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Abstract

We evaluated 20+ Transformer models for
ranking of long documents (including recent
LongP models trained with FlashAttention)
and compared them with a simple FirstP base-
line, which applies the same model to the trun-
cated input (at most 512 tokens). We used MS
MARCO Documents v1 as a primary training
set and evaluated both zero-shot transferred and
fine-tuned models.

On MS MARCO, TREC DLs, and Robust04 no
long-document model outperformed FirstP by
more than 5% in NDCG and MRR (when aver-
aged over all test sets). We conjectured this was
not due to models’ inability to process long con-
text, but due to a positional bias of relevant pas-
sages, whose distribution was skewed towards
the beginning of documents. We found direct
evidence of this bias in some test sets, which
motivated us to create MS MARCO FarRele-
vant (based on MS MARCO Passages) where
the relevant passages were not present among
the first 512 tokens.

Unlike standard collections where we saw both
little benefit from incorporating longer con-
texts and limited variability in model perfor-
mance (within a few %), experiments on MS
MARCO FarRelevant uncovered dramatic dif-
ferences among models. The FirstP models per-
formed roughly at the random-baseline level in
both zero-shot and fine-tuning scenarios. Sim-
ple aggregation models including MaxP and
PARADE Attention had good zero-shot accu-
racy, but benefited little from fine-tuning. Most
other models had poor zero-shot performance
(sometimes at a random baseline level), but
outstripped MaxP by as much as 13-28% after
finetuning. Thus, the positional bias not only
diminishes benefits of processing longer doc-
ument contexts, but also leads to model over-
fitting to positional bias and performing poorly
in a zero-shot setting when the distribution of
relevant passages changes substantially. We
make our software and data available.!
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Figure 1: Average relative gain (in %) vs. relative in-
crease in run-time compared to respective FirstP base-
lines on MS MARCO, TREC DL 2019-2021, and Ro-
bust04 (for a representative subset of models).

1 Introduction

Transformer models (Vaswani et al., 2017)—such
as BERT (Devlin et al., 2019)—pretrained in a self-
supervised manner considerably advanced state-of-
the-art of core natural language processing (NLP)
(Devlin et al., 2019; Radford et al., 2018) and infor-
mation retrieval (Nogueira and Cho, 2019). How-
ever, due to quadratic cost of the self-attention with
respect to an input sequence length, a number of
“chunk-and-aggregate” approaches were proposed
and evaluated (Dai and Callan, 2019; MacAvaney
et al., 2019; Boytsov and Kolter, 2021; Li et al.,
2024), but existing studies typically have at least
one of the following shortcomings:

* Reliance only on small-scale query collec-
tions such as TREC DL (Craswell et al., 2020,
2022), Robust04 (Voorhees, 2004), and Gov2
Terabyte (Clark et al., 2005);

* Lacking systematic comparison with respec-
tive FirstP baselines, which consists in apply-
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Figure 2: Zero-shot vs. fine-tuned performance on MS
MARCO FarRelevant for a representative set of models.

ing the same model to input truncated to the
first 512 tokens,

* Lacking comparison with LongP models—
directly supporting long inputs—such as
sparse-attention models Longformer and Big-
Bird (Beltagy et al., 2020; Zaheer et al., 2020),
or more recent full-attention models trained
with FlashAttention (Dao et al., 2022);

» Using undisclosed seed-selection strategies,
which can restrict reproducibility since there
can be substantial (in the order of few %) dif-
ferences due to using different seeds.

To fill this gap we evaluated over 20 recent
models for ranking of long documents and carried
out their systematic comparison using two popular
document collections: MS MARCO Documents
v1/v2 (Craswell et al., 2020) and Robust04 (Clarke
et al., 2004), diverse query sets (both large and
small) and multiple training seeds. We found
that ranking models capable of processing long
documents—including LongP models with sparse
or full attention—showed little to no improve-
ment compared to their respective FirstP baselines
(which truncated documents to satisfy the input-
sequence constraint of most off-the-shelf Trans-
former models, i.e., 512 tokens).

This finding is generally in line with previously
reported results (see § B.4) and an ablation experi-
ment showed that limited improvement over FirstP
was not related to the choice of the backbone Trans-
former model (see Table 7). Furthermore, we used
our best models to produce several high-ranking
runs on a competitive leaderboard. This, in our
view, strengthens the credibility of our evaluation.

From the efficiency-effectiveness plot in Fig. 1,
we can see that all long-document models are at
least 2x slower than respective FirstP baselines.
The biggest average gain of merely 5% is achieved
by the PARADE Attn model (with a BERT-base
backbone) at the cost of being 2.5 x slower than its
FirstP baseline. All LongP models are even slower
and show less improvement. Given such small ben-
efits at the cost of a substantial slow-down, one
could question practicality of such models and sug-
gest using FirstP variants instead.

Our initial exploration prompted two broad re-
search questions:

* RQ1: What is the reason for the lackluster
performance of long-document models?

* RQ2: How much progress has the community
made in improving long-document ranking
models?

To answer these questions, we started with ana-
lyzing a distribution of relevant passages in the MS
MARCO document collection and found evidence
of a substantial positional bias, namely, relevant
passages tended to appear in the beginning of doc-
uments. This finding—which partially answers
RQ1—prompted an additional research question:

* RQ3: How robust are long-document models
to the positional-bias of relevant passages?

To further support the relevance-bias hypothesis
and answer RQ3, we constructed a new synthetic
collection MS MARCO FarRelevant where rele-
vant passages were not present among the first 512
tokens. Using MS MARCO FarRelevant, we eval-
uated zero-shot transferred as well as fine-tuned
models and found the following (see Fig. 2):

* The FirstP models performed roughly at the
random-baseline level in both zero-shot and
fine-tuning modes (RQ3);

» Simple aggregation models including MaxP
and PARADE Attention had good zero-shot
accuracy, but benefited little from fine-tuning
on MS MARCO FarRelevant (RQ3);

* In contrast, other long-document models had
poor zero-shot performance (sometimes at
a random baseline level), but outstripped
respective MaxP baselines by as much as
13.3%-27.7% after finetuning (RQ3);



* Not only positional bias diminished benefits
of processing longer document contexts, but it
also lead to models’ overfitting to the bias and
performing poorly in a zero-shot setting when
the distribution of relevant passages changed
substantially (RQ3);

* Although PARADE Transformer models were
more effective than other models on stan-
dard collections, their advantage was small
(a few %). In contrast, on MS MARCO Far-
Relevant, PARADE Transformer (ELECTRA)
outperformed the next competitor Longformer
by 8% and PARADE Max (ELECTRA)—an
early chunk-and-aggregate approach—by as
much as 23.8% (RQ2).

Our key contributions are as follows:

* We carried a comprehensive evaluation of
20+ long-document ranking models, which
included both the chunk-and-aggregate mod-
els as well as the models that directly sup-
ported long inputs (using both the standard
collections MS MARCO Documents v1/v2
and Robust04 as well as the new synthetic
collection MS MARCO FarRelevant);

* We contributed to the nascent field of ana-
Iytical experimentation with a full control
of outcomes by creating a new dataset MS
MARCO FarRelevant, which we made avail-
able together with code.?

* Our study confirmed superiority of PARADE
(Li et al., 2024) models, but also showed their
limited benefits on standard collections, which
we attributed to the existence of positional
bias of relevant passages (in such collections);

* We used MS MARCO FarRelevant to support
the positional-bias hypothesis as well as to
demonstrate that best long-document ranking
models substantially (by up to 27.7%) outper-
form simpler baselines (such as MaxP) when
training/fine-tuning data is available. How-
ever, they can also suffer more from the dis-
tribution shift and perform much worse in the
zero-shot scenario.

2h'ctps ://anonymous. 4open.science/r/long_doc_
rank_model_analysis_v2-78E9/.

2 Methods
2.1 Related Work

Neural Ranking models have been a popular topic
in recent years (Guo et al., 2019), but the suc-
cess of early approaches was controversial (Lin,
2019). This changed with an introduction of a bi-
directional encoder-only Transformer model BERT
(Devlin et al., 2019), which was a successor of
GPT (Radford et al., 2018) and ELMO (Peters
et al., 2018). BERT was hugely successful and
its resounding success can be attributed to a com-
bination of the large model size and massive pre-
training using self-supervision. A number of differ-
ent Transformer models such as ELECTRA (Clark
et al., 2020), and DEBERTA (He et al., 2021) im-
prove upon BERT using different training strate-
gies and/or datasets. However, due to their architec-
tural similarities we—following Lin et al (Lin et al.,
2021)—collectively call them as BERT models.

Nogueira and Cho were first to apply BERT
to ranking of text documents (Nogueira and Cho,
2019). In the big-data regime—most notably in the
TREC deep learning track (Craswell et al., 2020)—
BERT models outperformed prior neural and non-
neural approaches by a large margin. They were
also quite successful for several small-scale query
collections outperforming previous neural and tra-
ditional approaches (Li et al., 2024; MacAvaney
et al., 2019; Dai and Callan, 2019).

Despite their impressive performance, neural
models are susceptible to the distribution shift and
learning superficial features. Several authors found
that neural rankers applied to out-of-domain data
do not always outperform BM25 (Thakur et al.,
2021; Mokrii et al.,, 2021). They can also be
confused by superficial text modifications such
as adding distractor sentences (MacAvaney et al.,
2022). Likewise, ranking performance can de-
crease if a query is reformulated (Penha et al.,
2022). Weller et al. (Weller et al., 2023) showed
that neural models are not effective to “spot” nega-
tion and often perform at random level in this re-
spect. However, we are not aware of the prior work
systematically studying robustness to positional bi-
ases of relevant passages.

The Transformer model (Vaswani et al., 2017)
uses an attention mechanism (Bahdanau et al.,
2015) where each sequence position can attend
to all the positions in the previous layer. Because
self-attention complexity is quadratic with respect
to a sequence length, direct processing of long doc-
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uments is not always practical. Thus, a vast major-
ity of existing Transformer models limit the input
length to be at most 512 (subword) tokens.

Until recently, there have been two general ap-
proaches to handling long documents: localization
of attention and splitting documents into chunks
each of which is processed separately. Attention-
localization approaches combine a limited-span
(i.e., a sliding window) attention with some form of
a selective global attention. There are many such
approaches proposed (see, e.g., a survey by Tay
et al. 2020) and it would be infeasible to evaluate
them all. Instead we consider two popular models:
Longformer (Beltagy et al., 2020) and Big-Bird
(Zaheer et al., 2020).

With a document-splitting approach, one has
to split documents into several chunks, process
each chunk separately, and aggregate results, e.g.,
by computing a maximum or a weighted predic-
tion score (Yilmaz et al., 2019; Dai and Callan,
2019). With respect to training approaches, the
MaxP and SumP models by Dai and Callan (Dai
and Callan, 2019) assume that each chunk in a
relevant document is relevant. However, this as-
sumption is problematic as the degree of relevance
varies from passage to passage. Yilmaz et al. (Yil-
maz et al., 2019) work around this problem by
training a MaxP BERT model on short documents
and zero-transfer it to long documents. In this
study we work around this problem by training
all document-splitting approaches including MaxP
(Dai and Callan, 2019) in the end-to-end fashion,
i.e., by plugging aggregated document-level scores
directly into a loss function (analogous to training
of CEDR (MacAuvaney et al., 2019) and PARADE
(Li et al., 2024) models).

More recently, it has also become possible to
train longer-context models using FlashAttention
(Dao et al., 2022). FlashAttention computes at-
tention exactly and it does not eliminate quadratic
complexity. However, it dramatically speeds ups
training while reducing memory requirements by
using an 10-efficient computation approach.

Because our primary focus is accuracy and we
aim to understand the limits of long-document mod-
els, we exclude from evaluation several recent mod-
els (e.g., (Hofstitter et al., 2021; Zou et al., 2021))
that achieve better efficiency-effectiveness trade-
offs by pre-selecting certain document parts and
feeding only selected parts into a BERT ranker.

Recently, several teams have focused on creat-
ing challenging benchmarks for long-document

Table 1: Distribution of Start/End Positions of Relevant
Passages Inside Documents

FIRA

MS MARCO dev i piitier et al., 2020b)

input chunk #

(estimated) (crowd-sourced)
start end start end
1 859% 71.0% 83.8% 76.4%
2 91% 14.9% 9.9% 15.3%
3 2.6% 6.1% 2.3% 3.9%
4 12% 3.0% 2.2% 2.2%
5 0.6% 1.4% 0.7% 0.9%
6 0.6% 1.2% 0.4% 0.5%
6+ 0.1% 2.5% 0.7% 0.7%

Chunk size is 477 BERT tokens.

Table 2: Document Statistics

data set # of documents  average # of
BERT tokens
per document

MS MARCO vl 3.2M 1.4K

MS MARCO v2 12M 2K

Robust04 0.5M 0.6K

MS MARCO FarRelevant  0.53M 1.1IK

retrieval. A recent LoCo v1 (Saad-Falcon et al.,
2024) benchmark has 12 datasets. Despite 11 out
of 12 collections has average document lengths in
the order of dozens of thousands tokens, the ES
model with a 512 token input limit achieves high
NDCG@10 scores (in the range of 0.4-0.85) for
seven out of 12 LoCo v1 datasets. This prompted
Zhu et al., 2024 to propose a more challenging
LongEmbed benchmark containing a mix of real
and synthetic datasets (Zhu et al., 2024).

2.2 Data

Our primary datasets include two MS MARCO
Documents collections (vl and v2) (Bajaj et al.,

Table 3: Query Statistics

#of . avg. #of avg. # of
Ol QUENeS BERT tokens pos. judgements
MS MARCO vl
MS MARCO train 352K 7 1
MS MARCO dev 5193 7 1
TREC DL 2019 43 7 153.4
TREC DL 2020 45 74 39.3
MS MARCO v2
TREC DL 2021 57 9.8 143.9
Robust04
title 250 3.6 69.6
description 250 18.7 69.6
MS MARCO FarRelevant
train 50K 7.0 1
test 1K 7.0 1




2016; Craswell et al., 2020, 2022), RobustO4
(Voorhees, 2004), and associated query sets. In ad-
dition, we created a collection MS MARCO FarRel-
evant by using passages and relevance judgments
from the MS MARCO Passages collection.

Robust04 is a small collection of 0.5M docu-
ments that has a mixture of news articles and gov-
ernment documents some of which are quite long.
Yet it has only a small number of queries (250),
which makes it a challenging benchmark for train-
ing models in a low-data regime. Each query has
a title and a description, which represent a brief
information need and a more elaborate request (of-
ten a proper English prose), respectively. We use
Robust04 in a cross-validation settings with folds
established by Huston and Croft (Huston and Croft,
2014) provided via IR-datasets (MacAvaney et al.,
2021). All datasets are in English. Document and
query statistics are summarized in Tables 2 and 3.

MS MARCO vl was created from the MS
MARCO reading comprehension dataset (Bajaj
et al., 2016) and it has two related collections: pas-
sages and documents. MS MARCO v1 comes with
large query sets, which is particularly useful for
training and testing models in the big-data regime.
These query sets consist of question-like queries
sampled from the Bing search engine log with sub-
sequent filtering (Craswell et al., 2020). Note that
queries are not necessarily proper English ques-
tions, e.g., “lyme disease symptoms mood”, but
they are answerable by a short passage retrieved
from a set of about 3.6M Web documents (Bajaj
et al., 2016).

MS MARCO vl test sets were created in two
stages, where initially relevance judgements were
created for the passage variant of the dataset. Then,
document-level relevance labels were created by
transferring passage-level relevance to original doc-
uments from which passages were extracted. To as-
sess positional bias, we mapped relevant passages
(from the MS MARCO Passage collection) to their
positions in documents. Because document and
passage texts were collected at different times this
lead to some content divergence (Craswell et al.,
2020) and made exact mapping impossible: In par-
ticular, Hofstitter et al. 2020b were able to match
only 32% of the passages:

We deemed such mapping insufficient: To obtain
a more comprehensive mapping we resorted to ap-
proximate matching and were able to match about
85% of the passages. We manually inspected a sam-
ple of matched passages to ensure that the matching

procedure was reliable. Moreover, the distribution
of positions of relevant passages matched that of
a related FIRA dataset (Hofstétter et al., 2020b),
where such information was collected by crowd-
sourcing. Positional bias information is summa-
rized in Table 1.

Relevance labels in the training and development
sets are “sparse”’: There is about one positive ex-
ample per query without explicit negatives. In ad-
dition to sparse relevance judgements—separated
into training and developments subsets—there is
a small number (98) of queries that have “dense’
judgements provided by NIST assessors for TREC
2019 and 2020 deep learning (DL) tracks (Craswell
et al., 2020).

MS MARCO v2 collections was created for
TREC 2021 DL track. It is an expanded version
of MS MARCO vl and uses a subset of sparse rel-
evance judgements from MS MARCO vl. In the
training set, newly added documents do not have
any (positive or negative) judgments, which created
a bias and made MS MARCO v2 training set less
useful than that of MS MARCO vl1.

The MS MARCO FarRelevant collection was
created from the MS MARCO passage collection
in such a way that each document contained exactly
one relevant passage and this passage did not start
before token 512 (see algorithm in the Appendix
§ B.1). Moreover, we created just a single relevant
document for each training or testing query. MS
MARCO FarRelevant is a variant of a the needle-
in-the-haystack test (Saad-Falcon et al., 2024; Zhu
et al., 2024). It is designed to be textually simi-
lar to MS MARCO Documents but with different
positional biases for relevant passages. Due MS
MARCO having a non-commercial license, MS
MARCO FarRelevant has the same licensing re-
striction.

Although we generated about 7K test queries
and about 500K training queries, we used only
50K and 1K queries for fine-tuning and testing,
respectively. On one hand, this was sufficient for
accurate training and testing and, on the other hand,
it reduced experimentation time and cost.

bl

2.3 Overview of Selected Methods

Due to space constraints, a detailed description is
given in the Appendix § A. In summary, all meth-
ods can be divided into split-and-aggregate (SplitP)
methods and LongP methods that “natively” sup-
port longer documents inputs. SplitP use either sim-
ple aggregating operations (averaging, summing,



taking the maximum) or an aggregator neural net-
work. CEDR (MacAuvaney et al., 2019), PARADE
Attention (Li et al., 2024), and Neural Model 1
(Boytsov and Kolter, 2021) aggregate using simple
neural networks, whereas PARADE Transformer
models aggregator is a smaller Transformer (Li
et al., 2024).

We focused on cross-encoding rankers, which
process queries concatenated with documents
(Nogueira and Cho, 2019). As a reference point
we also tested a bi-encoding E5-4K model, which
had strong performance on LongEmbed benchmark
with context sizes under 4K tokens (Zhu et al.,
2024). E5-4K was tested as a ranking model and
only in the zero-shot mode (without fine-tuning).

Nearly all rankers use only BERT models (i.e.,
bi-directional encoder-only Transformers) and have
in total 100M-200M parameters (see Table 6). In
addition, inspired by a recent success of LLM-
rankers (Pradeep et al., 2023; Ma et al., 2023), we
tested a much larger cross-encoding decoder-only
(“‘causal”) Transformer model. Specifically we
chose a 1B-parameter TinyLLAMA model due to
its impressive performance for its relatively small
size (Zhang et al., 2024).

3 Experiments

3.1 Setup

We trained each cross-encoding ranking model us-
ing three seeds, except the bi-encoder model ES
(Zhu et al., 2024), which was evaluated only in
the zero-shot mode. To compute statistical signif-
icance, we averaged query-specific metric values
over these seeds. Due to space constraints, ad-
ditional experimental details are provided in the
Appendix § B.2. Moreover, in the main part of
the paper we only show results for the mean re-
ciprocal rank (MRR) and the non-discounted cu-
mulative gain at rank k¥ (NDCG@K). Additional
precision-related metrics are computed in the Ap-
pendix (see § B.5).

3.2 Results

Our main experimental results for MS MARCO,
TREC DL 2019-2021, and Robust04 are presented
in Table 4. Table 5 and Fig. 2 show results for MS
MARCO FarRelevant. In the Appendix (see B.4)
we show that we can match or outperform key prior
results, which, we believe, boosts the trustworthi-
ness of our experiments.

We abbreviate names of several PARADE mod-
els: Note that PARADE Attn denotes a PA-
RADE Attention model. The PARADE Transf or
P. Transf prefix denotes PARADE Transformer
models where an aggregator Transformer can be
either trained from scratch (Transf-RAND-L2) or
initialized with a pretrained model (Transf-PRETR-
L6). L2 and L6 denote the number of aggregating
layers (two and six, respectively).?

Unless explicitly specified, the backbone Trans-
former model for SplitP methods is BERT-base
(Devlin et al., 2019). Although using other back-
bones such as ELECTRA (Clark et al., 2020) and
DEBERTA (He et al., 2021) can improve an overall
accuracy, we observe a bigger gain compared to a
FirstP baseline when we use BERT-base (see § B.4
in the Appendix).

To ease understanding and simplify presentation,
we display key results for a representative sample
of models in Fig. 1 and Fig. 2 (in § 1). Moreover, in
Table 4 we present only a single aggregate number
for all TREC DL query sets, which is obtained by
combining all the queries and respective relevance
judgements (i.e., we post an overall average rather
than an average over the mean values for 2019,
2020, and 2020).

From Fig. 1 and Table 4 we learn that the max-
imum average gain over respective FirstP base-
lines is only 5% (when measured using MRR or
NDCG@K). Gains are much smaller for a number
of models, which even underperform their FirstP
baselines on one or more dataset and some of these
differences are statistically significant. In particu-
lar, this is true for CEDR-DRMM, CEDR-KNRM
(MacAvaney et al., 2019), JINA (?) and MOSAIC
(Portes et al., 2023) on the MS MARCO develop-
ment set.

We can also see that the LongP variant of the
Longformer model appears to have a relatively
strong performance, but so does the FirstP ver-
sion of Longformer. Thus, we think that a good
performance of Longformer on MS MARCO and
Robust04 collections can be largely explained by
better pretraining compared to the original BERT-
base model rather than to its ability to ability to
process long contexts. Moreover, FirstP (ELEC-
TRA) and FirstP (DEBERTA) are even more ac-
curate than FirstP (Longformer) and perform com-
parably well (or better) with chunk-and-aggregate

*Note, however, that Transf-PRETR-L2 has only four at-
tention heads.



Table 4: Ranking Performance on MS MARCO, TREC DL, and Robust04.

Retriever / Ranker MS MARCO TREC DL Robust04 Avg. gain
dev (2019-2021) title description over FirstP
| MRR | NDCGelo | NDCG@20 |

retriever | 0.312 | 0.629 | 0.428 0.402 | -
FirstP (BERT) 0.394 0.632 0.475 0.527 -
FirstP (Longformer) 0.404 0.643 0.483 0.540 -
FirstP (ELECTRA) 0.417 0.662 0.492 0.552 -
FirstP (DEBERTA) 0.415 0.672 0.534 0.596 -
FirstP (Big-Bird) 0.408 0.656 0.507 0.560 -
FirstP (JINA) 0.422 0.654 0.488 0.532 -
FirstP (MOSAIC) 0.423 0.643 0.453 0.538 -
FirstP (TinyLLAMA) 0.395 0.615 0.431 0.473 -
FirstP (ES-4K) zero-shot 0.380 0.641 0.438 0.429 -
AvgP | 0.389 (—1.3%) | 0.642 (+1.5%) | 0.478 (+0.5%) 0.531 (+0.9%) | +0.4%
MaxP 0.392 (—0.4%) | 0.644* (+1.9%) | 0.4882 (4+2.6%) 0.544% (+3.3%) | +1.9%
MaxP (ELECTRA) 0.414 (—0.6%) | 0.659 (—0.5%) | 0.502 (+2.0%) 0.563 (+2.1%) +0.8%
MaxP (DEBERTA) 0.402% (—3.2%) | 0.671 (—=0.1%) | 0.535 (+0.2%) 0.609¢ (+2.2%) | -0.2%
SumP 0.390 (—1.0%) | 0.639 (+1.0%) | 0.486 (+2.2%) 0.538 (+2.1%) +1.1%
CEDR-DRMM 0.385% (—2.3%) | 0.629 (—0.5%) | 0.466 (—2.0%) 0.533 (+1.3%) -0.9%
CEDR-KNRM 0.379% (—3.8%) | 0.630 (—0.3%) | 0.483 (+1.7%) 0.535 (+1.7%) -0.2%
CEDR-PACRR 0.395 (+0.3%) | 0.643% (+1.6%) | 0.496% (+4.3%)  0.549% (+4.2%) | +2.6%
Neural Modell | 0.398 (+0.9%) | 0.650% (+2.8%) | 0.484 (+1.8%) 0.537 (+1.9%) | +1.8%
PARADE Attn 0.416% (+5.5%) | 0.652* (+3.1%) | 0.503% (+5.7%)  0.556% (+5.6%) | +5.0%
PARADE Attn (ELECTRA) 0.431% (+3.3%) | 0.680% (+2.7%) | 0.523% (+6.4%) 0.581% (+5.3%) | +4.4%
PARADE Attn (DEBERTA) 0.422% (+1.6%) | 0.688% (+2.4%) | 0.549% (+2.9%)  0.615% (+3.2%) | +2.5%
PARADE Avg 0.392 (—0.6%) | 0.646°% (+2.1%) | 0.483 (+1.5%) 0.534 (+1.5%) +1.1%
PARADE Max 0.405% (+2.7%) | 0.655% (+3.5%) | 0.489% (+2.8%)  0.548% (+4.0%) | +3.3%
PARADE Transf-RAND-L2 0.419% (+6.3%) | 0.655% (+3.6%) | 0.488% (+2.8%)  0.548% (+4.1%) | +4.2%
PARADE Transf-RAND-L2 (ELECTRA) | 0.433% (+3.9%) | 0.670 (+1.2%) | 0.523% (+6.3%) 0.574% (+3.9%) | +3.8%
PARADE Transf-PRETR-L6 0.402¢ (+1.9%) | 0.643 (+1.6%) | 0.494° (+4.0%) 0.554% (+5.1%) | +3.2%
PARADE Transf-PRETR-LATEIR-L6 0.398 (+1.1%) | 0.626 (—0.9%) | 0.450% (=5.2%) 0.501% (—4.9%) | -2.5%
LongP (Longformer) 0.412% (+1.9%) | 0.668% (+3.9%) | 0.500% (+3.6%)  0.568% (+5.1%) | +3.6%
LongP (Big-Bird) 0.397¢ (—2.9%) | 0.651 (—0.7%) | 0.452% (—10.9%) 0.477* (—14.9%) | -7.3%
LongP (JINA) 0.416* (—1.5%) | 0.665% (+1.7%) | 0.503% (+2.9%)  0.558% (+4.9%) | +2.0%
LongP (MOSAIC) 0.421 (—0.4%) | 0.664* (+3.3%) | 0.456 (+0.6%) 0.570% (+6.0%) | +2.4%
LongP (TinyLLAMA) 0.402¢ (+1.7%) | 0.608 (—1.1%) | 0.452% (+4.8%) 0.505% (+6.7%) | +3.0%
LongP (E5-4K) zero-shot 0.353% (—=7.1%) | 0.649 (+1.3%) | 0.439 (+0.1%) 0.434 (+1.1%) -1.1%

In each column we show a relative gain with respect model’s respective FirstP baseline: The last column shows the average relative gain of

FirstP. Best numbers are in bold: Results are averaged over three seeds. Unless specified explicitly, the backbone is BERT-base.
Statistical significant differences with respect to this baseline are denoted using the superscript superscript a.
p-value threshold is 0.01 for an MS MARCO development collection and 0.05 otherwise.

document models that uses BERT-base as the back-
bone model. This is a fair comparison aiming to
demonstrate that on a typical test collection the
benefits of long-context models are so small that
comparable benefits can be obtained by finding or
training a more effective FirstP model. FirstP mod-
els are more efficient during inference and they can
be pretrained using a larger number of tokens for
the same cost (so they could potentially perform
better).

Our analysis of position of relevance passages in
MS MARCO as well as results by Hofstétter et al.
2020b provide strong evidence that limited benefits
of long-context models are not due inability to pro-
cess long context, but rather due to a positional bias
of relevant passages, which tended to be among the

first 512 document tokens (see Table 1).

To further support this hypothesis, we carried
out two sets of experiments using the MS MARCO
FarRelevant collection, where a relevant passage
was never in the first chunk. We carried out both
the zero-shot experiment (evaluation of the model
trained on MS MARCO) as well fine-tuning ex-
periment using S0K MS MARCO FarRelevant
queries. Because FirstP models perform poorly
in this setting we use different baselines, namely,
Longformer and MaxP models. For models with
ELECTRA and DEBERTA backbones we com-
pare with MaxP (ELECTRA) and MaxP (DE-
BERTA), respectively. Otherwise, the baseline is
MaxP (BERT). From Fig. 2 and Table 5, we make
the following key observations:



Table 5: Model Ranking Performance on MS MARCO
FarRelevant.

Retriever / Ranker zero-shot fine-tuned
transferred
Random shuffling of top-100 0.052 0.052
Retriever 0.207 0.207
FirstP (BERT) 0.016° 0.090°
FirstP (Longformer) 0.017° 0.091°
FirstP (ELECTRA) 0.019° 0.089°
FirstP (Big-Bird) 0.021° 0.089°
FirstP (JINA) 0.018° 0.088°
FirstP (MOSAIC) 0.018° 0.089°
FirstP (TinyLLAMA) 0.020° 0.079°
FirstP (E5-4K) 0.015%° -

AvgP 0.154%% (—48.1%) 0.365%° (+11.4%)
MaxP 0.297° 0.328°

MaxP (ELECTRA) 0.328° 0.349°

MaxP (DEBERTA) 0.298° 0.332°

SumP 0.211% (—28.8%) 0.327° (—0.4%)
CEDR-DRMM 0.157%° (—47.3%) 0.372%° (+13.3%)
CEDR-KNRM 0.055%° (—81.5%) 0.382% (+16.4%)
CEDR-PACRR 0.209%% (—29.6%) 0.393% (+19.9%)
Neural Modell 0.085%% (—71.3%) 0.396% (+20.6%)

0.300° (+1.0%) 0.337° (4+2.8%)
0.338° (+3.3%) 0.354° (+1.6%)
0.307° (+3.2%) 0.343° (43.4%)
0.274%% (=7.6%) 0.322° (—1.7%)

0.291° (=2.1%) 0.330° (40.6%)

PARADE Attn
PARADE Attn (ELECTRA)
PARADE Attn (DEBERTA)
PARADE Avg
PARADE Max

PARADE Transf-RAND-L2  0.243% (—18.2%) 0.419%" (427.7%)
P. Transf-RAND-L2 (ELECTRA) 0.229% (—30.2%) 0.432%" (423.8%)
PARADE Transf-PRETR-L6  0.267%° (—10.0%) 0.413% (426.0%)

P. Transf-PRETR-LATEIR-L6 ~ 0.244% (—18.0%) 0.358° (+9.2%)
LongP (Longformer) 0.233%  (—21.7%) 0.399* (+21.7%)
LongP (Big-Bird) 0.126%° (—57.4%) 0.401% (+22.1%)
LongP (JINA) 0.069%° (—76.9%) 0.372*° (+13.4%)
LongP (MOSAIC) 0.120% (—59.6%) 0.397* (+21.2%)
LongP (TinyLLAMA) 0.078%% (=73.6%) 0.397* (+21.1%)

LongP (E5-4K) 0.057%° (—80.7%) N/A (zero-shot only)

In each column we show a relative gain over models’ respective

MaxP baseline. For LongP models, the gain is over MaxP (BERT).
Best numbers are in bold: Our results are averaged over three seeds.

Unless specified explicitly, the backbone is BERT-base.
Statistically significant differences from a respective MaxP baseline
are denoted with the superscript a. Statistical significant differences

with respect to Longformer are denoted with the superscript b.

p-value threshold is 0.01.

* The FirstP models performed roughly at the
random-baseline level in both zero-shot and
fine-tuning modes (RQ3). Surprisingly, E5-
4K performance is also at a random-baseline
level despite its competitive performance on
LongEmbed benchmark (Zhu et al., 2024),
MS MARCO, and Robust04 (see Table 4);

* Simple aggregation models including MaxP
and PARADE Attention had good zero-shot
accuracy, but benefited little from fine-tuning
on MS MARCO FarRelevant (RQ3);

* In contrast, other long-document models had
poor zero-shot performance (sometimes at

a a random baseline level), but outstripped
respective MaxP baselines by as much as
13.3%-27.7% after finetuning (RQ3);

* Not only positional bias diminished benefits
of supporting longer document contexts, but it
also lead to model overfitting to the bias and
performing poorly in a zero-shot setting when
the distribution of relevant passages changed
substantially;

* Although PARADE Transformer models were
more effective than other models on standard
collections, their advantage was small (a few
%). In contrast, on MS MARCO FarRele-
vant, PARADE Transformer (ELECTRA) out-
performed the next competitor Longformer
by 8% and PARADE Max (ELECTRA)—an
early chunk-and-aggregate approach—by as
much as 23.8% (RQ2).

Note that no LongP model outperformed the best
chunk-and-aggregate approaches (while being also
slower). Compared to simple aggregation models
such as MaxP (ELECTRA) and PARADE Atten-
tion (ELECTRA), LongP models have at least 1.4 x
lower MRR in the zero-shot setting. In fact, in this
setting three out of four LongP models—except
Longformer—have a very low MRR with JINA
being at the random-baseline level. LongP mod-
els also do not outperform PARADE Transformer
model in the zero-shot setting and are at least 8%
worse after fine-tuning. In this setting, three out of
four LongP models have MRR scores ~ 0.4 that
are not statistical different from that of Longformer.

4 Conclusion

We carried a comprehensive evaluation of 20+ long-
document ranking models, which included both
chunk-and-aggregate approaches and LongP mod-
els that directly support long inputs, using standard
IR collections as well as a synthetic new dataset MS
MARCO FarRelevant. These experiments helped
us expose the bias in the distribution of relevant
information (a trend to appear in the beginning of
documents) and to demonstrate that MS MARCO
FarRelevant is a hard benchmark even for models
that supported long inputs. We made our code and
MS MARCO FarRelevant available.*

4https: //anonymous . 4open.science/r/long_doc_
rank_model_analysis_v2-78E9/.


https://anonymous.4open.science/r/long_doc_rank_model_analysis_v2-78E9/.
https://anonymous.4open.science/r/long_doc_rank_model_analysis_v2-78E9/.

5 Limitations

Our paper has several limitations related primarily
to the choice of datasets, models, and the strength
of evidence for the positional bias of relevant pas-
sages.

First of all, our evaluation uses only cross-
encoding ranking models. With an exception of
E5-4K model, which is used in the zero-shot rank-
ing mode, we do not train or evaluate bi-encoding
models (typically used to create query and docu-
ment embeddings for the first-stage retrieval). We
nonetheless believe that—given a large number
of proposals for long-document ranking—a repro-
duction and evaluation of cross-encoding long-
document rankers is a sufficiently important topic
that alone warrants a publication.

Moreover, as we explain below, we also use
cross-encoding rankers as a tool to detect and ex-
pose bias in the position of relevant information. In
that, cross-encoders are easier to train using stan-
dard (rather than high-memory) GPUs with mini-
batch size one and gradient accumulation. They
also typically require only one epoch to converge
(only a few models need two or three epochs). In
contrast, bi-encoders are trained using large batches
with in-batch negatives for multiple epochs (e.g.,
Karpukhin et al. 2020 reports using at least 40
epochs).

Second, we focus on popular English doc-
ument collections: MS MARCO Documents
v1/v2 (Craswell et al., 2020) and Robust04 (Clarke
et al.,, 2004). However, we have to restrict the
choice of datasets to make multi-seed evaluations
of 20+ models feasible. Despite this limitation,
identifying bias in commonly used collections is
an important task on its own. Moreover, strong per-
formance of FirstP baselines was also noticed in
other collections: Gao and Callan 2022 showed this
for ClueWeb(09 (and Robust04). Zhu et al. 2024
noticed a strong E5 FirstP performance on many
LoCo datasets (Saad-Falcon et al., 2024).

While good performance of FirstP models
strongly suggests a positional bias in relevant pas-
sages, we believe this alone is not sufficient evi-
dence. Additionally—using the structure of the MS
MARCO datasets—we attempt to directly identify
positions of relevant passages. In that we could
not map about 15% of the passages to documents,
because these documents were changed after the
passages were extracted. Although the failure to
map 15% of passages can potentially bias the es-

timates for the distribution of relevant passages,
we think it is unlikely because document updates
were likely affected by the same positional biases
as their prior versions. Moreover, our results are
also supported by the FIRA experiment (Hofstitter
et al., 2020b), where relevant positions were iden-
tified manually for a sample of documents used in
TREC Deep Learning track (Craswell et al., 2020,
2022).

One can also argue that limited gains over FirstP
baselines can be attributed to models’ inability to
process long contexts. To counter this argument,
we trained and evaluated a large number of diverse
cross-encoding ranking models, which included
both split-and-aggregate models as well as models
directly supporting long inputs. However, we can
still test only a limited number of models: One
might always argue that there are untested architec-
tures that would outperform FirstP baselines by a
much larger margin.

To demonstrate that selected models can, in prin-
ciple, benefit from long contexts and decisively
outperform simple baselines such as FirstP and
even MaxP models we trained and/or evaluated
them on a synthetic needle-in-the-haystack collec-
tion MS MARCO FarRelevant. This is still a lim-
iting experiment, because synthetic collections—
with documents composed from randomly se-
lected passages—are imperfect proxies for real-life
datasets.

In summary, we provided three types of evidence
for positional bias of relevant passages: strong per-
formance of FirstP models on standard collections,
direct estimation of the distribution of relevant pas-
sages, and experimentation with the synthetic col-
lection MS MARCO FarRelevant where relevant
passages distribution was not skewed towards the
beginning of a document. Each experiment pro-
vided imperfect/limited evidence on its own, but
together they strongly support the existence of rele-
vance position bias.

Finally, in contrast to some recent studies ex-
tending input contexts with dozens of thousands
of tokens (Zhu et al., 2024; Saad-Falcon et al.,
2024), we truncated documents to have at most
1431 BERT tokens. This limitation, however, did
not prevent us from answering our key research
questions. In particular, as we showed and ex-
plained in the Appendix § B.3, using larger inputs
only marginally improved outcomes for popular
IR collections such as MS MARCO, Robust04 or
ClueWeb09. At the same time, when we trained



models on MS MARCO and applied them to MS
MARCO FarRelevant in a zero-shot mode, we ob-
served a large (at least 17%) decrease in MRR with
many models struggling to outperform a random-
shuffling baseline. This indicates that even short-
document collections can be quite challenging.

6 Ethics Statement

We believe our study does not pose any ethical
concerns. We do not collect any new data with
the help of human annotators and we do not use
human or animal subjects in our study. Although
we do discover a positional bias in existing retrieval
collections, we are not aware of any potential risks
or harms that can be caused by the exposure of this
bias.

In terms of the environmental impact, our com-
putational requirements are rather modest, because
we only fine-tuned our models rather than trained
them from scratch. These models were also rather
small by modern standards. Except 1B-parameter
TinyLLAMA (Zhang et al., 2024), each model
has about 100M parameters (see Table 6 for de-
tails). Despite training and testing 20+ models with
three seeds, we estimate to have spent only about
6400 GPU hours for our main experiments. 96%
of the time we used NVIDIA A10 (or similarly-
powerful) RTX 3090 GPUs and 4% of the time we
used NVIDIA A6000.

We believe this is roughly equivalent to train-
ing a single 1B-parameter TinyLLAMA model,
which required about 3400 GPU hours using a
more powerful NVIDIA A100. This, in turn, this
is only a tiny fraction of compute required to train
LLAMAZ2 models (2% compared to a 7B LLAMA?2
smodel).’
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Table 6: Number of Model Parameters

Model family # of
params.
PARADE Transformer 132-148M
Longformer 149M
BigBird 127M
JINA 137M
MOSAIC 137M
DEBERTA -based models 184M
TinyLLAMA-based models 1034M
Other BERT- and ELECTRA-based models ~110 M

A Ranking with Cross-Encoding
Long-Document Models

In this section, we describe long-document cross-
encoding models in more details. With an ex-
ception of TinyLLAMA (Zhang et al., 2024) all
models use only smallish bi-directional encoder-
only Transformers (Vaswani et al., 2017) with 100-
200M parameters in total (see Table 6). TinyL-
LAMA is a so-called LLM-ranker: a “causal”
decoder-only Transformer that has about 1B pa-
rameters.

We assume that an input text is split into small
chunks of texts called fokens. Although tokens can
be complete English words, Transformer models
usually split text into sub-word units (Wu et al.,
2016).

The length of a document d—denoted as |d|—
is measured in the number of tokens. Because
neural networks cannot operate directly on text, a
sequence of tokens t1ts . . . t, is first converted to
a sequences of d-dimensional embedding vectors
wiWs . . . Wy, by an embedding network. These em-
beddings are context-independent, i.e., each token
is always mapped to the same vector (Collobert
et al., 2011; Mikolov et al., 2013).

For a detailed description of Transformer mod-
els, please see the annotated Transformer guide
(Rush, 2018) as well as the recent survey by Lin
et al. (Lin, 2019), which focuses on the use of
BERT-style cross-encoding models for ranking and
retrieval. For this paper, it is necessary to know
only the following basic facts:

* BERT is an encoder-only model, which con-
verts a sequence of tokens t1ts ... ¢, to a se-
quence of d-dimensional vectors wiws . . . wy,.



These vectors—which are token representa-
tions from the last model layer—are com-
monly referred to as contextualized token em-
beddings (Peters et al., 2018);

BERT operates on word pieces (Wu et al.,
2016) rather than on complete words;

The vocabulary includes two special tokens:
[CLS] (an aggregator) and [SEP] (a separa-
tor);

Using a pooled representation of token vectors
wiwWs . . . Wy, a linear layer is used to produce
a ranking score. A nearly universal pooling
approach in cross-encoding rankers is to use
the vector of the [CLS] token, i.e., wi. How-
ever, we learned that some models (e.g., JINA
(Giinther et al., 2023)) converge well only with
mean pooling, i.e., they use % S w;.

A “vanilla” BERT ranker (dubbed as monoBERT
by Lin et al. (Lin, 2019)) uses a single fully-connect
layer F' as a prediction head, which converts the
last-layer representation of the [CLS] token (i.e., a
contextualized embedding of [CLS]) into a scalar
(Nogueira and Cho, 2019). It makes a prediction
based on the following sequence of tokens: [CLS]
q [SEP] d [SEP], where ¢ is a query and d is a
document.

An alternative approach is to aggregate con-
textualized embeddings of regular tokens using a
shallow neural network (MacAvaney et al., 2019;
Boytsov and Kolter, 2021; Khattab and Zaharia,
2020) (possibly together with the contextualized
embedding of [CLS]) . This was first proposed by
MacAuvaney et al. (MacAvaney et al., 2019) who
also found that incorporating [CLS] improves per-
formance. However, Boytsov and Kolter proposed
a shallow aggregating network that does not use the
output of the [CLS] token and achieved the same
accuracy on MS MARCO datasets (Boytsov and
Kolter, 2021).

Replacing the standard BERT model in the
vanilla BERT ranker with a BERT variant that “na-
tively” supports longer documents (e.g., Big-Bird
(Zaheer et al., 2020)) is, perhaps, the simplest way
to deal with long documents. We collectively call
these models as LongP models. For a typical BERT
model, however, long documents and queries need
to be split or truncated so that the overall num-
ber of tokens does not exceed 512. In the FirstP
mode, we process only the first chunk and ignore
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the truncated text. In the SplitP mode, each chunk
is processed separately and the results are aggre-
gated. In the remaining of this section, we discuss
these approaches in detail.

A.1 LongP models

In our work, we benchmark both sparse-attention
and full-attention models. Sparse attention LongP
models include two popular options: Longformer
(Beltagy et al., 2020) and Big-Bird (Zaheer et al.,
2020). In that, we use the same approach to
score documents as with the vanilla BERT ranker,
namely, concatenating queries with documents and
making a prediction based on the contextualized
embedding of the [CLS] token (Nogueira and Cho,
2019). Both Big-Bird and Longformer use a com-
bination of the local, “scattered” (our terminology),
and global attention. The local attention utilizes a
sliding window of a constant length where each to-
ken attends to each other token within this window.
In the case of the global attention, certain tokens
can attend to all other tokens and vice-versa, In
Big-Bird, only special tokens such as [CLS] can
attend globally. In Longformer, the user have to
select such tokens explicitly. Following Beltagy
et al. (Beltagy et al., 2020), who applied this tech-
nique to question-answering, we “place” global
attention only on query tokens. Unlike the global
attention, the scattered attention is limited to re-
stricted sub-sets of tokens, but these subsets do not
necessarily have locality. In Big-Bird the scattered
attention relies on random tokens, whereas Long-
former uses a dilated sliding-window attention with
layer- and head-specific dilation.

Full-attention models include JINABert (Giin-
ther et al., 2023), TinyLLAMA (Zhang et al., 2024),
and MosaicBERT (Portes et al., 2023), henceforth,
simply JINA, TinyLLAMA and MOSAIC. All
these models use a recently proposed FlashAtten-
tion (Dao et al., 2022) to efficiently process long-
contexts as well as special positional embeddings
that can generalize to document lengths not seen
during training. In that, JINA and MOSAIC use
AliBi (Press et al., 2022), while TinyLLAM uses
ROPE embeddings (Su et al., 2023). JINA and
MOSAIC are bi-directional encoder-only Trans-
former model whereas TinyLLAMA is a unidi-
rectional (sometimes called causal) decoder-only
Transformer model (Vaswani et al., 2017).

In addition architectural difference, models dif-
fer in pretraining strategies. MOSAIC relies pri-
marily on the masked language (MLM) objective



without next sentence prediction (NSP). JINA uses
this approach as a first step, following a RoOBERTa
pretraining strategy (Liu et al., 2019) and fine-
tuning on retrieval and classification tasks with
mean-pooled representations. TinyLLAMA was
trained using an autoregressive language modeling
objective (Zhang et al., 2024). We found that JINA
lost an ability to effectively pool on the [CLS] to-
ken and we used mean-pooling instead. We also
use mean pooling for TinyLLAMA. For MOSAIC
we used pooling on [CLS].

A.2  SplitP models

SplitP models differ in partitioning and aggregation
approaches. Documents can be split into either
disjoint or overlapping chunks. In the first case,
documents are split in a greedy fashion so that each
document chunk except possibly the last one is
exactly 512 tokens long after being concatenated
with a (padded) query and three special tokens. In
the second case, we use a sliding window approach
with a window size and stride that are not tied to
the maximum length of BERT input.

Greedy partitioning into disjoint chunks
CEDR models (MacAvaney et al., 2019) and the
Neural Model 1 (Boytsov and Kolter, 2021) use the
first method, which involves:

* tokenizing the document d;

* greedily splitting a tokenized document d into
m disjoint chunks: d = dids . .. dp;

* generating m token sequences [CLS] g [SEP]
d; [SEP] by concatenating the query with doc-
ument chunks;

* processing each sequence with a BERT model
to generate contextualized embeddings for
regular tokens as well as for [CLS].

The outcome of this procedure is m [CLS]-vectors
cls; and n contextualized vectors wiws . . . w, (one
for each document token t;) that are aggregated in
a model-specific ways.

MacAvaney et al. (MacAvaney et al., 2019) use
contextualized embeddings as a direct replacement
of context-free embeddings in the following neural
architectures: KNRM (Xiong et al., 2017), PACRR
(Hui et al., 2018), and DRMM (Guo et al., 2016).
To boost performance, they incorporate [CLS]-
vectors in a model-specific way. We call the re-
spective models as CEDR-KNRM, CEDR-PACRR,
and CEDR-DRMM.
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They also proposed an extension of the vanilla
BERT ranker that makes a prediction using the
average [CLS] token: % >oit, cls; by passing it
through a linear projection layer. We call this
method AvgP.

The Neural Model 1 (Boytsov and Kolter, 2021)
uses the same greedy partitioning approach as
CEDR, but a different aggregator network, which
does not use the embeddings of the [CLS] token.
This network is a neural parametrization of the
classic Model 1 (Berger and Lafferty, 1999; Brown
et al., 1993).

Sliding window approach The BERT
MaxP/SumP (Dai and Callan, 2019) and
PARADE (Li et al., 2024) models use a sliding
window approach. Assume w is the size of the
window and s is the stride. Then the processing
can be summarized as follows:

* tokenizing, the document d into sub-words
tita ...ty ;

* splitting a tokenized document d into
m possibly overlapping chunks d;
tistis+1---tistw—1: Trailing chunks may
have fewer than w tokens.

* generating m token sequences [CLS] g [SEP]
d; [SEP] by concatenating the query with doc-
ument chunks;

* processing each sequence with a BERT model
to generate a last-layer output for each se-
quence [CLS] token.

The outcome of this procedure is m [CLS]-vectors
cls;, which are subsequently aggregated in a
model-specific ways. Note that PARADE and
MaxP/SumP models do not use contextualized em-
beddings of regular tokens.

BERT MaxP/SumP These models (Dai and
Callan, 2019) use a linear layer F' to produce m
relevance scores F'(cls;). Then complete docu-
ment scores are computed as max]"; F'(cls;) and
>, F(cls;) for the MaxP and SumP models, re-
spectively.

PARADE These models (Li et al., 2024) can be
divided into two groups. The first group includes
PARADE average, PARADE max, and PARADE
attention, which all use simple approaches to pro-
duce an aggregated representation of m [CLS]-
vectors cls;. To compute a relevance score these



aggregated representations are passed through a
linear layer F'.

In particular, PARADE average and PARADE
max combine cls; using averaging and the element-
wise maximum operation, respectively to gener-
ate aggregated representation of m [CLS] tokens
cls;.® The PARADE attention model uses a learn-
able attention (Bahdanau et al., 2015) vector C
to compute a scalar weight w; of each i as fol-
lows: wiws ... W, softmax(C - cls;,C -
clsg,...,C-clsy,). These weights are used to com-
pute the aggregated representation as » " | w;cls;

PARADE Transformer models combine [CLS]-
vectors cls; with an additional aggregator trans-
former model AggregTransf(). The input of the
aggregator Transformer is sequence of cls; vectors
prepended with a learnable vector C', which plays a
role of a [CLS] embedding for AggregTransf().
The last-layer representation of the first vector is
passed through a linear layer F' to produce a rele-
vance score:

F(AggregTransf(C,clsi,clsa, ..., clsy)[0])
(1
An aggregator Transformer can be either pre-
trained or randomly initialized. In the case of a
pretrained transformer, we completely discard the
embedding layer. Furthermore, if the dimensional-
ity of cls; vectors is different from the dimension-
ality of input embeddings in AggregTransf, we
project cls; using a linear transformation.

Miscellaneous models We attempted to imple-
ment additional state-of-the-art models (Gao and
Callan, 2022; Fu et al., 2022). Gao and Callan (Gao
and Callan, 2022) introduced a late-interaction
model MORES+, which is a modular long doc-
ument reranker that uses a sequence-to-sequence
transformer in a non-auto-regressive mode. In
MORES+ document chunks are first encoded us-
ing the encoder-only Transformer model. Then
they use a modified decoder Transformer for
joint query-to-all-document-chunk cross-attention:
This modification changes a causal Transformer
into an encoder-only bi-directional Transformer
model. As of the moment of writing, the MORES+
model holds the first position on a competitive MS

®Note that both PARADE average and AvgP vanilla ranker
use the same approach to aggregate contextualized embed-
dings of [CLS] tokens, but they differ in their approach
to select document chunks. In particular, AveP uses non-
overlapping chunks while PARADE average relies on the
sliding window approach.
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MARCO document leaderboard.”. However, the
authors provide only incomplete implementation
which does not fully match the description in the
paper (i.e., crucial details are missing). We reimple-
mented this model to the best of our understanding,
but our implementation failed to outperform even
BM25.

Inspired by this approach, we managed to im-
plement a late-interaction variant of the PARADE
model, which we denoted as PARADE-LATEIR.
Similar to the original PARADE model, it splits
documents into overlapping chunks. However, it
then encodes chunks and queries independently.
Next, it uses an interaction Transformer to (1) mix
these representations, and (2) combine output using
an aggregator Transformer. In total, the model uses
three backbone encoder-only Transformers: All of
these Transformers are initialized using pretrained
models.

Fu et al. (Fu et al., 2022) proposed a multi-view
interactions-based ranking model (MIR). They im-
plement inter-passage interactions via a multi-view
attention mechanism, which enables information
propagation at token, sentence, and passage levels.
Due to the computational complexity, they restrict
these interactions to a set of salient/pivot tokens.
However, the paper does not provide enough de-
tails regarding the choices of these tokens. There is
no software available and authors did not respond
to our clarification requests. Thus, this model is
also excluded from our evaluation.

We additionally implemented both the encoder-
only and the encoder-decoder variant of LongT5
(Guo et al., 2022) as well as RoFormer (with ROPE
embeddings) (Su et al., 2024). We eventually had
to abandon them due to poor convergence (LongT5)
and/or CUDA crashes (RoFormer).

B Experiments: Additional Information,
Ablations, and Detailed Results

B.1 MS MARCO FarRelevant Creation
Algorithm

The MS MARCO FarRelevant dataset was created
as follows: Assume that C; is the number of tokens
in the passage:

* Select randomly a document length between
512 + C; and 1431;

"https://microsoft.github.io/
MSMARCO-Document-Ranking-Submissions/
leaderboard/


https://microsoft.github.io/MSMARCO-Document-Ranking-Submissions/leaderboard/
https://microsoft.github.io/MSMARCO-Document-Ranking-Submissions/leaderboard/
https://microsoft.github.io/MSMARCO-Document-Ranking-Submissions/leaderboard/

» Using rejection sampling, obtain K; non-
relevant samples such that their foral length
exceeds 512, but the length of K; — 1 first
samples is at most 512.

Using the same approach, sample another
K5 + 1 samples such that the total length of
K samples is at most 1431 — C', but the total
length of K> + 1 samples exceeds this value.

Discard the last sampled passage and ran-
domly mix the remaining K5 non-relevant
passages with a single relevant passage.

Finally, append the resulting string to the con-
catenation of the first K; non-relevant pas-
sages.

B.2 Detailed Training and Evaluation Setup
B.2.1 General Setup

In our work, a ranker is applied to the output of
the first-stage retrieval model, also known as a
candidate-generator. Depending on the experiment
and the dataset we use different candidate genera-
tors: for MS MARCO vl and Robust04 we used
a BM25 ranker (Robertson, 2004). In that, for
MS MARCO vl it was applied to documents ex-
panded using the doc2query approach (Nogueira
and Lin, 2019). For MS MARCO v2, we used a
hybrid retriever where candidate records are first
produced using a k-NN search and subsequently
re-ranked using a linear fusion of BM25 scores and
the cosine similarity between query and document
embeddings. Embeddings were generated using
ANCE (Xiong et al., 2021).

Depending on the collection we computed a sub-
set of the following metrics: the mean reciprocal
rank (MRR), the non-discounted cumulative gain
at rank £ (NDCG@K) (Jarvelin and Kekéldinen,
2002), the mean average precision (MAP), and
precision at rank (P@K), & € {10,20}. Due to
space constraints, we included results with MAP
and P@K only in the Appendix (see § B.5). Note
that for test sets with sparse labels (MS MARCO
development set and MS MARCO FarRelevant) we
computed only MRR.

All experiments were carried out using the an
anonymous retrieval toolkit framework, which em-
ployed Lucene and an anonymous toolkit for k-
NN search to provide retrieval capabilities. Deep
learning support was provided via PyTorch (Paszke
etal., 2019) and HuggingFace Transformers library
(Wolf et al., 2019). The instructions to reproduce
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our key results are publicly available in the on-line
appendix.®

B.2.2 Model Traning

A ranker was trained to distinguish between pos-
itive examples (known relevant documents) and
hard negative examples (documents not marked
as relevant) sampled from the set of top-k candi-
dates returned by the candidate generator. We used
k = 100 for MS MARCO and MS MARCO Far-
Relevant and £ = 1000 for Robust04 (based on
preliminary experiments).

Each model was trained using three seeds. All
models except MOSAIC were trained using half-
precision. MOSAIC models were trained using full-
precision. MOSAIC training was unstable (even
though we used the full precision) and often re-
sulted in close-to-zero performance. For this reason
we continued training with more seeds until we ob-
tained three models with reasonable performance.
This seed selection strategy could potentially have
biased (up) MOSAIC results. To compute statisti-
cal significance, we averaged query-specific metric
values over these seeds.

All MS MARCO models were trained from
scratch. Then these models were fine-tuned on Ro-
bust04. Note that except for the aggregation Trans-
formers and TinyLLAMA, we use a base, i.e., a
12-layer Transformer (Vaswani et al., 2017) models.
TinyLLAMA has 22 layers and about 1B parame-
ters. BERT-base is more practical then a 24-layer
BERT-large and performs at par with BERT-large
on MS MARCO and Robust04 (Hofstitter et al.,
2020a; Li et al., 2024). In our own experiments, we
see that large (24 and more layers) model perform
much better on the MS MARCO Passage collec-
tion, but we were not able to outperform 12-layer
models on the MS MARCO Documents collection.
Note that Longformer (Beltagy et al., 2020), Big-
Bird (Zaheer et al., 2020), and DEBERTA base (He
et al., 2021), JINA (?), and MOSAIC (Portes et al.,
2023) all have 12 layers, but a larger embedding
matrix.

One training epoch consisted in iterating over all
queries and sampling one positive and one nega-
tive example with a subsequent computation of a
pairwise margin loss. We used the minibatch size
one with gradient accumulation over 16 steps. The
learning rates are provided in the model configura-

8https: //anonymous . 4open.science/r/long_doc_
rank_model_analysis_v2-78E9/


https://anonymous.4open.science/r/long_doc_rank_model_analysis_v2-78E9/
https://anonymous.4open.science/r/long_doc_rank_model_analysis_v2-78E9/

Table 7: Comparison of Long-context Models to Respective FirstP baselines and Prior Art.

Model MS MARCO TREC DL Robust04
dev 2019 2020 2021 title description
| MRR | NDCG @10 | NDCG @20
Prior work (FirstP, MaxP), Zhang et al. (Zhang et al., 2021)
FirstP (BERT) - - - - 0.449 0.510
MaxP (BERT) - - - - 0477 (+6.2%)  0.530 (+3.9%)
MaxP (ELECTRA) - - - - 0.523 0.574
Prior work (PARADE) Li et al. (Li et al., 2024)
PARADE Attn (ELECTRA) - - - - 0.527 0.587
PARADE Max (ELECTRA) - 0.679 0.613 - 0.544 0.602
PARADE Transf-RAND (ELECTRA) |- 0.650 0.601 - 0.566 0.613
Our results

FirstP (BERT) 0.394 0.631 0.598 0.660 0.475 0.527
MaxP (BERT) 0.392 (—0.4%) [0.648 (+2.6%) 0.615 (+2.8%) 0.665 (+0.8%) |0.488% (+2.6%) 0.544% (43.3%)
PARADE Attn 0.416% (+5.5%)(0.647 (+2.5%) 0.626% (+4.6%) 0.677 (+2.5%) [0.503% (+5.7%) 0.556 (+5.6%)
FirstP (ELECTRA) 0.417 0.652 0.642 0.686 0.492 0.552
MaxP (ELECTRA) 0.414 (—0.6%) |0.659 (+1.0%) 0.630 (—1.9%) 0.683 (—0.5%) [0.502 (+2.0%)  0.563 (+2.1%)
PARADE Attn (ELECTRA) 0.431% (+3.3%)(0.675% (+3.5%) 0.653 (+1.8%) 0.705 (+2.8%) [0.523% (+6.4%) 0.581% (4+5.3%)
FirstP (DEBERTA) 0.415 0.675 0.629 0.702 0.534 0.596
MaxP (DEBERTA) 0402 (—3.2%) [0.679 (+0.6%) 0.620 (—1.4%) 0.705 (+0.4%) [0.535 (+0.2%)  0.609 (+2.2%)
PARADE Attn (DEBERTA) 0.422% (+1.6%)(0.685 (+1.4%) 0.659° (+4.8%) 0.713 (+1.4%) |0.549% (+2.9%) 0.615% (+3.2%)
FirstP (Longformer) 0.404 0.657 0.616 0.654 0.483 0.540
LongP (Longformer) 0.412% (+1.9%)(0.676% (+2.9%) 0.628 (+2.0%) 0.693% (+6.0%)|0.500% (+3.6%) 0.568 (45.1%)
FirstP (Big-Bird) 0.408 0.663 0.620 0.679 0.507 0.560
LongP (Big-Bird) 0.397% (—2.9%)|0.655 (—1.1%) 0.618 (—0.3%) 0.675 (—0.5%) [0.452% (—10.9%) 0.477* (—14.9%)
FirstP (JINA) 0.422 0.658 0.618 0.679 0.488 0.532
LongP (JINA) 0.416% (—1.5%)|0.670% (+1.8%) 0.632 (+2.1%) 0.689 (+1.4%) |0.503% (+2.9%) 0.558% (+4.9%)
FirstP (MOSAIC) 0.423 0.654 0.607 0.662 0.453 0.538
LongP (MOSAIC) 0.421 (—0.4%) [0.660 (+0.9%) 0.630% (+3.7%) 0.694% (+4.9%)|0.456 (+0.6%)  0.570% (46.0%)

In each column we show a relative gain over model’s respective FirstP baseline: The last column shows the average relative gain over FirstP.
Best numbers are in bold: Our results are averaged over three seeds (but not necessarily prior art).
Statistical significant differences with respect to this baseline are denoted using the superscript superscript a. p-value threshold is 0.01 for an

MS MARCO development collection and 0.05 otherwise.

tion files (in the on-line repository).” We used the
AdamW optimizer (Loshchilov and Hutter, 2017)
and a constant learning rate with a 20% linear
warm-up (Mosbach et al., 2020).

We have learned that—unlike neural retrievers—
cross-encoding rankers (Nogueira and Cho, 2019)
are relatively insensitive to learning rates, their
schedules, and the choice of loss functions. We
were sometimes able to achieve better results using
multiple negatives per query and a listwise margin
loss (or cross-entropy). However, the gains were
small and not consistent compared to a simple pair-
wise margin loss used in our work (in fact, using
a listwise loss function sometimes lead to overfit-
ting). Note again that this is different from neural
retrievers where training is difficult without using
a listwise loss and/or batch-negatives (Karpukhin
et al., 2020; Xiong et al., 2021; Qu et al., 2021;
Zerveas et al., 2021; Formal et al., 2021).

For MS MARCO, all models except PARADE-
Transf-Pretr-LATEIR-L6 and PARADE-Transf-

9https ://anonymous. 4open.science/r/long_doc_
rank_model_analysis_v2-78E9/.

18

RAND-L2 were trained for one epoch: Further
training did not improve (and sometimes degraded)
accuracy. However, PARADE-Transf-RAND-L2
and PARADE-Transf-Pretr-LATEIR-L6 required
two-to-three epochs to reach the maximum accu-
racy. In the case of Robust04, each model was
finetuned for 100 epochs, but all epochs were short,
so the overall training and evaluation time was com-
parable to that of fine-tuning on MS MARCO for a
single epoch.

To reproduce our main results, we estimate that
one needs about 6400 GPU hours: 6000 hours
using NVIDIA A10 (or RTX 3090) with 24 GB of
memory and 400 hours using NVIDIA A6000 with
48 GB of memory. A6000 was required only for
TinyLLAMA.

From our experience models trained on MS
MARCO v2 performed worse on TREC 2021
queries compared to models trained on MS
MARCO vl1. This may indicate that models some-
how learn to distinguish between original MS
MARCO vl documents and newly added ones
(which did not have positive judgements in the


https://anonymous.4open.science/r/long_doc_rank_model_analysis_v2-78E9/.
https://anonymous.4open.science/r/long_doc_rank_model_analysis_v2-78E9/.

training sets). As a result, these models are biased
and tend to not rank these new documents well even
when they are considered to be relevant by NIST as-
sessors. For this reason, we used MS MARCO v2
data in a zero-shot transfer mode where ranking
models trained on MS MARCO v1 are evaluated
on TREC DL 2021 queries.

B.2.3 Miscellaneous Notes

To enable efficient training and evaluation of the
large number of models, documents were truncated
to have at most 1431 BERT tokens. In § B.3 (see Ta-
ble 8) we show that for our top-performing model
PARADE Attention (Li et al., 2024) using a larger
number of chunks only marginally improves out-
comes. Depending on a dataset, the highest accu-
racy is achieved using either three or four chunks.

For SplitP approaches, queries were padded to
32 BERT tokens with padding being masked out
during training (longer queries were truncated). For
SplitP models with greedy partitioning into disjoint
chunks, long document were split into at most three
chunks containing 477 document tokens (each con-
catenated with up to 32 query tokens plus three
special tokens).

We evaluated 20+ models, but we had to exclude
two LongT5 variants (Guo et al., 2022) and Ro-
Former (with ROPE embeddings) (Su et al., 2024)
due to poor convergence and/or crashes. Specif-
ically, even after 10 epochs of training LongT5
models were ~ 10% less accurate than BERT-base
FirstP trained for one epoch. Given the uncertainty
regarding the possible convergence of models as
well as the need to train these for three epochs, we
have to abandon this experiment as overly expen-
sive. RoFormer models were failing due to CUDA
errors when the context length exceeded 512: We
were not able to resolve this issue.

B.3 Varying the Number of Chunks

To understand if truncating input to have at most
1431 BERT tokens negatively affected model per-
formance, we carried out an ablation study where
one of the top-performing models was trained
and evaluated using inputs of varying maximum
lengths. To this end we used PARADE Attention
with the number of input chunks varying from one
to six. In that the same number of chunks was used
during training and evaluation, i.e., we had to carry
out six experiments. Similar to our main experi-
ments, we trained each model using three seeds.
We carried out this ablation experiment using our
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MS MARCO and Robust04 datasets.

The results are presented in Table 8: We can
see that—depending on the dataset—three or four
input chunks are optimal. However, the additional
gains over the FirstP baseline are at most 0.6%
when averaged over all test sets.

Gao and Callan 2022 carried out a similar abla-
tion using ClueWeb09: Increasing the number of
input chunks from three to six lead to only about
2.3% relative improvement in NDCG@20. How-
ever, even this modest gain could have been slightly
inflated due to model not being trained directly on
shorter inputs. Indeed, truncation of an input for
a six-chunk model to one chunk is potentially less
effective than training and evaluating the model
using one-chunk data.

B.4 Reproducibility and Backbone Selection
for SplitP Models

To understand if using BERT-base as back-
bone model for various SplitP (i.e., chunk-and-
aggregate) approaches diminished models’ ability
to process and understand long contexts, we carried
out a focused comparison of several backbone mod-
els, including ELECTRA (Clark et al., 2020) and
DEBERTA (He et al., 2021). To this end, we used
two methods: PARADE (Li et al., 2024) Attention
and MaxP. PARADE Attention model achieved
the largest average gain over FirstP in our main
experiments (see Table 4), whereas MaxP models
were extensively benchmarked in the past (Li et al.,
2024; Dai and Callan, 2019; Zhang et al., 2021).
Although prior work found ELECTRA to be a bet-
ter backbone model in terms of absolute accuracy
(Li et al., 2024; Zhang et al., 2021), we found no
systematic evaluation of the relationship between a
backbone model and achievable FirstP gains.

Results in Tables 7 and 4 confirm overall su-
periority of both ELECTRA and DEBERTA over
BERT-base. In that, DEBERTA models are nearly
always more effective compared to ELECTRA
models with biggest differences on Robust04.
However, their relative effectiveness with respect
to their respective FirstP baselines does not ex-
ceed that of BERT-base. The same is true for
LongP models. Except Longformer they performed
equally or worse compared to FirstP on 8 test sets
out of 18. Moreover, all LongP models achieved
lower average gains over FirstP (see the last col-
umn in Table 4). We conclude that to measure
capabilities of chunk-and-aggregate model to un-



Table 8: Effectiveness of the PARADE Attention Model for Different Input Truncation Thresholds

Retriever / Ranker MS MARCO TREC DL Robust04 Avg. gain
dev (2019-2021) title description Over FirstP

| MRR | NDCGelo | NDCG @20 |

Retriever | 0.312 | 0.629 | 0.428 0.402 | -

PARADE Attn (1 chunk) | 0.401 0.637 0.476 0.527

PARADE Attn (2 chunks) | 0.408% (+1.8%) | 0.653% (+2.7%) | 0.499% (+4.9%) 0.544° (+3.3%) +3 2%

PARADE Attn (3 chunks) | 0.406% (+1.3%) | 0.648 (+1.7%) | 0.505% (+6.1%) 0.557* (+5.7%) | +3.7%

PARADE Attn (4 chunks) | 0.412% (+2.9%) | 0.654° (+2.7%) | 0.504% (+5.9%) 0.5582 (+5.9%) | +4.3%

PARADE Attn (5 chunks) | 0.409% (+2.0%) | 0.652% (4+2.4%) | 0.502% (4+5.6%) 0.556% (+5.5%) | +3.9%

PARADE Attn (6 chunks) | 0.411% (+2.4%) | 0.653% (4+2.6%) | 0.504% (+5.9%) 0.554% (+5.2%) | +4.0%

derstand and incorporate long context, it appears to
be beneficial to use BERT-base instead of ELEC-
TRA or DEBERTA.

We also use Table 7 to compare with prior art.
We generally reproduce prior art, in particular, ex-
periments by Li et al. 2024, who invented PARADE
models. Our ELECTRA-based models achieve
higher NDCG@10 on TREC DL 2019-2020 and
PARADE Attention models come very close, but
they are about 3-5% worse compared to their PA-
RADE Transformer on Robust04. At the same time,
our DEBERTA-based PARADE Attention model
achieves similar NDCG @20 scores.

Note that one should not expect identical results
due to differences in training regimes and candidate
generators. In particular, in the case of Robust04,
Li et al. 2024 use RM3 (BM25 with a pseudo-
relevance feedback (Jaleel et al., 2004)), which
is more effective than BM25 (Robertson, 2004)
(which we use on Robust04).

Another important comparison point is Robust04
results by Zhang et al. 2021 who were able to re-
produce original MaxP results by Dai and Callan
2019, which used BERT-base as a backbone. In ad-
dition, they experimented with ELECTRA models
“pre-finetuned” on MS MARCO. When compar-
ing BERT-base results, Zhang et al. 2021 have the
maximum relative gain of 6.6% compared to ours
3.3%. However, in absolute terms we got higher
NDCG @20 for both FirstP and MaxP. Their MaxP
(ELECTRA) has comparable performance to ours
on TREC DL 2019-2020, but it is 2-4% better on
RobustO4. In turn, our MaxP (DEBERTA) is bet-
ter by 2-6%. Although we do not always match
prior art using the same backbone models, we gen-
erally match or outperform prior results, which, we
believe, boosts the trustworthiness of our experi-
ments.
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Table 9: Ranking Performance on MS MARCO and TREC DL.

Model MS MARCO TREC DL
dev 2019-2021

| MRR | NDCG@10 P@10 MAP
Retriever | 0.312 | 0.629 0.720 0.321
FirstP (BERT) 0.394 0.632 0.712 0.311
FirstP (Longformer) 0.404 0.643 0.722 0.317
FirstP (ELECTRA) 0.417 0.662 0.734 0.320
FirstP (DEBERTA) 0.415 0.672 0.741 0.327
FirstP (Big-Bird) 0.408 0.656 0.727 0.321
FirstP (JINA) 0.422 0.654 0.728 0.320
FirstP (MOSAIC) 0.423 0.643 0.726 0.316
FirstP (TinyLLAMA) 0.395 0.615 0.692 0.301
FirstP (E5-4K) zero-shot 0.380 0.641 0.722 0.317
AvgP \ 0.389 (—1.3%) \ 0.642 (+1.5%) 0.717 (+0.7%) 0.317% (+2.0%)
MaxP 0.392 (—0.4%) 0.644% (+1.9%) 0.723 (+1.5%) 0.3229 (+3.7%)
MaxP (ELECTRA) 0.414 (—0.6%) 0.659 (—0.5%) 0.745 (+1.5%) 0.326 (+2.1%)
MaxP (DEBERTA) 0.402¢ (-3.2%) | 0.671 (—0.1%) 0.746 (+0.7%) 0.335% (+2.5%)
SumP 0.390 (—1.0%) 0.639 (+1.0%) 0.715 (+0.4%) 0.319% (+2.6%)
CEDR-DRMM 0.385% (—2.3%) | 0.629 (—0.5%) 0.708 (—0.5%) 0.313 (+0.6%)
CEDR-KNRM 0.379 (-3.8%) | 0.630 (—0.3%) 0.711 (—-0.1%) 0.313 (+0.8%)
CEDR-PACRR 0.395 (+0.3%) 0.643% (+1.6%)  0.719 (+0.9%) 0.320% (+2.9%)
Neural Modell | 0398 (+0.9%) | 0.650% (+2.8%) 0.723% (+1.5%)  0.323% (+3.9%)
PARADE Attn 0.416% (+5.5%) | 0.652% (+3.1%)  0.728% (+2.2%)  0.324% (+4.2%)
PARADE Attn (ELECTRA) 0.431¢ (+3.3%) | 0.680% (+2.7%) 0.763% (+3.9%) 0.335% (+4.9%)
PARADE Attn (DEBERTA) 0.422% (+1.6%) | 0.688 (+2.4%) 0.763° (+3.0%) 0.339° (+3.9%)
PARADE Avg 0.392 (—0.6%) 0.646% (+2.1%)  0.715 (+0.4%) 0.317% (+2.1%)
PARADE Max 0.405% (+2.7% 0.655% (+3.5%) 0.733% (+2.9%) 0.324% (+4.1%)
PARADE Transf-RAND-L2 0.419° (4+6.3% 0.655% (+3.6%) 0.734% (+3.1%)  0.326* (+5.0%)

PARADE Transf-RAND-L2 (ELECTRA)
PARADE Transf-PRETR-L6
PARADE Transf-PRETR-LATEIR-L6

)
)
0.433% (+3.9%)
0402 (+1.9%)
0.398 (+1.1%)

0.670 (+1.2%)
0.643 (+1.6%)
0.626 (—0.9%)

0.747 (+1.8%)
0.717 (+0.8%)
0.707 (—0.7%)

0.327 (+2.2%)
0322 (+3.6%)
0.307 (—1.1%)

LongP (Longformer)
LongP (Big-Bird)

0.4129 (+1.9%)
0.397% (—2.9%)

0.668 (43.9%)
0.651 (—0.7%)

07529 (+4.1%)
0.726 (—0.2%)

0.333% (+5.1%)
0.322 (+0.3%)

LongP (JINA) 0.416% (—1.5%) | 0.665% (+1.7%) 0.742% (+2.0%) 0.3287 (+2.4%)
LongP (MOSAIC) 0421 (—0.4%) | 0.664% (+3.3%)  0.740% (+1.9%)  0.327% (+3.7%)
LongP (TinyLLAMA) 04029 (+1.7%) | 0.608 (—1.1%)  0.692 (+0.0%)  0.306 (+1.6%)

LongP (E5-4K) zero-shot

0.353% (—7.1%)

0.649 (+1.3%)

0.724 (+0.3%)

0.323 (+1.8%)

In each column we show a relative gain with respect model’s respective FirstP baseline: The last column shows the average
relative gain of FirstP. Best numbers are in bold: Results are averaged over three seeds. Unless specified explicitly, the backbone

is BERT-base.

Statistical significant differences with respect to this baseline are denoted using the superscript superscript a. p-value threshold is
0.01 for an MS MARCO development collection and 0.05 otherwise.
E5-models were used only in the zero-shot model, i.e., without fine-tuning.
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Table 10: Ranking Performance on Robust04.

Model | NDCG @20 P@20 MAP ‘ NDCG @20 P@20 MAP
Retriever ‘ 0.428 0.365 0.255 ‘ 0.402 0.334 0.240
FirstP (BERT) 0.475 0.405 0.277 0.527 0.447 0.303
FirstP (Longformer) 0.483 0.413 0.277 0.540 0.454 0.307
FirstP (ELECTRA) 0.492 0.424 0.294 0.552 0.465 0.320
FirstP (DEBERTA) 0.534 0.459 0.319 0.596 0.503 0.350
FirstP (Big-Bird) 0.507 0.435 0.300 0.560 0.473 0.325
FirstP (JINA) 0.488 0.421 0.287 0.532 0.450 0.305
FirstP (MOSAIC) 0.453 0.390 0.266 0.538 0.455 0.310
FirstP (TinyLLAMA) 0.431 0.370 0.246 0.473 0.398 0.262
FirstP (E5-4K) 0.438 0.371 0.247 0.429 0.355 0.234

AvgP

[0.478 (4-0.5%)

0411 (+1.6%)

0.292% (+5.4%)

[0.531 (40.9%)

0.451 (+1.0%)

0.324% (+6.7%)

MaxP
MaxP (ELECTRA)
MaxP (DEBERTA)
SumP

0.488% (+2.6%)
0.502 (+2.0%)
0.535 (+0.2%)
0.486 (+2.2%)

0.425% (+5.1%)
0.441% (+3.9%)
0.464 (+1.2%)

0.418% (+3.4%)

0.306% (+10.6%)
0.319% (+8.3%)
0.340% (+6.7%)
0.305% (+10.2%)

0.544° (+3.3%)
0.563 (+2.1%)
0.609¢ (42.2%)
0.538 (+2.1%)

0.467% (+4.5%)
0.483% (+4.0%)
0.519% (+3.2%)
0.461% (+3.1%)

0.338% (+11.5%)
0.350% (+9.3%)
0.378% (+7.9%)
0.337% (+11.1%)

CEDR-DRMM
CEDR-KNRM
CEDR-PACRR

0.466 (—2.0%)
0483 (+1.7%)
0.496% (+4.3%)

0.403 (—0.4%)
0.413 (+1.9%)
0.426 (+5.3%)

0.287% (+3.8%)
0.291% (+5.1%)
0.307% (+11.0%)

0.533 (+1.3%)
0.535 (+1.7%)
0.549% (+4.2%)

0458 (+2.5%)
0.456 (+2.0%)
0.466% (+4.4%)

0.326% (+7.6%)
0.324% (+6.8%)
0.337% (+11.2%)

Neural Modell

[0.484 (+1.8%)

0.417% (+3.1%)

0.298% (+7.7%)

[0.537 (+1.9%)

0.459% (+2.6%)

0.330% (+8.8%)

PARADE Attn
PARADE Attn (ELECTRA)
PARADE Attn (DEBERTA)

0.503% (+5.7%)
0.523% (+6.4%)
0.549% (+2.9%)

0.433% (+6.9%)
0.456% (+7.4%)
0.475% (+3.6%)

0.311% (+12.4%)
0.329% (+11.7%)
0.346" (+8.7%)

0.556% (+5.6%)
0.581% (+5.3%)
0.615 (+3.2%)

0.476% (+6.5%)
0.495% (+6.5%)
0.522° (+3.8%)

0.344° (+13 3%)

(

PARADE Avg 0483 (+1.5%) 0412 (+1.8%) 0291 (+5.2%) |0.534 (+1.5%) 0457 (+2.4%) O. 318 (+4 7%)
PARADE Max 0.489% (+2.8%) 0.420% (+3.8%) 0.306% (+10.8%) |0.548% (+4.0%) 0.470% (+5.3%) 0.337% (+11.0%)
PARADE Transf-RAND-L2 0.488% (+2.8%) 0.423% (+4.6%) 0.303% (+9.7%) [0.548% (+4.1%) 0.469* (+5.0%) 0.338% (+11.6%)
PAR. Transf-RAND-L2 (ELECTRA) |0.523% (+6.3%) 0.454% (4+6.9%) 0.330% (+12.2%) |0.574% (+3.9%) 0.488% (+5.0%) 0.354% (4+10.6%)
PARADE Transf-PRETR-L6 0.494% (+4.0%) 0.426% (+5.3%) 0308 (+11.5%)|0.554% (+5.1%) 0.474% (+6.1%) 0.346* (+14. 1%)
PAR. Transf-PRETR-LATEIR-L6  |0.450* (—5.2%) 0.389% (—3.9%) 0.277 (+0.3%) [0.501% (—4.9%) 0.423% (—5.3%) 0.302 (—0.5%)
LongP (Longformer) 0.500% (+3.6%) 0.435% (+5.3%) 0.309% (+11.5%)]0.568% (+5.1%) 0.482% (+6.1%) 0.347% (+12.9%)
LongP (Big-Bird) 0.452% (—10.9%) 0.389% (—10.7%) 0.274% (—8.8%) |0.477% (—14.9%) 0.400%* (—15.5%) 0.279% (—14.2%)
LongP (JINA) 0.503% (+2.9%) 0.434° (+3.1%) 0.309* (+7.5%) |0.558% (+4.9%) 0.473% (+5.2%) 0.335% (+9.7%)
LongP (MOSAIC) 0.456 (+0.6%)  0.393 (+0.8%)  0.280% (+5.3%) |0.570% (+6.0%) 0.484% (+6.3%) 0.350% (+13.0%)
LongP (TinyLLAMA) 0.452% (+4.8%) 0396 (+6.9%) 0.267% (+8.7%) [0.505% (+6.7%) 0.428% (+7.6%) 0.297% (+13.3%)
LongP (E5-4K) 0439 (+0.1%) 0375 (+1.0%) 0250 (+1.3%) |0434 (+1.1%)  0.360 (+1.6%)  0.241% (+2.9%)

In each column we show a relative gain with respect model’s respective FirstP baseline: The last column shows the average relative gain of
FirstP. Best numbers are in bold: Results are averaged over three seeds. Unless specified explicitly, the backbone is BERT-base.

Statistical significant differences with respect to this baseline are denoted using the superscript superscript a. p-value threshold is 0.05.
E5-models were used only in the zero-shot model, i.e., without fine-tuning.

22



B.5 Additional Accuracy Metrics

In this section we show results for additional ef-
fectiveness metrics. MS MARCO and TREC DL
results are shown in Table 9. Robust04 datasets are
presented and Table 10.
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