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Abstract
We evaluated 20+ Transformer models for001
ranking of long documents (including recent002
LongP models trained with FlashAttention)003
and compared them with a simple FirstP base-004
line, which applies the same model to the trun-005
cated input (at most 512 tokens). We used MS006
MARCO Documents v1 as a primary training007
set and evaluated both zero-shot transferred and008
fine-tuned models.009

On MS MARCO, TREC DLs, and Robust04 no010
long-document model outperformed FirstP by011
more than 5% in NDCG and MRR (when aver-012
aged over all test sets). We conjectured this was013
not due to models’ inability to process long con-014
text, but due to a positional bias of relevant pas-015
sages, whose distribution was skewed towards016
the beginning of documents. We found direct017
evidence of this bias in some test sets, which018
motivated us to create MS MARCO FarRele-019
vant (based on MS MARCO Passages) where020
the relevant passages were not present among021
the first 512 tokens.022

Unlike standard collections where we saw both023
little benefit from incorporating longer con-024
texts and limited variability in model perfor-025
mance (within a few %), experiments on MS026
MARCO FarRelevant uncovered dramatic dif-027
ferences among models. The FirstP models per-028
formed roughly at the random-baseline level in029
both zero-shot and fine-tuning scenarios. Sim-030
ple aggregation models including MaxP and031
PARADE Attention had good zero-shot accu-032
racy, but benefited little from fine-tuning. Most033
other models had poor zero-shot performance034
(sometimes at a random baseline level), but035
outstripped MaxP by as much as 13-28% after036
finetuning. Thus, the positional bias not only037
diminishes benefits of processing longer doc-038
ument contexts, but also leads to model over-039
fitting to positional bias and performing poorly040
in a zero-shot setting when the distribution of041
relevant passages changes substantially. We042
make our software and data available.1043

1https://anonymous.4open.science/r/long_doc_

Figure 1: Average relative gain (in %) vs. relative in-
crease in run-time compared to respective FirstP base-
lines on MS MARCO, TREC DL 2019-2021, and Ro-
bust04 (for a representative subset of models).

1 Introduction 044

Transformer models (Vaswani et al., 2017)—such 045

as BERT (Devlin et al., 2019)—pretrained in a self- 046

supervised manner considerably advanced state-of- 047

the-art of core natural language processing (NLP) 048

(Devlin et al., 2019; Radford et al., 2018) and infor- 049

mation retrieval (Nogueira and Cho, 2019). How- 050

ever, due to quadratic cost of the self-attention with 051

respect to an input sequence length, a number of 052

“chunk-and-aggregate” approaches were proposed 053

and evaluated (Dai and Callan, 2019; MacAvaney 054

et al., 2019; Boytsov and Kolter, 2021; Li et al., 055

2024), but existing studies typically have at least 056

one of the following shortcomings: 057

• Reliance only on small-scale query collec- 058

tions such as TREC DL (Craswell et al., 2020, 059

2022), Robust04 (Voorhees, 2004), and Gov2 060

Terabyte (Clark et al., 2005); 061

• Lacking systematic comparison with respec- 062

tive FirstP baselines, which consists in apply- 063

rank_model_analysis_v2-78E9/.
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Figure 2: Zero-shot vs. fine-tuned performance on MS
MARCO FarRelevant for a representative set of models.

ing the same model to input truncated to the064

first 512 tokens,065

• Lacking comparison with LongP models—066

directly supporting long inputs—such as067

sparse-attention models Longformer and Big-068

Bird (Beltagy et al., 2020; Zaheer et al., 2020),069

or more recent full-attention models trained070

with FlashAttention (Dao et al., 2022);071

• Using undisclosed seed-selection strategies,072

which can restrict reproducibility since there073

can be substantial (in the order of few %) dif-074

ferences due to using different seeds.075

To fill this gap we evaluated over 20 recent076

models for ranking of long documents and carried077

out their systematic comparison using two popular078

document collections: MS MARCO Documents079

v1/v2 (Craswell et al., 2020) and Robust04 (Clarke080

et al., 2004), diverse query sets (both large and081

small) and multiple training seeds. We found082

that ranking models capable of processing long083

documents—including LongP models with sparse084

or full attention—showed little to no improve-085

ment compared to their respective FirstP baselines086

(which truncated documents to satisfy the input-087

sequence constraint of most off-the-shelf Trans-088

former models, i.e., 512 tokens).089

This finding is generally in line with previously090

reported results (see § B.4) and an ablation experi-091

ment showed that limited improvement over FirstP092

was not related to the choice of the backbone Trans-093

former model (see Table 7). Furthermore, we used094

our best models to produce several high-ranking095

runs on a competitive leaderboard. This, in our096

view, strengthens the credibility of our evaluation.097

From the efficiency-effectiveness plot in Fig. 1, 098

we can see that all long-document models are at 099

least 2× slower than respective FirstP baselines. 100

The biggest average gain of merely 5% is achieved 101

by the PARADE Attn model (with a BERT-base 102

backbone) at the cost of being 2.5× slower than its 103

FirstP baseline. All LongP models are even slower 104

and show less improvement. Given such small ben- 105

efits at the cost of a substantial slow-down, one 106

could question practicality of such models and sug- 107

gest using FirstP variants instead. 108

Our initial exploration prompted two broad re- 109

search questions: 110

• RQ1: What is the reason for the lackluster 111

performance of long-document models? 112

• RQ2: How much progress has the community 113

made in improving long-document ranking 114

models? 115

To answer these questions, we started with ana- 116

lyzing a distribution of relevant passages in the MS 117

MARCO document collection and found evidence 118

of a substantial positional bias, namely, relevant 119

passages tended to appear in the beginning of doc- 120

uments. This finding—which partially answers 121

RQ1—prompted an additional research question: 122

• RQ3: How robust are long-document models 123

to the positional-bias of relevant passages? 124

To further support the relevance-bias hypothesis 125

and answer RQ3, we constructed a new synthetic 126

collection MS MARCO FarRelevant where rele- 127

vant passages were not present among the first 512 128

tokens. Using MS MARCO FarRelevant, we eval- 129

uated zero-shot transferred as well as fine-tuned 130

models and found the following (see Fig. 2): 131

• The FirstP models performed roughly at the 132

random-baseline level in both zero-shot and 133

fine-tuning modes (RQ3); 134

• Simple aggregation models including MaxP 135

and PARADE Attention had good zero-shot 136

accuracy, but benefited little from fine-tuning 137

on MS MARCO FarRelevant (RQ3); 138

• In contrast, other long-document models had 139

poor zero-shot performance (sometimes at 140

a random baseline level), but outstripped 141

respective MaxP baselines by as much as 142

13.3%-27.7% after finetuning (RQ3); 143
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• Not only positional bias diminished benefits144

of processing longer document contexts, but it145

also lead to models’ overfitting to the bias and146

performing poorly in a zero-shot setting when147

the distribution of relevant passages changed148

substantially (RQ3);149

• Although PARADE Transformer models were150

more effective than other models on stan-151

dard collections, their advantage was small152

(a few %). In contrast, on MS MARCO Far-153

Relevant, PARADE Transformer (ELECTRA)154

outperformed the next competitor Longformer155

by 8% and PARADE Max (ELECTRA)—an156

early chunk-and-aggregate approach—by as157

much as 23.8% (RQ2).158

Our key contributions are as follows:159

• We carried a comprehensive evaluation of160

20+ long-document ranking models, which161

included both the chunk-and-aggregate mod-162

els as well as the models that directly sup-163

ported long inputs (using both the standard164

collections MS MARCO Documents v1/v2165

and Robust04 as well as the new synthetic166

collection MS MARCO FarRelevant);167

• We contributed to the nascent field of ana-168

lytical experimentation with a full control169

of outcomes by creating a new dataset MS170

MARCO FarRelevant, which we made avail-171

able together with code.2172

• Our study confirmed superiority of PARADE173

(Li et al., 2024) models, but also showed their174

limited benefits on standard collections, which175

we attributed to the existence of positional176

bias of relevant passages (in such collections);177

• We used MS MARCO FarRelevant to support178

the positional-bias hypothesis as well as to179

demonstrate that best long-document ranking180

models substantially (by up to 27.7%) outper-181

form simpler baselines (such as MaxP) when182

training/fine-tuning data is available. How-183

ever, they can also suffer more from the dis-184

tribution shift and perform much worse in the185

zero-shot scenario.186

2https://anonymous.4open.science/r/long_doc_
rank_model_analysis_v2-78E9/.

2 Methods 187

2.1 Related Work 188

Neural Ranking models have been a popular topic 189

in recent years (Guo et al., 2019), but the suc- 190

cess of early approaches was controversial (Lin, 191

2019). This changed with an introduction of a bi- 192

directional encoder-only Transformer model BERT 193

(Devlin et al., 2019), which was a successor of 194

GPT (Radford et al., 2018) and ELMO (Peters 195

et al., 2018). BERT was hugely successful and 196

its resounding success can be attributed to a com- 197

bination of the large model size and massive pre- 198

training using self-supervision. A number of differ- 199

ent Transformer models such as ELECTRA (Clark 200

et al., 2020), and DEBERTA (He et al., 2021) im- 201

prove upon BERT using different training strate- 202

gies and/or datasets. However, due to their architec- 203

tural similarities we—following Lin et al (Lin et al., 204

2021)—collectively call them as BERT models. 205

Nogueira and Cho were first to apply BERT 206

to ranking of text documents (Nogueira and Cho, 207

2019). In the big-data regime—most notably in the 208

TREC deep learning track (Craswell et al., 2020)— 209

BERT models outperformed prior neural and non- 210

neural approaches by a large margin. They were 211

also quite successful for several small-scale query 212

collections outperforming previous neural and tra- 213

ditional approaches (Li et al., 2024; MacAvaney 214

et al., 2019; Dai and Callan, 2019). 215

Despite their impressive performance, neural 216

models are susceptible to the distribution shift and 217

learning superficial features. Several authors found 218

that neural rankers applied to out-of-domain data 219

do not always outperform BM25 (Thakur et al., 220

2021; Mokrii et al., 2021). They can also be 221

confused by superficial text modifications such 222

as adding distractor sentences (MacAvaney et al., 223

2022). Likewise, ranking performance can de- 224

crease if a query is reformulated (Penha et al., 225

2022). Weller et al. (Weller et al., 2023) showed 226

that neural models are not effective to “spot” nega- 227

tion and often perform at random level in this re- 228

spect. However, we are not aware of the prior work 229

systematically studying robustness to positional bi- 230

ases of relevant passages. 231

The Transformer model (Vaswani et al., 2017) 232

uses an attention mechanism (Bahdanau et al., 233

2015) where each sequence position can attend 234

to all the positions in the previous layer. Because 235

self-attention complexity is quadratic with respect 236

to a sequence length, direct processing of long doc- 237

3

https://anonymous.4open.science/r/long_doc_rank_model_analysis_v2-78E9/.
https://anonymous.4open.science/r/long_doc_rank_model_analysis_v2-78E9/.


uments is not always practical. Thus, a vast major-238

ity of existing Transformer models limit the input239

length to be at most 512 (subword) tokens.240

Until recently, there have been two general ap-241

proaches to handling long documents: localization242

of attention and splitting documents into chunks243

each of which is processed separately. Attention-244

localization approaches combine a limited-span245

(i.e., a sliding window) attention with some form of246

a selective global attention. There are many such247

approaches proposed (see, e.g., a survey by Tay248

et al. 2020) and it would be infeasible to evaluate249

them all. Instead we consider two popular models:250

Longformer (Beltagy et al., 2020) and Big-Bird251

(Zaheer et al., 2020).252

With a document-splitting approach, one has253

to split documents into several chunks, process254

each chunk separately, and aggregate results, e.g.,255

by computing a maximum or a weighted predic-256

tion score (Yilmaz et al., 2019; Dai and Callan,257

2019). With respect to training approaches, the258

MaxP and SumP models by Dai and Callan (Dai259

and Callan, 2019) assume that each chunk in a260

relevant document is relevant. However, this as-261

sumption is problematic as the degree of relevance262

varies from passage to passage. Yilmaz et al. (Yil-263

maz et al., 2019) work around this problem by264

training a MaxP BERT model on short documents265

and zero-transfer it to long documents. In this266

study we work around this problem by training267

all document-splitting approaches including MaxP268

(Dai and Callan, 2019) in the end-to-end fashion,269

i.e., by plugging aggregated document-level scores270

directly into a loss function (analogous to training271

of CEDR (MacAvaney et al., 2019) and PARADE272

(Li et al., 2024) models).273

More recently, it has also become possible to274

train longer-context models using FlashAttention275

(Dao et al., 2022). FlashAttention computes at-276

tention exactly and it does not eliminate quadratic277

complexity. However, it dramatically speeds ups278

training while reducing memory requirements by279

using an IO-efficient computation approach.280

Because our primary focus is accuracy and we281

aim to understand the limits of long-document mod-282

els, we exclude from evaluation several recent mod-283

els (e.g., (Hofstätter et al., 2021; Zou et al., 2021))284

that achieve better efficiency-effectiveness trade-285

offs by pre-selecting certain document parts and286

feeding only selected parts into a BERT ranker.287

Recently, several teams have focused on creat-288

ing challenging benchmarks for long-document289

Table 1: Distribution of Start/End Positions of Relevant
Passages Inside Documents

input chunk # MS MARCO dev
(estimated)

FIRA
(Hofstätter et al., 2020b)

(crowd-sourced)

start end start end
1 85.9% 71.0% 83.8% 76.4%
2 9.1% 14.9% 9.9% 15.3%
3 2.6% 6.1% 2.3% 3.9%
4 1.2% 3.0% 2.2% 2.2%
5 0.6% 1.4% 0.7% 0.9%
6 0.6% 1.2% 0.4% 0.5%

6+ 0.1% 2.5% 0.7% 0.7%

Chunk size is 477 BERT tokens.

Table 2: Document Statistics

data set # of documents average # of
BERT tokens
per document

MS MARCO v1 3.2M 1.4K
MS MARCO v2 12M 2K
Robust04 0.5M 0.6K
MS MARCO FarRelevant 0.53M 1.1K

retrieval. A recent LoCo v1 (Saad-Falcon et al., 290

2024) benchmark has 12 datasets. Despite 11 out 291

of 12 collections has average document lengths in 292

the order of dozens of thousands tokens, the E5 293

model with a 512 token input limit achieves high 294

NDCG@10 scores (in the range of 0.4-0.85) for 295

seven out of 12 LoCo v1 datasets. This prompted 296

Zhu et al., 2024 to propose a more challenging 297

LongEmbed benchmark containing a mix of real 298

and synthetic datasets (Zhu et al., 2024). 299

2.2 Data 300

Our primary datasets include two MS MARCO 301

Documents collections (v1 and v2) (Bajaj et al., 302

Table 3: Query Statistics

# of queries avg. # of
BERT tokens

avg. # of
pos. judgements

MS MARCO v1

MS MARCO train 352K 7 1
MS MARCO dev 5193 7 1
TREC DL 2019 43 7 153.4
TREC DL 2020 45 7.4 39.3

MS MARCO v2

TREC DL 2021 57 9.8 143.9

Robust04

title 250 3.6 69.6
description 250 18.7 69.6

MS MARCO FarRelevant

train 50K 7.0 1
test 1K 7.0 1
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2016; Craswell et al., 2020, 2022), Robust04303

(Voorhees, 2004), and associated query sets. In ad-304

dition, we created a collection MS MARCO FarRel-305

evant by using passages and relevance judgments306

from the MS MARCO Passages collection.307

Robust04 is a small collection of 0.5M docu-308

ments that has a mixture of news articles and gov-309

ernment documents some of which are quite long.310

Yet it has only a small number of queries (250),311

which makes it a challenging benchmark for train-312

ing models in a low-data regime. Each query has313

a title and a description, which represent a brief314

information need and a more elaborate request (of-315

ten a proper English prose), respectively. We use316

Robust04 in a cross-validation settings with folds317

established by Huston and Croft (Huston and Croft,318

2014) provided via IR-datasets (MacAvaney et al.,319

2021). All datasets are in English. Document and320

query statistics are summarized in Tables 2 and 3.321

MS MARCO v1 was created from the MS322

MARCO reading comprehension dataset (Bajaj323

et al., 2016) and it has two related collections: pas-324

sages and documents. MS MARCO v1 comes with325

large query sets, which is particularly useful for326

training and testing models in the big-data regime.327

These query sets consist of question-like queries328

sampled from the Bing search engine log with sub-329

sequent filtering (Craswell et al., 2020). Note that330

queries are not necessarily proper English ques-331

tions, e.g., “lyme disease symptoms mood”, but332

they are answerable by a short passage retrieved333

from a set of about 3.6M Web documents (Bajaj334

et al., 2016).335

MS MARCO v1 test sets were created in two336

stages, where initially relevance judgements were337

created for the passage variant of the dataset. Then,338

document-level relevance labels were created by339

transferring passage-level relevance to original doc-340

uments from which passages were extracted. To as-341

sess positional bias, we mapped relevant passages342

(from the MS MARCO Passage collection) to their343

positions in documents. Because document and344

passage texts were collected at different times this345

lead to some content divergence (Craswell et al.,346

2020) and made exact mapping impossible: In par-347

ticular, Hofstätter et al. 2020b were able to match348

only 32% of the passages:349

We deemed such mapping insufficient: To obtain350

a more comprehensive mapping we resorted to ap-351

proximate matching and were able to match about352

85% of the passages. We manually inspected a sam-353

ple of matched passages to ensure that the matching354

procedure was reliable. Moreover, the distribution 355

of positions of relevant passages matched that of 356

a related FIRA dataset (Hofstätter et al., 2020b), 357

where such information was collected by crowd- 358

sourcing. Positional bias information is summa- 359

rized in Table 1. 360

Relevance labels in the training and development 361

sets are “sparse”: There is about one positive ex- 362

ample per query without explicit negatives. In ad- 363

dition to sparse relevance judgements—separated 364

into training and developments subsets—there is 365

a small number (98) of queries that have “dense” 366

judgements provided by NIST assessors for TREC 367

2019 and 2020 deep learning (DL) tracks (Craswell 368

et al., 2020). 369

MS MARCO v2 collections was created for 370

TREC 2021 DL track. It is an expanded version 371

of MS MARCO v1 and uses a subset of sparse rel- 372

evance judgements from MS MARCO v1. In the 373

training set, newly added documents do not have 374

any (positive or negative) judgments, which created 375

a bias and made MS MARCO v2 training set less 376

useful than that of MS MARCO v1. 377

The MS MARCO FarRelevant collection was 378

created from the MS MARCO passage collection 379

in such a way that each document contained exactly 380

one relevant passage and this passage did not start 381

before token 512 (see algorithm in the Appendix 382

§ B.1). Moreover, we created just a single relevant 383

document for each training or testing query. MS 384

MARCO FarRelevant is a variant of a the needle- 385

in-the-haystack test (Saad-Falcon et al., 2024; Zhu 386

et al., 2024). It is designed to be textually simi- 387

lar to MS MARCO Documents but with different 388

positional biases for relevant passages. Due MS 389

MARCO having a non-commercial license, MS 390

MARCO FarRelevant has the same licensing re- 391

striction. 392

Although we generated about 7K test queries 393

and about 500K training queries, we used only 394

50K and 1K queries for fine-tuning and testing, 395

respectively. On one hand, this was sufficient for 396

accurate training and testing and, on the other hand, 397

it reduced experimentation time and cost. 398

2.3 Overview of Selected Methods 399

Due to space constraints, a detailed description is 400

given in the Appendix § A. In summary, all meth- 401

ods can be divided into split-and-aggregate (SplitP) 402

methods and LongP methods that “natively” sup- 403

port longer documents inputs. SplitP use either sim- 404

ple aggregating operations (averaging, summing, 405
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taking the maximum) or an aggregator neural net-406

work. CEDR (MacAvaney et al., 2019), PARADE407

Attention (Li et al., 2024), and Neural Model 1408

(Boytsov and Kolter, 2021) aggregate using simple409

neural networks, whereas PARADE Transformer410

models aggregator is a smaller Transformer (Li411

et al., 2024).412

We focused on cross-encoding rankers, which413

process queries concatenated with documents414

(Nogueira and Cho, 2019). As a reference point415

we also tested a bi-encoding E5-4K model, which416

had strong performance on LongEmbed benchmark417

with context sizes under 4K tokens (Zhu et al.,418

2024). E5-4K was tested as a ranking model and419

only in the zero-shot mode (without fine-tuning).420

Nearly all rankers use only BERT models (i.e.,421

bi-directional encoder-only Transformers) and have422

in total 100M-200M parameters (see Table 6). In423

addition, inspired by a recent success of LLM-424

rankers (Pradeep et al., 2023; Ma et al., 2023), we425

tested a much larger cross-encoding decoder-only426

(“causal”) Transformer model. Specifically we427

chose a 1B-parameter TinyLLAMA model due to428

its impressive performance for its relatively small429

size (Zhang et al., 2024).430

3 Experiments431

3.1 Setup432

We trained each cross-encoding ranking model us-433

ing three seeds, except the bi-encoder model E5434

(Zhu et al., 2024), which was evaluated only in435

the zero-shot mode. To compute statistical signif-436

icance, we averaged query-specific metric values437

over these seeds. Due to space constraints, ad-438

ditional experimental details are provided in the439

Appendix § B.2. Moreover, in the main part of440

the paper we only show results for the mean re-441

ciprocal rank (MRR) and the non-discounted cu-442

mulative gain at rank k (NDCG@K). Additional443

precision-related metrics are computed in the Ap-444

pendix (see § B.5).445

3.2 Results446

Our main experimental results for MS MARCO,447

TREC DL 2019-2021, and Robust04 are presented448

in Table 4. Table 5 and Fig. 2 show results for MS449

MARCO FarRelevant. In the Appendix (see B.4)450

we show that we can match or outperform key prior451

results, which, we believe, boosts the trustworthi-452

ness of our experiments.453

We abbreviate names of several PARADE mod- 454

els: Note that PARADE Attn denotes a PA- 455

RADE Attention model. The PARADE Transf or 456

P. Transf prefix denotes PARADE Transformer 457

models where an aggregator Transformer can be 458

either trained from scratch (Transf-RAND-L2) or 459

initialized with a pretrained model (Transf-PRETR- 460

L6). L2 and L6 denote the number of aggregating 461

layers (two and six, respectively).3 462

Unless explicitly specified, the backbone Trans- 463

former model for SplitP methods is BERT-base 464

(Devlin et al., 2019). Although using other back- 465

bones such as ELECTRA (Clark et al., 2020) and 466

DEBERTA (He et al., 2021) can improve an overall 467

accuracy, we observe a bigger gain compared to a 468

FirstP baseline when we use BERT-base (see § B.4 469

in the Appendix). 470

To ease understanding and simplify presentation, 471

we display key results for a representative sample 472

of models in Fig. 1 and Fig. 2 (in § 1). Moreover, in 473

Table 4 we present only a single aggregate number 474

for all TREC DL query sets, which is obtained by 475

combining all the queries and respective relevance 476

judgements (i.e., we post an overall average rather 477

than an average over the mean values for 2019, 478

2020, and 2020). 479

From Fig. 1 and Table 4 we learn that the max- 480

imum average gain over respective FirstP base- 481

lines is only 5% (when measured using MRR or 482

NDCG@K). Gains are much smaller for a number 483

of models, which even underperform their FirstP 484

baselines on one or more dataset and some of these 485

differences are statistically significant. In particu- 486

lar, this is true for CEDR-DRMM, CEDR-KNRM 487

(MacAvaney et al., 2019), JINA (?) and MOSAIC 488

(Portes et al., 2023) on the MS MARCO develop- 489

ment set. 490

We can also see that the LongP variant of the 491

Longformer model appears to have a relatively 492

strong performance, but so does the FirstP ver- 493

sion of Longformer. Thus, we think that a good 494

performance of Longformer on MS MARCO and 495

Robust04 collections can be largely explained by 496

better pretraining compared to the original BERT- 497

base model rather than to its ability to ability to 498

process long contexts. Moreover, FirstP (ELEC- 499

TRA) and FirstP (DEBERTA) are even more ac- 500

curate than FirstP (Longformer) and perform com- 501

parably well (or better) with chunk-and-aggregate 502

3Note, however, that Transf-PRETR-L2 has only four at-
tention heads.
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Table 4: Ranking Performance on MS MARCO, TREC DL, and Robust04.

Retriever / Ranker MS MARCO TREC DL Robust04 Avg. gain
dev (2019-2021) title description over FirstP

MRR NDCG@10 NDCG@20

retriever 0.312 0.629 0.428 0.402 –

FirstP (BERT) 0.394 0.632 0.475 0.527 –
FirstP (Longformer) 0.404 0.643 0.483 0.540 –
FirstP (ELECTRA) 0.417 0.662 0.492 0.552 –
FirstP (DEBERTA) 0.415 0.672 0.534 0.596 –
FirstP (Big-Bird) 0.408 0.656 0.507 0.560 –
FirstP (JINA) 0.422 0.654 0.488 0.532 –
FirstP (MOSAIC) 0.423 0.643 0.453 0.538 –
FirstP (TinyLLAMA) 0.395 0.615 0.431 0.473 –
FirstP (E5-4K) zero-shot 0.380 0.641 0.438 0.429 –

AvgP 0.389 (−1.3%) 0.642 (+1.5%) 0.478 (+0.5%) 0.531 (+0.9%) +0.4%

MaxP 0.392 (−0.4%) 0.644a (+1.9%) 0.488a (+2.6%) 0.544a (+3.3%) +1.9%
MaxP (ELECTRA) 0.414 (−0.6%) 0.659 (−0.5%) 0.502 (+2.0%) 0.563 (+2.1%) +0.8%
MaxP (DEBERTA) 0.402a (−3.2%) 0.671 (−0.1%) 0.535 (+0.2%) 0.609a (+2.2%) -0.2%
SumP 0.390 (−1.0%) 0.639 (+1.0%) 0.486 (+2.2%) 0.538 (+2.1%) +1.1%

CEDR-DRMM 0.385a (−2.3%) 0.629 (−0.5%) 0.466 (−2.0%) 0.533 (+1.3%) -0.9%
CEDR-KNRM 0.379a (−3.8%) 0.630 (−0.3%) 0.483 (+1.7%) 0.535 (+1.7%) -0.2%
CEDR-PACRR 0.395 (+0.3%) 0.643a (+1.6%) 0.496a (+4.3%) 0.549a (+4.2%) +2.6%

Neural Model1 0.398 (+0.9%) 0.650a (+2.8%) 0.484 (+1.8%) 0.537 (+1.9%) +1.8%

PARADE Attn 0.416a (+5.5%) 0.652a (+3.1%) 0.503a (+5.7%) 0.556a (+5.6%) +5.0%
PARADE Attn (ELECTRA) 0.431a (+3.3%) 0.680a (+2.7%) 0.523a (+6.4%) 0.581a (+5.3%) +4.4%
PARADE Attn (DEBERTA) 0.422a (+1.6%) 0.688a (+2.4%) 0.549a (+2.9%) 0.615a (+3.2%) +2.5%
PARADE Avg 0.392 (−0.6%) 0.646a (+2.1%) 0.483 (+1.5%) 0.534 (+1.5%) +1.1%
PARADE Max 0.405a (+2.7%) 0.655a (+3.5%) 0.489a (+2.8%) 0.548a (+4.0%) +3.3%

PARADE Transf-RAND-L2 0.419a (+6.3%) 0.655a (+3.6%) 0.488a (+2.8%) 0.548a (+4.1%) +4.2%
PARADE Transf-RAND-L2 (ELECTRA) 0.433a (+3.9%) 0.670 (+1.2%) 0.523a (+6.3%) 0.574a (+3.9%) +3.8%
PARADE Transf-PRETR-L6 0.402a (+1.9%) 0.643 (+1.6%) 0.494a (+4.0%) 0.554a (+5.1%) +3.2%
PARADE Transf-PRETR-LATEIR-L6 0.398 (+1.1%) 0.626 (−0.9%) 0.450a (−5.2%) 0.501a (−4.9%) -2.5%

LongP (Longformer) 0.412a (+1.9%) 0.668a (+3.9%) 0.500a (+3.6%) 0.568a (+5.1%) +3.6%
LongP (Big-Bird) 0.397a (−2.9%) 0.651 (−0.7%) 0.452a (−10.9%) 0.477a (−14.9%) -7.3%
LongP (JINA) 0.416a (−1.5%) 0.665a (+1.7%) 0.503a (+2.9%) 0.558a (+4.9%) +2.0%
LongP (MOSAIC) 0.421 (−0.4%) 0.664a (+3.3%) 0.456 (+0.6%) 0.570a (+6.0%) +2.4%
LongP (TinyLLAMA) 0.402a (+1.7%) 0.608 (−1.1%) 0.452a (+4.8%) 0.505a (+6.7%) +3.0%
LongP (E5-4K) zero-shot 0.353a (−7.1%) 0.649 (+1.3%) 0.439 (+0.1%) 0.434 (+1.1%) -1.1%

In each column we show a relative gain with respect model’s respective FirstP baseline: The last column shows the average relative gain of
FirstP. Best numbers are in bold: Results are averaged over three seeds. Unless specified explicitly, the backbone is BERT-base.
Statistical significant differences with respect to this baseline are denoted using the superscript superscript a.
p-value threshold is 0.01 for an MS MARCO development collection and 0.05 otherwise.

document models that uses BERT-base as the back-503

bone model. This is a fair comparison aiming to504

demonstrate that on a typical test collection the505

benefits of long-context models are so small that506

comparable benefits can be obtained by finding or507

training a more effective FirstP model. FirstP mod-508

els are more efficient during inference and they can509

be pretrained using a larger number of tokens for510

the same cost (so they could potentially perform511

better).512

Our analysis of position of relevance passages in513

MS MARCO as well as results by Hofstätter et al.514

2020b provide strong evidence that limited benefits515

of long-context models are not due inability to pro-516

cess long context, but rather due to a positional bias517

of relevant passages, which tended to be among the518

first 512 document tokens (see Table 1). 519

To further support this hypothesis, we carried 520

out two sets of experiments using the MS MARCO 521

FarRelevant collection, where a relevant passage 522

was never in the first chunk. We carried out both 523

the zero-shot experiment (evaluation of the model 524

trained on MS MARCO) as well fine-tuning ex- 525

periment using 50K MS MARCO FarRelevant 526

queries. Because FirstP models perform poorly 527

in this setting we use different baselines, namely, 528

Longformer and MaxP models. For models with 529

ELECTRA and DEBERTA backbones we com- 530

pare with MaxP (ELECTRA) and MaxP (DE- 531

BERTA), respectively. Otherwise, the baseline is 532

MaxP (BERT). From Fig. 2 and Table 5, we make 533

the following key observations: 534
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Table 5: Model Ranking Performance on MS MARCO
FarRelevant.

Retriever / Ranker zero-shot fine-tuned
transferred

Random shuffling of top-100 0.052 0.052
Retriever 0.207 0.207

FirstP (BERT) 0.016b 0.090b

FirstP (Longformer) 0.017b 0.091b

FirstP (ELECTRA) 0.019b 0.089b

FirstP (Big-Bird) 0.021b 0.089b

FirstP (JINA) 0.018b 0.088b

FirstP (MOSAIC) 0.018b 0.089b

FirstP (TinyLLAMA) 0.020b 0.079b

FirstP (E5-4K) 0.015ab –

AvgP 0.154ab (−48.1%) 0.365ab (+11.4%)

MaxP 0.297b 0.328b

MaxP (ELECTRA) 0.328b 0.349b

MaxP (DEBERTA) 0.298b 0.332b

SumP 0.211ab (−28.8%) 0.327b (−0.4%)

CEDR-DRMM 0.157ab (−47.3%) 0.372ab (+13.3%)

CEDR-KNRM 0.055ab (−81.5%) 0.382a (+16.4%)

CEDR-PACRR 0.209ab (−29.6%) 0.393a (+19.9%)

Neural Model1 0.085ab (−71.3%) 0.396a (+20.6%)

PARADE Attn 0.300b (+1.0%) 0.337b (+2.8%)

PARADE Attn (ELECTRA) 0.338b (+3.3%) 0.354b (+1.6%)

PARADE Attn (DEBERTA) 0.307b (+3.2%) 0.343b (+3.4%)

PARADE Avg 0.274ab (−7.6%) 0.322b (−1.7%)

PARADE Max 0.291b (−2.1%) 0.330b (+0.6%)

PARADE Transf-RAND-L2 0.243a (−18.2%) 0.419ab (+27.7%)

P. Transf-RAND-L2 (ELECTRA) 0.229a (−30.2%) 0.432ab (+23.8%)

PARADE Transf-PRETR-L6 0.267ab (−10.0%) 0.413a (+26.0%)

P. Transf-PRETR-LATEIR-L6 0.244a (−18.0%) 0.358ab (+9.2%)

LongP (Longformer) 0.233a (−21.7%) 0.399a (+21.7%)

LongP (Big-Bird) 0.126ab (−57.4%) 0.401a (+22.1%)

LongP (JINA) 0.069ab (−76.9%) 0.372ab (+13.4%)

LongP (MOSAIC) 0.120ab (−59.6%) 0.397a (+21.2%)

LongP (TinyLLAMA) 0.078ab (−73.6%) 0.397a (+21.1%)

LongP (E5-4K) 0.057ab (−80.7%) N/A (zero-shot only)

In each column we show a relative gain over models’ respective
MaxP baseline. For LongP models, the gain is over MaxP (BERT).
Best numbers are in bold: Our results are averaged over three seeds.
Unless specified explicitly, the backbone is BERT-base.
Statistically significant differences from a respective MaxP baseline
are denoted with the superscript a. Statistical significant differences
with respect to Longformer are denoted with the superscript b.
p-value threshold is 0.01.

• The FirstP models performed roughly at the535

random-baseline level in both zero-shot and536

fine-tuning modes (RQ3). Surprisingly, E5-537

4K performance is also at a random-baseline538

level despite its competitive performance on539

LongEmbed benchmark (Zhu et al., 2024),540

MS MARCO, and Robust04 (see Table 4);541

• Simple aggregation models including MaxP542

and PARADE Attention had good zero-shot543

accuracy, but benefited little from fine-tuning544

on MS MARCO FarRelevant (RQ3);545

• In contrast, other long-document models had546

poor zero-shot performance (sometimes at547

a a random baseline level), but outstripped 548

respective MaxP baselines by as much as 549

13.3%-27.7% after finetuning (RQ3); 550

• Not only positional bias diminished benefits 551

of supporting longer document contexts, but it 552

also lead to model overfitting to the bias and 553

performing poorly in a zero-shot setting when 554

the distribution of relevant passages changed 555

substantially; 556

• Although PARADE Transformer models were 557

more effective than other models on standard 558

collections, their advantage was small (a few 559

%). In contrast, on MS MARCO FarRele- 560

vant, PARADE Transformer (ELECTRA) out- 561

performed the next competitor Longformer 562

by 8% and PARADE Max (ELECTRA)—an 563

early chunk-and-aggregate approach—by as 564

much as 23.8% (RQ2). 565

Note that no LongP model outperformed the best 566

chunk-and-aggregate approaches (while being also 567

slower). Compared to simple aggregation models 568

such as MaxP (ELECTRA) and PARADE Atten- 569

tion (ELECTRA), LongP models have at least 1.4× 570

lower MRR in the zero-shot setting. In fact, in this 571

setting three out of four LongP models—except 572

Longformer—have a very low MRR with JINA 573

being at the random-baseline level. LongP mod- 574

els also do not outperform PARADE Transformer 575

model in the zero-shot setting and are at least 8% 576

worse after fine-tuning. In this setting, three out of 577

four LongP models have MRR scores ≈ 0.4 that 578

are not statistical different from that of Longformer. 579

4 Conclusion 580

We carried a comprehensive evaluation of 20+ long- 581

document ranking models, which included both 582

chunk-and-aggregate approaches and LongP mod- 583

els that directly support long inputs, using standard 584

IR collections as well as a synthetic new dataset MS 585

MARCO FarRelevant. These experiments helped 586

us expose the bias in the distribution of relevant 587

information (a trend to appear in the beginning of 588

documents) and to demonstrate that MS MARCO 589

FarRelevant is a hard benchmark even for models 590

that supported long inputs. We made our code and 591

MS MARCO FarRelevant available.4 592

4https://anonymous.4open.science/r/long_doc_
rank_model_analysis_v2-78E9/.
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5 Limitations593

Our paper has several limitations related primarily594

to the choice of datasets, models, and the strength595

of evidence for the positional bias of relevant pas-596

sages.597

First of all, our evaluation uses only cross-598

encoding ranking models. With an exception of599

E5-4K model, which is used in the zero-shot rank-600

ing mode, we do not train or evaluate bi-encoding601

models (typically used to create query and docu-602

ment embeddings for the first-stage retrieval). We603

nonetheless believe that—given a large number604

of proposals for long-document ranking—a repro-605

duction and evaluation of cross-encoding long-606

document rankers is a sufficiently important topic607

that alone warrants a publication.608

Moreover, as we explain below, we also use609

cross-encoding rankers as a tool to detect and ex-610

pose bias in the position of relevant information. In611

that, cross-encoders are easier to train using stan-612

dard (rather than high-memory) GPUs with mini-613

batch size one and gradient accumulation. They614

also typically require only one epoch to converge615

(only a few models need two or three epochs). In616

contrast, bi-encoders are trained using large batches617

with in-batch negatives for multiple epochs (e.g.,618

Karpukhin et al. 2020 reports using at least 40619

epochs).620

Second, we focus on popular English doc-621

ument collections: MS MARCO Documents622

v1/v2 (Craswell et al., 2020) and Robust04 (Clarke623

et al., 2004). However, we have to restrict the624

choice of datasets to make multi-seed evaluations625

of 20+ models feasible. Despite this limitation,626

identifying bias in commonly used collections is627

an important task on its own. Moreover, strong per-628

formance of FirstP baselines was also noticed in629

other collections: Gao and Callan 2022 showed this630

for ClueWeb09 (and Robust04). Zhu et al. 2024631

noticed a strong E5 FirstP performance on many632

LoCo datasets (Saad-Falcon et al., 2024).633

While good performance of FirstP models634

strongly suggests a positional bias in relevant pas-635

sages, we believe this alone is not sufficient evi-636

dence. Additionally—using the structure of the MS637

MARCO datasets—we attempt to directly identify638

positions of relevant passages. In that we could639

not map about 15% of the passages to documents,640

because these documents were changed after the641

passages were extracted. Although the failure to642

map 15% of passages can potentially bias the es-643

timates for the distribution of relevant passages, 644

we think it is unlikely because document updates 645

were likely affected by the same positional biases 646

as their prior versions. Moreover, our results are 647

also supported by the FIRA experiment (Hofstätter 648

et al., 2020b), where relevant positions were iden- 649

tified manually for a sample of documents used in 650

TREC Deep Learning track (Craswell et al., 2020, 651

2022). 652

One can also argue that limited gains over FirstP 653

baselines can be attributed to models’ inability to 654

process long contexts. To counter this argument, 655

we trained and evaluated a large number of diverse 656

cross-encoding ranking models, which included 657

both split-and-aggregate models as well as models 658

directly supporting long inputs. However, we can 659

still test only a limited number of models: One 660

might always argue that there are untested architec- 661

tures that would outperform FirstP baselines by a 662

much larger margin. 663

To demonstrate that selected models can, in prin- 664

ciple, benefit from long contexts and decisively 665

outperform simple baselines such as FirstP and 666

even MaxP models we trained and/or evaluated 667

them on a synthetic needle-in-the-haystack collec- 668

tion MS MARCO FarRelevant. This is still a lim- 669

iting experiment, because synthetic collections— 670

with documents composed from randomly se- 671

lected passages—are imperfect proxies for real-life 672

datasets. 673

In summary, we provided three types of evidence 674

for positional bias of relevant passages: strong per- 675

formance of FirstP models on standard collections, 676

direct estimation of the distribution of relevant pas- 677

sages, and experimentation with the synthetic col- 678

lection MS MARCO FarRelevant where relevant 679

passages distribution was not skewed towards the 680

beginning of a document. Each experiment pro- 681

vided imperfect/limited evidence on its own, but 682

together they strongly support the existence of rele- 683

vance position bias. 684

Finally, in contrast to some recent studies ex- 685

tending input contexts with dozens of thousands 686

of tokens (Zhu et al., 2024; Saad-Falcon et al., 687

2024), we truncated documents to have at most 688

1431 BERT tokens. This limitation, however, did 689

not prevent us from answering our key research 690

questions. In particular, as we showed and ex- 691

plained in the Appendix § B.3, using larger inputs 692

only marginally improved outcomes for popular 693

IR collections such as MS MARCO, Robust04 or 694

ClueWeb09. At the same time, when we trained 695
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models on MS MARCO and applied them to MS696

MARCO FarRelevant in a zero-shot mode, we ob-697

served a large (at least 17%) decrease in MRR with698

many models struggling to outperform a random-699

shuffling baseline. This indicates that even short-700

document collections can be quite challenging.701

6 Ethics Statement702

We believe our study does not pose any ethical703

concerns. We do not collect any new data with704

the help of human annotators and we do not use705

human or animal subjects in our study. Although706

we do discover a positional bias in existing retrieval707

collections, we are not aware of any potential risks708

or harms that can be caused by the exposure of this709

bias.710

In terms of the environmental impact, our com-711

putational requirements are rather modest, because712

we only fine-tuned our models rather than trained713

them from scratch. These models were also rather714

small by modern standards. Except 1B-parameter715

TinyLLAMA (Zhang et al., 2024), each model716

has about 100M parameters (see Table 6 for de-717

tails). Despite training and testing 20+ models with718

three seeds, we estimate to have spent only about719

6400 GPU hours for our main experiments. 96%720

of the time we used NVIDIA A10 (or similarly-721

powerful) RTX 3090 GPUs and 4% of the time we722

used NVIDIA A6000.723

We believe this is roughly equivalent to train-724

ing a single 1B-parameter TinyLLAMA model,725

which required about 3400 GPU hours using a726

more powerful NVIDIA A100. This, in turn, this727

is only a tiny fraction of compute required to train728

LLAMA2 models (2% compared to a 7B LLAMA2729

smodel).5730
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Table 6: Number of Model Parameters

Model family # of
params.

PARADE Transformer 132-148M
Longformer 149M
BigBird 127M
JINA 137M
MOSAIC 137M
DEBERTA-based models 184M
TinyLLAMA-based models 1034M
Other BERT- and ELECTRA-based models ≈110 M

A Ranking with Cross-Encoding 1072

Long-Document Models 1073

In this section, we describe long-document cross- 1074

encoding models in more details. With an ex- 1075

ception of TinyLLAMA (Zhang et al., 2024) all 1076

models use only smallish bi-directional encoder- 1077

only Transformers (Vaswani et al., 2017) with 100- 1078

200M parameters in total (see Table 6). TinyL- 1079

LAMA is a so-called LLM-ranker: a “causal” 1080

decoder-only Transformer that has about 1B pa- 1081

rameters. 1082

We assume that an input text is split into small 1083

chunks of texts called tokens. Although tokens can 1084

be complete English words, Transformer models 1085

usually split text into sub-word units (Wu et al., 1086

2016). 1087

The length of a document d—denoted as |d|— 1088

is measured in the number of tokens. Because 1089

neural networks cannot operate directly on text, a 1090

sequence of tokens t1t2 . . . tn is first converted to 1091

a sequences of d-dimensional embedding vectors 1092

w1w2 . . . wn by an embedding network. These em- 1093

beddings are context-independent, i.e., each token 1094

is always mapped to the same vector (Collobert 1095

et al., 2011; Mikolov et al., 2013). 1096

For a detailed description of Transformer mod- 1097

els, please see the annotated Transformer guide 1098

(Rush, 2018) as well as the recent survey by Lin 1099

et al. (Lin, 2019), which focuses on the use of 1100

BERT-style cross-encoding models for ranking and 1101

retrieval. For this paper, it is necessary to know 1102

only the following basic facts: 1103

• BERT is an encoder-only model, which con- 1104

verts a sequence of tokens t1t2 . . . tn to a se- 1105

quence of d-dimensional vectors w1w2 . . . wn. 1106
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These vectors—which are token representa-1107

tions from the last model layer—are com-1108

monly referred to as contextualized token em-1109

beddings (Peters et al., 2018);1110

• BERT operates on word pieces (Wu et al.,1111

2016) rather than on complete words;1112

• The vocabulary includes two special tokens:1113

[CLS] (an aggregator) and [SEP] (a separa-1114

tor);1115

• Using a pooled representation of token vectors1116

w1w2 . . . wn, a linear layer is used to produce1117

a ranking score. A nearly universal pooling1118

approach in cross-encoding rankers is to use1119

the vector of the [CLS] token, i.e., w1. How-1120

ever, we learned that some models (e.g., JINA1121

(Günther et al., 2023)) converge well only with1122

mean pooling, i.e., they use 1
n

∑n
i=1wi.1123

A “vanilla” BERT ranker (dubbed as monoBERT1124

by Lin et al. (Lin, 2019)) uses a single fully-connect1125

layer F as a prediction head, which converts the1126

last-layer representation of the [CLS] token (i.e., a1127

contextualized embedding of [CLS]) into a scalar1128

(Nogueira and Cho, 2019). It makes a prediction1129

based on the following sequence of tokens: [CLS]1130

q [SEP] d [SEP], where q is a query and d is a1131

document.1132

An alternative approach is to aggregate con-1133

textualized embeddings of regular tokens using a1134

shallow neural network (MacAvaney et al., 2019;1135

Boytsov and Kolter, 2021; Khattab and Zaharia,1136

2020) (possibly together with the contextualized1137

embedding of [CLS]) . This was first proposed by1138

MacAvaney et al. (MacAvaney et al., 2019) who1139

also found that incorporating [CLS] improves per-1140

formance. However, Boytsov and Kolter proposed1141

a shallow aggregating network that does not use the1142

output of the [CLS] token and achieved the same1143

accuracy on MS MARCO datasets (Boytsov and1144

Kolter, 2021).1145

Replacing the standard BERT model in the1146

vanilla BERT ranker with a BERT variant that “na-1147

tively” supports longer documents (e.g., Big-Bird1148

(Zaheer et al., 2020)) is, perhaps, the simplest way1149

to deal with long documents. We collectively call1150

these models as LongP models. For a typical BERT1151

model, however, long documents and queries need1152

to be split or truncated so that the overall num-1153

ber of tokens does not exceed 512. In the FirstP1154

mode, we process only the first chunk and ignore1155

the truncated text. In the SplitP mode, each chunk 1156

is processed separately and the results are aggre- 1157

gated. In the remaining of this section, we discuss 1158

these approaches in detail. 1159

A.1 LongP models 1160

In our work, we benchmark both sparse-attention 1161

and full-attention models. Sparse attention LongP 1162

models include two popular options: Longformer 1163

(Beltagy et al., 2020) and Big-Bird (Zaheer et al., 1164

2020). In that, we use the same approach to 1165

score documents as with the vanilla BERT ranker, 1166

namely, concatenating queries with documents and 1167

making a prediction based on the contextualized 1168

embedding of the [CLS] token (Nogueira and Cho, 1169

2019). Both Big-Bird and Longformer use a com- 1170

bination of the local, “scattered” (our terminology), 1171

and global attention. The local attention utilizes a 1172

sliding window of a constant length where each to- 1173

ken attends to each other token within this window. 1174

In the case of the global attention, certain tokens 1175

can attend to all other tokens and vice-versa, In 1176

Big-Bird, only special tokens such as [CLS] can 1177

attend globally. In Longformer, the user have to 1178

select such tokens explicitly. Following Beltagy 1179

et al. (Beltagy et al., 2020), who applied this tech- 1180

nique to question-answering, we “place” global 1181

attention only on query tokens. Unlike the global 1182

attention, the scattered attention is limited to re- 1183

stricted sub-sets of tokens, but these subsets do not 1184

necessarily have locality. In Big-Bird the scattered 1185

attention relies on random tokens, whereas Long- 1186

former uses a dilated sliding-window attention with 1187

layer- and head-specific dilation. 1188

Full-attention models include JINABert (Gün- 1189

ther et al., 2023), TinyLLAMA (Zhang et al., 2024), 1190

and MosaicBERT (Portes et al., 2023), henceforth, 1191

simply JINA, TinyLLAMA and MOSAIC. All 1192

these models use a recently proposed FlashAtten- 1193

tion (Dao et al., 2022) to efficiently process long- 1194

contexts as well as special positional embeddings 1195

that can generalize to document lengths not seen 1196

during training. In that, JINA and MOSAIC use 1197

AliBi (Press et al., 2022), while TinyLLAM uses 1198

ROPE embeddings (Su et al., 2023). JINA and 1199

MOSAIC are bi-directional encoder-only Trans- 1200

former model whereas TinyLLAMA is a unidi- 1201

rectional (sometimes called causal) decoder-only 1202

Transformer model (Vaswani et al., 2017). 1203

In addition architectural difference, models dif- 1204

fer in pretraining strategies. MOSAIC relies pri- 1205

marily on the masked language (MLM) objective 1206
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without next sentence prediction (NSP). JINA uses1207

this approach as a first step, following a RoBERTa1208

pretraining strategy (Liu et al., 2019) and fine-1209

tuning on retrieval and classification tasks with1210

mean-pooled representations. TinyLLAMA was1211

trained using an autoregressive language modeling1212

objective (Zhang et al., 2024). We found that JINA1213

lost an ability to effectively pool on the [CLS] to-1214

ken and we used mean-pooling instead. We also1215

use mean pooling for TinyLLAMA. For MOSAIC1216

we used pooling on [CLS].1217

A.2 SplitP models1218

SplitP models differ in partitioning and aggregation1219

approaches. Documents can be split into either1220

disjoint or overlapping chunks. In the first case,1221

documents are split in a greedy fashion so that each1222

document chunk except possibly the last one is1223

exactly 512 tokens long after being concatenated1224

with a (padded) query and three special tokens. In1225

the second case, we use a sliding window approach1226

with a window size and stride that are not tied to1227

the maximum length of BERT input.1228

Greedy partitioning into disjoint chunks1229

CEDR models (MacAvaney et al., 2019) and the1230

Neural Model 1 (Boytsov and Kolter, 2021) use the1231

first method, which involves:1232

• tokenizing the document d;1233

• greedily splitting a tokenized document d into1234

m disjoint chunks: d = d1d2 . . . dm;1235

• generating m token sequences [CLS] q [SEP]1236

di [SEP] by concatenating the query with doc-1237

ument chunks;1238

• processing each sequence with a BERT model1239

to generate contextualized embeddings for1240

regular tokens as well as for [CLS].1241

The outcome of this procedure is m [CLS]-vectors1242

clsi and n contextualized vectors w1w2 . . . wn (one1243

for each document token ti) that are aggregated in1244

a model-specific ways.1245

MacAvaney et al. (MacAvaney et al., 2019) use1246

contextualized embeddings as a direct replacement1247

of context-free embeddings in the following neural1248

architectures: KNRM (Xiong et al., 2017), PACRR1249

(Hui et al., 2018), and DRMM (Guo et al., 2016).1250

To boost performance, they incorporate [CLS]-1251

vectors in a model-specific way. We call the re-1252

spective models as CEDR-KNRM, CEDR-PACRR,1253

and CEDR-DRMM.1254

They also proposed an extension of the vanilla 1255

BERT ranker that makes a prediction using the 1256

average [CLS] token: 1
m

∑m
i=1 clsi by passing it 1257

through a linear projection layer. We call this 1258

method AvgP. 1259

The Neural Model 1 (Boytsov and Kolter, 2021) 1260

uses the same greedy partitioning approach as 1261

CEDR, but a different aggregator network, which 1262

does not use the embeddings of the [CLS] token. 1263

This network is a neural parametrization of the 1264

classic Model 1 (Berger and Lafferty, 1999; Brown 1265

et al., 1993). 1266

Sliding window approach The BERT 1267

MaxP/SumP (Dai and Callan, 2019) and 1268

PARADE (Li et al., 2024) models use a sliding 1269

window approach. Assume w is the size of the 1270

window and s is the stride. Then the processing 1271

can be summarized as follows: 1272

• tokenizing, the document d into sub-words 1273

t1t2 . . . tn ; 1274

• splitting a tokenized document d into 1275

m possibly overlapping chunks di = 1276

ti·sti·s+1 . . . ti·s+w−1: Trailing chunks may 1277

have fewer than w tokens. 1278

• generating m token sequences [CLS] q [SEP] 1279

di [SEP] by concatenating the query with doc- 1280

ument chunks; 1281

• processing each sequence with a BERT model 1282

to generate a last-layer output for each se- 1283

quence [CLS] token. 1284

The outcome of this procedure is m [CLS]-vectors 1285

clsi, which are subsequently aggregated in a 1286

model-specific ways. Note that PARADE and 1287

MaxP/SumP models do not use contextualized em- 1288

beddings of regular tokens. 1289

BERT MaxP/SumP These models (Dai and 1290

Callan, 2019) use a linear layer F to produce m 1291

relevance scores F (clsi). Then complete docu- 1292

ment scores are computed as maxmi=1 F (clsi) and 1293∑m
i=1 F (clsi) for the MaxP and SumP models, re- 1294

spectively. 1295

PARADE These models (Li et al., 2024) can be 1296

divided into two groups. The first group includes 1297

PARADE average, PARADE max, and PARADE 1298

attention, which all use simple approaches to pro- 1299

duce an aggregated representation of m [CLS]- 1300

vectors clsi. To compute a relevance score these 1301
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aggregated representations are passed through a1302

linear layer F .1303

In particular, PARADE average and PARADE1304

max combine clsi using averaging and the element-1305

wise maximum operation, respectively to gener-1306

ate aggregated representation of m [CLS] tokens1307

clsi.6 The PARADE attention model uses a learn-1308

able attention (Bahdanau et al., 2015) vector C1309

to compute a scalar weight wi of each i as fol-1310

lows: w1w2 . . . wm = softmax(C · cls1, C ·1311

cls2, . . . , C ·clsm). These weights are used to com-1312

pute the aggregated representation as
∑m

i=1wiclsi1313

PARADE Transformer models combine [CLS]-1314

vectors clsi with an additional aggregator trans-1315

former model AggregTransf(). The input of the1316

aggregator Transformer is sequence of clsi vectors1317

prepended with a learnable vector C, which plays a1318

role of a [CLS] embedding for AggregTransf().1319

The last-layer representation of the first vector is1320

passed through a linear layer F to produce a rele-1321

vance score:1322

F (AggregTransf(C, cls1, cls2, . . . , clsm)[0])
(1)1323

An aggregator Transformer can be either pre-1324

trained or randomly initialized. In the case of a1325

pretrained transformer, we completely discard the1326

embedding layer. Furthermore, if the dimensional-1327

ity of clsi vectors is different from the dimension-1328

ality of input embeddings in AggregTransf , we1329

project clsi using a linear transformation.1330

Miscellaneous models We attempted to imple-1331

ment additional state-of-the-art models (Gao and1332

Callan, 2022; Fu et al., 2022). Gao and Callan (Gao1333

and Callan, 2022) introduced a late-interaction1334

model MORES+, which is a modular long doc-1335

ument reranker that uses a sequence-to-sequence1336

transformer in a non-auto-regressive mode. In1337

MORES+ document chunks are first encoded us-1338

ing the encoder-only Transformer model. Then1339

they use a modified decoder Transformer for1340

joint query-to-all-document-chunk cross-attention:1341

This modification changes a causal Transformer1342

into an encoder-only bi-directional Transformer1343

model. As of the moment of writing, the MORES+1344

model holds the first position on a competitive MS1345

6Note that both PARADE average and AvgP vanilla ranker
use the same approach to aggregate contextualized embed-
dings of [CLS] tokens, but they differ in their approach
to select document chunks. In particular, AveP uses non-
overlapping chunks while PARADE average relies on the
sliding window approach.

MARCO document leaderboard.7. However, the 1346

authors provide only incomplete implementation 1347

which does not fully match the description in the 1348

paper (i.e., crucial details are missing). We reimple- 1349

mented this model to the best of our understanding, 1350

but our implementation failed to outperform even 1351

BM25. 1352

Inspired by this approach, we managed to im- 1353

plement a late-interaction variant of the PARADE 1354

model, which we denoted as PARADE-LATEIR. 1355

Similar to the original PARADE model, it splits 1356

documents into overlapping chunks. However, it 1357

then encodes chunks and queries independently. 1358

Next, it uses an interaction Transformer to (1) mix 1359

these representations, and (2) combine output using 1360

an aggregator Transformer. In total, the model uses 1361

three backbone encoder-only Transformers: All of 1362

these Transformers are initialized using pretrained 1363

models. 1364

Fu et al. (Fu et al., 2022) proposed a multi-view 1365

interactions-based ranking model (MIR). They im- 1366

plement inter-passage interactions via a multi-view 1367

attention mechanism, which enables information 1368

propagation at token, sentence, and passage levels. 1369

Due to the computational complexity, they restrict 1370

these interactions to a set of salient/pivot tokens. 1371

However, the paper does not provide enough de- 1372

tails regarding the choices of these tokens. There is 1373

no software available and authors did not respond 1374

to our clarification requests. Thus, this model is 1375

also excluded from our evaluation. 1376

We additionally implemented both the encoder- 1377

only and the encoder-decoder variant of LongT5 1378

(Guo et al., 2022) as well as RoFormer (with ROPE 1379

embeddings) (Su et al., 2024). We eventually had 1380

to abandon them due to poor convergence (LongT5) 1381

and/or CUDA crashes (RoFormer). 1382

B Experiments: Additional Information, 1383

Ablations, and Detailed Results 1384

B.1 MS MARCO FarRelevant Creation 1385

Algorithm 1386

The MS MARCO FarRelevant dataset was created 1387

as follows: Assume that Ct is the number of tokens 1388

in the passage: 1389

• Select randomly a document length between 1390

512 + Ct and 1431; 1391

7https://microsoft.github.io/
MSMARCO-Document-Ranking-Submissions/
leaderboard/
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• Using rejection sampling, obtain K1 non-1392

relevant samples such that their total length1393

exceeds 512, but the length of K1 − 1 first1394

samples is at most 512.1395

• Using the same approach, sample another1396

K2 + 1 samples such that the total length of1397

K2 samples is at most 1431−Ct, but the total1398

length of K2 + 1 samples exceeds this value.1399

• Discard the last sampled passage and ran-1400

domly mix the remaining K2 non-relevant1401

passages with a single relevant passage.1402

• Finally, append the resulting string to the con-1403

catenation of the first K1 non-relevant pas-1404

sages.1405

B.2 Detailed Training and Evaluation Setup1406

B.2.1 General Setup1407

In our work, a ranker is applied to the output of1408

the first-stage retrieval model, also known as a1409

candidate-generator. Depending on the experiment1410

and the dataset we use different candidate genera-1411

tors: for MS MARCO v1 and Robust04 we used1412

a BM25 ranker (Robertson, 2004). In that, for1413

MS MARCO v1 it was applied to documents ex-1414

panded using the doc2query approach (Nogueira1415

and Lin, 2019). For MS MARCO v2, we used a1416

hybrid retriever where candidate records are first1417

produced using a k-NN search and subsequently1418

re-ranked using a linear fusion of BM25 scores and1419

the cosine similarity between query and document1420

embeddings. Embeddings were generated using1421

ANCE (Xiong et al., 2021).1422

Depending on the collection we computed a sub-1423

set of the following metrics: the mean reciprocal1424

rank (MRR), the non-discounted cumulative gain1425

at rank k (NDCG@K) (Järvelin and Kekäläinen,1426

2002), the mean average precision (MAP), and1427

precision at rank (P@K), k ∈ {10, 20}. Due to1428

space constraints, we included results with MAP1429

and P@K only in the Appendix (see § B.5). Note1430

that for test sets with sparse labels (MS MARCO1431

development set and MS MARCO FarRelevant) we1432

computed only MRR.1433

All experiments were carried out using the an1434

anonymous retrieval toolkit framework, which em-1435

ployed Lucene and an anonymous toolkit for k-1436

NN search to provide retrieval capabilities. Deep1437

learning support was provided via PyTorch (Paszke1438

et al., 2019) and HuggingFace Transformers library1439

(Wolf et al., 2019). The instructions to reproduce1440

our key results are publicly available in the on-line 1441

appendix.8 1442

B.2.2 Model Traning 1443

A ranker was trained to distinguish between pos- 1444

itive examples (known relevant documents) and 1445

hard negative examples (documents not marked 1446

as relevant) sampled from the set of top-k candi- 1447

dates returned by the candidate generator. We used 1448

k = 100 for MS MARCO and MS MARCO Far- 1449

Relevant and k = 1000 for Robust04 (based on 1450

preliminary experiments). 1451

Each model was trained using three seeds. All 1452

models except MOSAIC were trained using half- 1453

precision. MOSAIC models were trained using full- 1454

precision. MOSAIC training was unstable (even 1455

though we used the full precision) and often re- 1456

sulted in close-to-zero performance. For this reason 1457

we continued training with more seeds until we ob- 1458

tained three models with reasonable performance. 1459

This seed selection strategy could potentially have 1460

biased (up) MOSAIC results. To compute statisti- 1461

cal significance, we averaged query-specific metric 1462

values over these seeds. 1463

All MS MARCO models were trained from 1464

scratch. Then these models were fine-tuned on Ro- 1465

bust04. Note that except for the aggregation Trans- 1466

formers and TinyLLAMA, we use a base, i.e., a 1467

12-layer Transformer (Vaswani et al., 2017) models. 1468

TinyLLAMA has 22 layers and about 1B parame- 1469

ters. BERT-base is more practical then a 24-layer 1470

BERT-large and performs at par with BERT-large 1471

on MS MARCO and Robust04 (Hofstätter et al., 1472

2020a; Li et al., 2024). In our own experiments, we 1473

see that large (24 and more layers) model perform 1474

much better on the MS MARCO Passage collec- 1475

tion, but we were not able to outperform 12-layer 1476

models on the MS MARCO Documents collection. 1477

Note that Longformer (Beltagy et al., 2020), Big- 1478

Bird (Zaheer et al., 2020), and DEBERTA base (He 1479

et al., 2021), JINA (?), and MOSAIC (Portes et al., 1480

2023) all have 12 layers, but a larger embedding 1481

matrix. 1482

One training epoch consisted in iterating over all 1483

queries and sampling one positive and one nega- 1484

tive example with a subsequent computation of a 1485

pairwise margin loss. We used the minibatch size 1486

one with gradient accumulation over 16 steps. The 1487

learning rates are provided in the model configura- 1488

8https://anonymous.4open.science/r/long_doc_
rank_model_analysis_v2-78E9/
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Table 7: Comparison of Long-context Models to Respective FirstP baselines and Prior Art.

Model MS MARCO TREC DL Robust04
dev 2019 2020 2021 title description

MRR NDCG@10 NDCG@20

Prior work (FirstP, MaxP), Zhang et al. (Zhang et al., 2021)

FirstP (BERT) – – – – 0.449 0.510
MaxP (BERT) – – – – 0.477 (+6.2%) 0.530 (+3.9%)
MaxP (ELECTRA) – – – – 0.523 0.574

Prior work (PARADE) Li et al. (Li et al., 2024)

PARADE Attn (ELECTRA) – – – – 0.527 0.587
PARADE Max (ELECTRA) – 0.679 0.613 – 0.544 0.602
PARADE Transf-RAND (ELECTRA) – 0.650 0.601 – 0.566 0.613

Our results

FirstP (BERT) 0.394 0.631 0.598 0.660 0.475 0.527
MaxP (BERT) 0.392 (−0.4%) 0.648 (+2.6%) 0.615 (+2.8%) 0.665 (+0.8%) 0.488a (+2.6%) 0.544a (+3.3%)
PARADE Attn 0.416a (+5.5%) 0.647 (+2.5%) 0.626a (+4.6%) 0.677 (+2.5%) 0.503a (+5.7%) 0.556a (+5.6%)

FirstP (ELECTRA) 0.417 0.652 0.642 0.686 0.492 0.552
MaxP (ELECTRA) 0.414 (−0.6%) 0.659 (+1.0%) 0.630 (−1.9%) 0.683 (−0.5%) 0.502 (+2.0%) 0.563 (+2.1%)
PARADE Attn (ELECTRA) 0.431a (+3.3%) 0.675a (+3.5%) 0.653 (+1.8%) 0.705 (+2.8%) 0.523a (+6.4%) 0.581a (+5.3%)

FirstP (DEBERTA) 0.415 0.675 0.629 0.702 0.534 0.596
MaxP (DEBERTA) 0.402 (−3.2%) 0.679 (+0.6%) 0.620 (−1.4%) 0.705 (+0.4%) 0.535 (+0.2%) 0.609 (+2.2%)
PARADE Attn (DEBERTA) 0.422a (+1.6%) 0.685 (+1.4%) 0.659a (+4.8%) 0.713 (+1.4%) 0.549a (+2.9%) 0.615a (+3.2%)

FirstP (Longformer) 0.404 0.657 0.616 0.654 0.483 0.540
LongP (Longformer) 0.412a (+1.9%) 0.676a (+2.9%) 0.628 (+2.0%) 0.693a (+6.0%) 0.500a (+3.6%) 0.568a (+5.1%)

FirstP (Big-Bird) 0.408 0.663 0.620 0.679 0.507 0.560
LongP (Big-Bird) 0.397a (−2.9%) 0.655 (−1.1%) 0.618 (−0.3%) 0.675 (−0.5%) 0.452a (−10.9%) 0.477a (−14.9%)

FirstP (JINA) 0.422 0.658 0.618 0.679 0.488 0.532
LongP (JINA) 0.416a (−1.5%) 0.670a (+1.8%) 0.632 (+2.1%) 0.689 (+1.4%) 0.503a (+2.9%) 0.558a (+4.9%)

FirstP (MOSAIC) 0.423 0.654 0.607 0.662 0.453 0.538
LongP (MOSAIC) 0.421 (−0.4%) 0.660 (+0.9%) 0.630a (+3.7%) 0.694a (+4.9%) 0.456 (+0.6%) 0.570a (+6.0%)

In each column we show a relative gain over model’s respective FirstP baseline: The last column shows the average relative gain over FirstP.
Best numbers are in bold: Our results are averaged over three seeds (but not necessarily prior art).
Statistical significant differences with respect to this baseline are denoted using the superscript superscript a. p-value threshold is 0.01 for an
MS MARCO development collection and 0.05 otherwise.

tion files (in the on-line repository).9 We used the1489

AdamW optimizer (Loshchilov and Hutter, 2017)1490

and a constant learning rate with a 20% linear1491

warm-up (Mosbach et al., 2020).1492

We have learned that—unlike neural retrievers—1493

cross-encoding rankers (Nogueira and Cho, 2019)1494

are relatively insensitive to learning rates, their1495

schedules, and the choice of loss functions. We1496

were sometimes able to achieve better results using1497

multiple negatives per query and a listwise margin1498

loss (or cross-entropy). However, the gains were1499

small and not consistent compared to a simple pair-1500

wise margin loss used in our work (in fact, using1501

a listwise loss function sometimes lead to overfit-1502

ting). Note again that this is different from neural1503

retrievers where training is difficult without using1504

a listwise loss and/or batch-negatives (Karpukhin1505

et al., 2020; Xiong et al., 2021; Qu et al., 2021;1506

Zerveas et al., 2021; Formal et al., 2021).1507

For MS MARCO, all models except PARADE-1508

Transf-Pretr-LATEIR-L6 and PARADE-Transf-1509

9https://anonymous.4open.science/r/long_doc_
rank_model_analysis_v2-78E9/.

RAND-L2 were trained for one epoch: Further 1510

training did not improve (and sometimes degraded) 1511

accuracy. However, PARADE-Transf-RAND-L2 1512

and PARADE-Transf-Pretr-LATEIR-L6 required 1513

two-to-three epochs to reach the maximum accu- 1514

racy. In the case of Robust04, each model was 1515

finetuned for 100 epochs, but all epochs were short, 1516

so the overall training and evaluation time was com- 1517

parable to that of fine-tuning on MS MARCO for a 1518

single epoch. 1519

To reproduce our main results, we estimate that 1520

one needs about 6400 GPU hours: 6000 hours 1521

using NVIDIA A10 (or RTX 3090) with 24 GB of 1522

memory and 400 hours using NVIDIA A6000 with 1523

48 GB of memory. A6000 was required only for 1524

TinyLLAMA. 1525

From our experience models trained on MS 1526

MARCO v2 performed worse on TREC 2021 1527

queries compared to models trained on MS 1528

MARCO v1. This may indicate that models some- 1529

how learn to distinguish between original MS 1530

MARCO v1 documents and newly added ones 1531

(which did not have positive judgements in the 1532
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training sets). As a result, these models are biased1533

and tend to not rank these new documents well even1534

when they are considered to be relevant by NIST as-1535

sessors. For this reason, we used MS MARCO v21536

data in a zero-shot transfer mode where ranking1537

models trained on MS MARCO v1 are evaluated1538

on TREC DL 2021 queries.1539

B.2.3 Miscellaneous Notes1540

To enable efficient training and evaluation of the1541

large number of models, documents were truncated1542

to have at most 1431 BERT tokens. In § B.3 (see Ta-1543

ble 8) we show that for our top-performing model1544

PARADE Attention (Li et al., 2024) using a larger1545

number of chunks only marginally improves out-1546

comes. Depending on a dataset, the highest accu-1547

racy is achieved using either three or four chunks.1548

For SplitP approaches, queries were padded to1549

32 BERT tokens with padding being masked out1550

during training (longer queries were truncated). For1551

SplitP models with greedy partitioning into disjoint1552

chunks, long document were split into at most three1553

chunks containing 477 document tokens (each con-1554

catenated with up to 32 query tokens plus three1555

special tokens).1556

We evaluated 20+ models, but we had to exclude1557

two LongT5 variants (Guo et al., 2022) and Ro-1558

Former (with ROPE embeddings) (Su et al., 2024)1559

due to poor convergence and/or crashes. Specif-1560

ically, even after 10 epochs of training LongT51561

models were ≈ 10% less accurate than BERT-base1562

FirstP trained for one epoch. Given the uncertainty1563

regarding the possible convergence of models as1564

well as the need to train these for three epochs, we1565

have to abandon this experiment as overly expen-1566

sive. RoFormer models were failing due to CUDA1567

errors when the context length exceeded 512: We1568

were not able to resolve this issue.1569

B.3 Varying the Number of Chunks1570

To understand if truncating input to have at most1571

1431 BERT tokens negatively affected model per-1572

formance, we carried out an ablation study where1573

one of the top-performing models was trained1574

and evaluated using inputs of varying maximum1575

lengths. To this end we used PARADE Attention1576

with the number of input chunks varying from one1577

to six. In that the same number of chunks was used1578

during training and evaluation, i.e., we had to carry1579

out six experiments. Similar to our main experi-1580

ments, we trained each model using three seeds.1581

We carried out this ablation experiment using our1582

MS MARCO and Robust04 datasets. 1583

The results are presented in Table 8: We can 1584

see that—depending on the dataset—three or four 1585

input chunks are optimal. However, the additional 1586

gains over the FirstP baseline are at most 0.6% 1587

when averaged over all test sets. 1588

Gao and Callan 2022 carried out a similar abla- 1589

tion using ClueWeb09: Increasing the number of 1590

input chunks from three to six lead to only about 1591

2.3% relative improvement in NDCG@20. How- 1592

ever, even this modest gain could have been slightly 1593

inflated due to model not being trained directly on 1594

shorter inputs. Indeed, truncation of an input for 1595

a six-chunk model to one chunk is potentially less 1596

effective than training and evaluating the model 1597

using one-chunk data. 1598

B.4 Reproducibility and Backbone Selection 1599

for SplitP Models 1600

1601

To understand if using BERT-base as back- 1602

bone model for various SplitP (i.e., chunk-and- 1603

aggregate) approaches diminished models’ ability 1604

to process and understand long contexts, we carried 1605

out a focused comparison of several backbone mod- 1606

els, including ELECTRA (Clark et al., 2020) and 1607

DEBERTA (He et al., 2021). To this end, we used 1608

two methods: PARADE (Li et al., 2024) Attention 1609

and MaxP. PARADE Attention model achieved 1610

the largest average gain over FirstP in our main 1611

experiments (see Table 4), whereas MaxP models 1612

were extensively benchmarked in the past (Li et al., 1613

2024; Dai and Callan, 2019; Zhang et al., 2021). 1614

Although prior work found ELECTRA to be a bet- 1615

ter backbone model in terms of absolute accuracy 1616

(Li et al., 2024; Zhang et al., 2021), we found no 1617

systematic evaluation of the relationship between a 1618

backbone model and achievable FirstP gains. 1619

Results in Tables 7 and 4 confirm overall su- 1620

periority of both ELECTRA and DEBERTA over 1621

BERT-base. In that, DEBERTA models are nearly 1622

always more effective compared to ELECTRA 1623

models with biggest differences on Robust04. 1624

However, their relative effectiveness with respect 1625

to their respective FirstP baselines does not ex- 1626

ceed that of BERT-base. The same is true for 1627

LongP models. Except Longformer they performed 1628

equally or worse compared to FirstP on 8 test sets 1629

out of 18. Moreover, all LongP models achieved 1630

lower average gains over FirstP (see the last col- 1631

umn in Table 4). We conclude that to measure 1632

capabilities of chunk-and-aggregate model to un- 1633
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Table 8: Effectiveness of the PARADE Attention Model for Different Input Truncation Thresholds

Retriever / Ranker MS MARCO TREC DL Robust04 Avg. gain
dev (2019-2021) title description Over FirstP

MRR NDCG@10 NDCG@20

Retriever 0.312 0.629 0.428 0.402 –

PARADE Attn (1 chunk) 0.401 0.637 0.476 0.527 –
PARADE Attn (2 chunks) 0.408a (+1.8%) 0.653a (+2.7%) 0.499a (+4.9%) 0.544a (+3.3%) +3.2%
PARADE Attn (3 chunks) 0.406a (+1.3%) 0.648a (+1.7%) 0.505a (+6.1%) 0.557a (+5.7%) +3.7%
PARADE Attn (4 chunks) 0.412a (+2.9%) 0.654a (+2.7%) 0.504a (+5.9%) 0.558a (+5.9%) +4.3%
PARADE Attn (5 chunks) 0.409a (+2.0%) 0.652a (+2.4%) 0.502a (+5.6%) 0.556a (+5.5%) +3.9%
PARADE Attn (6 chunks) 0.411a (+2.4%) 0.653a (+2.6%) 0.504a (+5.9%) 0.554a (+5.2%) +4.0%

derstand and incorporate long context, it appears to1634

be beneficial to use BERT-base instead of ELEC-1635

TRA or DEBERTA.1636

We also use Table 7 to compare with prior art.1637

We generally reproduce prior art, in particular, ex-1638

periments by Li et al. 2024, who invented PARADE1639

models. Our ELECTRA-based models achieve1640

higher NDCG@10 on TREC DL 2019-2020 and1641

PARADE Attention models come very close, but1642

they are about 3-5% worse compared to their PA-1643

RADE Transformer on Robust04. At the same time,1644

our DEBERTA-based PARADE Attention model1645

achieves similar NDCG@20 scores.1646

Note that one should not expect identical results1647

due to differences in training regimes and candidate1648

generators. In particular, in the case of Robust04,1649

Li et al. 2024 use RM3 (BM25 with a pseudo-1650

relevance feedback (Jaleel et al., 2004)), which1651

is more effective than BM25 (Robertson, 2004)1652

(which we use on Robust04).1653

Another important comparison point is Robust041654

results by Zhang et al. 2021 who were able to re-1655

produce original MaxP results by Dai and Callan1656

2019, which used BERT-base as a backbone. In ad-1657

dition, they experimented with ELECTRA models1658

“pre-finetuned” on MS MARCO. When compar-1659

ing BERT-base results, Zhang et al. 2021 have the1660

maximum relative gain of 6.6% compared to ours1661

3.3%. However, in absolute terms we got higher1662

NDCG@20 for both FirstP and MaxP. Their MaxP1663

(ELECTRA) has comparable performance to ours1664

on TREC DL 2019-2020, but it is 2-4% better on1665

Robust04. In turn, our MaxP (DEBERTA) is bet-1666

ter by 2-6%. Although we do not always match1667

prior art using the same backbone models, we gen-1668

erally match or outperform prior results, which, we1669

believe, boosts the trustworthiness of our experi-1670

ments.1671
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Table 9: Ranking Performance on MS MARCO and TREC DL.

Model MS MARCO TREC DL
dev 2019-2021

MRR NDCG@10 P@10 MAP

Retriever 0.312 0.629 0.720 0.321

FirstP (BERT) 0.394 0.632 0.712 0.311
FirstP (Longformer) 0.404 0.643 0.722 0.317
FirstP (ELECTRA) 0.417 0.662 0.734 0.320
FirstP (DEBERTA) 0.415 0.672 0.741 0.327
FirstP (Big-Bird) 0.408 0.656 0.727 0.321
FirstP (JINA) 0.422 0.654 0.728 0.320
FirstP (MOSAIC) 0.423 0.643 0.726 0.316
FirstP (TinyLLAMA) 0.395 0.615 0.692 0.301
FirstP (E5-4K) zero-shot 0.380 0.641 0.722 0.317

AvgP 0.389 (−1.3%) 0.642 (+1.5%) 0.717 (+0.7%) 0.317a (+2.0%)

MaxP 0.392 (−0.4%) 0.644a (+1.9%) 0.723 (+1.5%) 0.322a (+3.7%)
MaxP (ELECTRA) 0.414 (−0.6%) 0.659 (−0.5%) 0.745 (+1.5%) 0.326 (+2.1%)
MaxP (DEBERTA) 0.402a (−3.2%) 0.671 (−0.1%) 0.746 (+0.7%) 0.335a (+2.5%)
SumP 0.390 (−1.0%) 0.639 (+1.0%) 0.715 (+0.4%) 0.319a (+2.6%)

CEDR-DRMM 0.385a (−2.3%) 0.629 (−0.5%) 0.708 (−0.5%) 0.313 (+0.6%)
CEDR-KNRM 0.379a (−3.8%) 0.630 (−0.3%) 0.711 (−0.1%) 0.313 (+0.8%)
CEDR-PACRR 0.395 (+0.3%) 0.643a (+1.6%) 0.719 (+0.9%) 0.320a (+2.9%)

Neural Model1 0.398 (+0.9%) 0.650a (+2.8%) 0.723a (+1.5%) 0.323a (+3.9%)

PARADE Attn 0.416a (+5.5%) 0.652a (+3.1%) 0.728a (+2.2%) 0.324a (+4.2%)
PARADE Attn (ELECTRA) 0.431a (+3.3%) 0.680a (+2.7%) 0.763a (+3.9%) 0.335a (+4.9%)
PARADE Attn (DEBERTA) 0.422a (+1.6%) 0.688a (+2.4%) 0.763a (+3.0%) 0.339a (+3.9%)
PARADE Avg 0.392 (−0.6%) 0.646a (+2.1%) 0.715 (+0.4%) 0.317a (+2.1%)
PARADE Max 0.405a (+2.7%) 0.655a (+3.5%) 0.733a (+2.9%) 0.324a (+4.1%)

PARADE Transf-RAND-L2 0.419a (+6.3%) 0.655a (+3.6%) 0.734a (+3.1%) 0.326a (+5.0%)
PARADE Transf-RAND-L2 (ELECTRA) 0.433a (+3.9%) 0.670 (+1.2%) 0.747 (+1.8%) 0.327 (+2.2%)
PARADE Transf-PRETR-L6 0.402a (+1.9%) 0.643 (+1.6%) 0.717 (+0.8%) 0.322a (+3.6%)
PARADE Transf-PRETR-LATEIR-L6 0.398 (+1.1%) 0.626 (−0.9%) 0.707 (−0.7%) 0.307 (−1.1%)

LongP (Longformer) 0.412a (+1.9%) 0.668a (+3.9%) 0.752a (+4.1%) 0.333a (+5.1%)
LongP (Big-Bird) 0.397a (−2.9%) 0.651 (−0.7%) 0.726 (−0.2%) 0.322 (+0.3%)
LongP (JINA) 0.416a (−1.5%) 0.665a (+1.7%) 0.742a (+2.0%) 0.328a (+2.4%)
LongP (MOSAIC) 0.421 (−0.4%) 0.664a (+3.3%) 0.740a (+1.9%) 0.327a (+3.7%)
LongP (TinyLLAMA) 0.402a (+1.7%) 0.608 (−1.1%) 0.692 (+0.0%) 0.306 (+1.6%)
LongP (E5-4K) zero-shot 0.353a (−7.1%) 0.649 (+1.3%) 0.724 (+0.3%) 0.323 (+1.8%)

In each column we show a relative gain with respect model’s respective FirstP baseline: The last column shows the average
relative gain of FirstP. Best numbers are in bold: Results are averaged over three seeds. Unless specified explicitly, the backbone
is BERT-base.
Statistical significant differences with respect to this baseline are denoted using the superscript superscript a. p-value threshold is
0.01 for an MS MARCO development collection and 0.05 otherwise.
E5-models were used only in the zero-shot model, i.e., without fine-tuning.

21



Table 10: Ranking Performance on Robust04.

Model NDCG@20 P@20 MAP NDCG@20 P@20 MAP

Retriever 0.428 0.365 0.255 0.402 0.334 0.240

FirstP (BERT) 0.475 0.405 0.277 0.527 0.447 0.303
FirstP (Longformer) 0.483 0.413 0.277 0.540 0.454 0.307
FirstP (ELECTRA) 0.492 0.424 0.294 0.552 0.465 0.320
FirstP (DEBERTA) 0.534 0.459 0.319 0.596 0.503 0.350
FirstP (Big-Bird) 0.507 0.435 0.300 0.560 0.473 0.325
FirstP (JINA) 0.488 0.421 0.287 0.532 0.450 0.305
FirstP (MOSAIC) 0.453 0.390 0.266 0.538 0.455 0.310
FirstP (TinyLLAMA) 0.431 0.370 0.246 0.473 0.398 0.262
FirstP (E5-4K) 0.438 0.371 0.247 0.429 0.355 0.234

AvgP 0.478 (+0.5%) 0.411 (+1.6%) 0.292a (+5.4%) 0.531 (+0.9%) 0.451 (+1.0%) 0.324a (+6.7%)

MaxP 0.488a (+2.6%) 0.425a (+5.1%) 0.306a (+10.6%) 0.544a (+3.3%) 0.467a (+4.5%) 0.338a (+11.5%)
MaxP (ELECTRA) 0.502 (+2.0%) 0.441a (+3.9%) 0.319a (+8.3%) 0.563 (+2.1%) 0.483a (+4.0%) 0.350a (+9.3%)
MaxP (DEBERTA) 0.535 (+0.2%) 0.464 (+1.2%) 0.340a (+6.7%) 0.609a (+2.2%) 0.519a (+3.2%) 0.378a (+7.9%)
SumP 0.486 (+2.2%) 0.418a (+3.4%) 0.305a (+10.2%) 0.538 (+2.1%) 0.461a (+3.1%) 0.337a (+11.1%)

CEDR-DRMM 0.466 (−2.0%) 0.403 (−0.4%) 0.287a (+3.8%) 0.533 (+1.3%) 0.458a (+2.5%) 0.326a (+7.6%)
CEDR-KNRM 0.483 (+1.7%) 0.413 (+1.9%) 0.291a (+5.1%) 0.535 (+1.7%) 0.456 (+2.0%) 0.324a (+6.8%)
CEDR-PACRR 0.496a (+4.3%) 0.426a (+5.3%) 0.307a (+11.0%) 0.549a (+4.2%) 0.466a (+4.4%) 0.337a (+11.2%)

Neural Model1 0.484 (+1.8%) 0.417a (+3.1%) 0.298a (+7.7%) 0.537 (+1.9%) 0.459a (+2.6%) 0.330a (+8.8%)

PARADE Attn 0.503a (+5.7%) 0.433a (+6.9%) 0.311a (+12.4%) 0.556a (+5.6%) 0.476a (+6.5%) 0.344a (+13.3%)
PARADE Attn (ELECTRA) 0.523a (+6.4%) 0.456a (+7.4%) 0.329a (+11.7%) 0.581a (+5.3%) 0.495a (+6.5%) 0.358a (+11.9%)
PARADE Attn (DEBERTA) 0.549a (+2.9%) 0.475a (+3.6%) 0.346a (+8.7%) 0.615a (+3.2%) 0.522a (+3.8%) 0.383a (+9.4%)
PARADE Avg 0.483 (+1.5%) 0.412 (+1.8%) 0.291a (+5.2%) 0.534 (+1.5%) 0.457 (+2.4%) 0.318a (+4.7%)
PARADE Max 0.489a (+2.8%) 0.420a (+3.8%) 0.306a (+10.8%) 0.548a (+4.0%) 0.470a (+5.3%) 0.337a (+11.0%)

PARADE Transf-RAND-L2 0.488a (+2.8%) 0.423a (+4.6%) 0.303a (+9.7%) 0.548a (+4.1%) 0.469a (+5.0%) 0.338a (+11.6%)
PAR. Transf-RAND-L2 (ELECTRA) 0.523a (+6.3%) 0.454a (+6.9%) 0.330a (+12.2%) 0.574a (+3.9%) 0.488a (+5.0%) 0.354a (+10.6%)
PARADE Transf-PRETR-L6 0.494a (+4.0%) 0.426a (+5.3%) 0.308a (+11.5%) 0.554a (+5.1%) 0.474a (+6.1%) 0.346a (+14.1%)
PAR. Transf-PRETR-LATEIR-L6 0.450a (−5.2%) 0.389a (−3.9%) 0.277 (+0.3%) 0.501a (−4.9%) 0.423a (−5.3%) 0.302 (−0.5%)

LongP (Longformer) 0.500a (+3.6%) 0.435a (+5.3%) 0.309a (+11.5%) 0.568a (+5.1%) 0.482a (+6.1%) 0.347a (+12.9%)
LongP (Big-Bird) 0.452a (−10.9%) 0.389a (−10.7%) 0.274a (−8.8%) 0.477a (−14.9%) 0.400a (−15.5%) 0.279a (−14.2%)
LongP (JINA) 0.503a (+2.9%) 0.434a (+3.1%) 0.309a (+7.5%) 0.558a (+4.9%) 0.473a (+5.2%) 0.335a (+9.7%)
LongP (MOSAIC) 0.456 (+0.6%) 0.393 (+0.8%) 0.280a (+5.3%) 0.570a (+6.0%) 0.484a (+6.3%) 0.350a (+13.0%)
LongP (TinyLLAMA) 0.452a (+4.8%) 0.396a (+6.9%) 0.267a (+8.7%) 0.505a (+6.7%) 0.428a (+7.6%) 0.297a (+13.3%)
LongP (E5-4K) 0.439 (+0.1%) 0.375 (+1.0%) 0.250 (+1.3%) 0.434 (+1.1%) 0.360 (+1.6%) 0.241a (+2.9%)

In each column we show a relative gain with respect model’s respective FirstP baseline: The last column shows the average relative gain of
FirstP. Best numbers are in bold: Results are averaged over three seeds. Unless specified explicitly, the backbone is BERT-base.
Statistical significant differences with respect to this baseline are denoted using the superscript superscript a. p-value threshold is 0.05.
E5-models were used only in the zero-shot model, i.e., without fine-tuning.
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B.5 Additional Accuracy Metrics1672

In this section we show results for additional ef-1673

fectiveness metrics. MS MARCO and TREC DL1674

results are shown in Table 9. Robust04 datasets are1675

presented and Table 10.1676
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