘‘Mt- genes,’’ the correlation

coefficient values were calculated by ‘‘cor.test’’ function in R.

Tissue Processing and In Situ Hybridization
Mice at various developmental stages were anesthetized with ketamine/xylazine and perfused with PBS followed by 4%paraformal-

dehyde (PFA). Brain tissues were dissected and fixed in 4% PFA overnight. dehydrated in 20% sucrose at 4�C, embedded in OCT

and cryosectioned at 16 mmor paraffin-embedded for sectioning at 10 mm. For immunostaining of cryosections, tissues were shortly

fixed in 4% PFA for 2-4 hours. For vibratome sectioning, tissues were fixed in 4% PFA overnight and embedded by 4% agarose in
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PBS and sectioned at 50 mm. In situ hybridization was performed as previously described (Lu et al., 2002). Digoxigenin-labeled ribop-

robes used in the study was murine Zfp36l1.

Immunofluorescence Staining and Immunohistochemistry
Cryosections (16-mm thick) or vibratome sections (50-mm thick) were permeabilized and blocked in blocking buffer (0.3% Triton

X-100 and 5% normal donkey serum in PBS) for 1 h at room temperature and overlaid with primary antibodies overnight at 4�C.
For human brain paraffin section staining, we performed antigen retrieval before permeabilization. Antibodies used in the study

were: Olig2 (Rabbit, Millipore, AB9610, RRID:AB_10141047; Mouse, Millipore, MABN50, RRID:AB_10807410), PDGFRa (Rat;

BD Bioscience, 558774, RRID:AB_397117), APC (Mouse; CC1, Oncogene Research, OP80, RRID:AB_2057371), MBP (Goat; Santa

Cruz Biotechnology, sc-13914, RRID:AB_648798), Sp8 (Goat; Santa Cruz Biotechnology, sc-104661, RRID:AB_2194626), Dlx2

(Rabbit; Abcam, ab30339, RRID:AB_731969), Glutamine Synthetase (Mouse; Millipore, MAB302, RRID:AB_2110656), Sharp2

(Rabbit, Abcam, ab97525, RRID:AB_10680936); BHLHE40 (Rabbit, Sigma, HPA028922, RRID:AB_2672828), PRDM16 (Rabbit;

LifeSpan BioSciences, LS-B4625, RRID:AB_10797227), GFAP (Mouse; Sigma, G3893, RRID:AB_477010), Ki67 (Rabbit; Thermo

Fisher Scientific, RM-9106, RRID:AB_2335745), BrdU (Mouse; BD PharMingen, 555627, RRID:AB_395993), GFP (Goat, Novus

Biologicals, NB100-1770, RRID:AB_10128178; Rabbit, Thermo Sci, A11122, RRID:AB_221569), Slc1a3 (Rabbit; Novus Biologicals,

NB100-1869, RRID:AB_2190597), PHI-1 (Mouse; Santa Cruz Biotechnology, sc-514759), Ascl1 (Rabbit; Abcam, ab74065,

RRID:AB_1859937), BLBP (Rabbit; Abcam, ab32423, RRID: AB_880078), Sox2 (Goat; Santa Cruz Biotechnology, sc-17320,

RRID: AB_2286684). After washing with 0.3% Triton X-100 in PBS, cells or sections were incubated with secondary antibodies con-

jugated to Cy2, Cy3 or Cy5 (Jackson ImmunoResearch Laboratories) for 2 h at room temperature, stained in DAPI for 10min, washed

in PBS and mounted with Fluoromount-G (SouthernBiotech). Cell images were quantified in a blinded manner. For BrdU staining,

cells or tissue sections were denatured with 1 N HCl for 1 hr at 37�C. Sections were neutralized with 0.1 M Borax pH 8.5

(Sigma) for 10 min, washed with PBS and blocked with 5% normal donkey serum (Sigma, Inc.) for 1 hr at room temperature. All

immunofluorescence-labeled images were acquired using a Nikon C2+ confocal microscope. For Zfp36l1 in situ combined with

immunolabeling, we developed in BM Purple (Roche-11442074001) for 3 days to enhance the signal.

Assay for Transposase-accessible Chromatin Using Sequencing (ATAC-Seq)
ATAC-seq assays were performed as previously described (Buenrostro et al., 2015). Briefly, we isolated nuclei of �50,000 FACS-

sorted PDGFRa-GFP+ cells from the cortices of a pool of 3 individual animals at each E14.5 and P5 stage in a cold lysis buffer

(10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-630) by exclude GFP- and 7-AAD+ cells. After spinning

down at 5003 g for 10 min at 4�C, nuclei were resuspended in transposition mix containing TD (23 reaction buffer), TDE1 (Nextera

Tn5 Transposase) at 37�C for 30min. The samples were purified using a QIAGENMinElute kit. Transposed DNA fragments were sub-

sequently amplified and purified using QIAGEN MinElute PCR Purification Kit. Libraries were generated using the Ad1_noMX and

Ad2.1-2.4 barcoded primers andwere amplified for 11 total cycles. Libraries were purified with AMPure beads (Agencourt) to remove

contaminating primer dimers. All libraries were sequenced on the Illumina HiSeq 2500 with 75 bp single-end reads.

Reads of ATAC-seq data were aligned to mm10 genome using Bowtie with the following options:–best–chunkmbs 200 (http://

bowtie-bio.sourceforge.net). Peak calling was performed using Model-based analysis of MACS version 2.12 (https://github.com/

taoliu/MACS) with specific parameters without the prebuilt model:–shift �75–extsize 150–nomodel–call-summits–nolambda–

keep-dup all -p 0.01, to call peaks, which extend and shift the fragments to get the region cut by the Tn5 sites. We calculated the

peak_RPKM, then GSEA (v2.2.0) was used to analyze the enrichment of signature gene sets from different cell types in E14.5 and

P5 PDGFRa-GFP cells. Homer (http://homer.ucsd.edu/homer/) was used to generate the normalized UCSC bedgraph files (the total

number of tags is normalized to 10 million) to show the genome browser tracks.

siRNA Knockdown, Transduction and Sphere Formation Assays
For siRNA knockdown by negative control or Ppp1r14b siRNA (Sigma, SASI_Rn01_00039926, SASI_Rn01_00039931) in rat OPCs,

we used Lipofectamine� RNAiMAX Transfection Reagent (ThermoFisher Scientific, 13778150) according to the manufacturer’s pro-

tocol. Cells were harvested for immunocytochemistry or qRT-PCR analysis.

For siRNA knockdown by negative control or Zfp36l1 siRNA (Sigma, SASI_ Mm01_00063508, SASI_Mm01_00063509,

SASI_Mm01_00063512) in mouse tumor cells, we use Lipofectamine� RNAiMAX Transfection Reagent (ThermoFisher Scientific,

13778150) according to the manufacturer’s protocol. Cells were harvested after 72 h and performed BrdU staining (pulse-labeled

with BrdU for 1 hr before fixation).

For qRT-PCR, mouse and human tumor cells were transduced by non-target control or lentiviral vectors carrying Zfp36l1 shRNA

lentivirus (Nasir et al., 2012) for 72 h, the cells were harvested and analyzed by qRT-PCR.

For the human sphere formation assay, the primary spheres were further dissociated into single cells and diluted to a density of

1000 cells/ml. Then the cells were infected by non-target control or lentiviral vectors carrying Zfp36l1 shRNA lentivirus for 48 hours.

The 10 ml/well diluted cell suspension was plated to ultralow attachment 96-well plate (Corning Inc., Corning, NY, USA) in serum-free

medium. The number of wells with spheres is counted after 8 days induction.
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RNA Extraction and qRT-PCR
Analyses were conducted with RNA extracts from cells. Total RNA was extracted per the Trizol (Life Technologies) protocol. cDNA

was generated with iScript cDNA Synthesis Kit (Bio-Rad). qRT-PCR was performed using the ABI Prism 7700 Sequence Detector

System (Perkin-Elmer Applied Biosystems). qRT-PCR analysis is based on the DDCT method with normalization of the raw data

to GAPDH genes. For each gene, DCT was calculated by subtracting CTGAPDH from CTGENE in either the control or experimental

group. We set the average DCT of the control as a calibrator, then the 2–DDCT method was used to calculate each relative expression

in both control or experimental group. The values in the control were normalized to 1 by dividing each data point with the averaged

control value. The primer sequences were included in Table S4.

Copy Number Variation Analysis
CNV analysis in single-cell profiling of tumor tissues was performed as previously described (Patel et al., 2014), with minor changes.

Briefly, CNVs were estimated by sorting the analyzed genes by their chromosomal location and applying a moving average to the

relative expression values, with a sliding window of 100 genes within each chromosome, then to stabilize the graph, we averaged

such these 50 genes again. To normalize these patterns to the reference cluster of ‘‘normal cells,’’ we used the macrophage and

microglia cluster with the same tumor tissues in each single-cell profile at different stages of tumorigenesis.

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were done using Microsoft Excel, GraphPad Prism 6.00 (San Diego California, https://www.graphpad.com) and RStudio

(https://www.rstudio.com/). Data are shown as mean ± SEM or as a Box-and-whisker plot, as a dot plot and as a violin plot. Data

distribution was assumed to be normal, but this was not formally tested. Statistical significance was determined using two-tailed

Student’s t tests as indicated. One-way ANOVA test was performed by multiple comparisons following Turkey’s ranking tests

when comparing multiple groups. Significance was set as * for p < 0.05, ** for p < 0.01, and *** p < 0.001. Correlation significance

of distinct groups or scores was assessed by Pearson’s correlation coefficient-test. Values of p < 0.05 denoted a statistically signif-

icant difference. No statistical methods were used to predetermine sample sizes, but our sample sizes are similar to those generally

employed in the field. Quantifications were performed from at least three independent experiments. No randomization was used to

collect all the data, but they were quantified blindly.

DATA AND SOFTWARE AVAILABILITY

All the scRNA-seq and ATAC-seq data have been deposited in the NCBI Gene Expression Omnibus (GEO) under accession number

GEO: GSE122871.
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