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Abstract

Source code summarization is the task of gen-
erating a high-level natural language descrip-
tion for a segment of programming language
code. Current neural models for the task dif-
fer in their architecture and the aspects of code
they consider. In this paper, we show that
three state-of-the-art models for code summa-
rization work well on largely disjoint subsets
of a large code base. This complementar-
ity motivates model combination: We propose
three meta-models that select the best candi-
date summary for a given code segment. The
two neural models improve significantly over
the performance of the best individual model,
obtaining an improvement of 2.1 BLEU points
on a dataset of code segments where at least
one of the individual models obtains a non-
zero BLEU.

1 Introduction

Source code summarization is the task of generat-
ing short natural language statements describing
a segment of code (Haiduc et al., 2010; Sridhara
etal., 2010). Such summaries serve an integral role
in software development by aiding code compre-
hension (Takang et al., 1996; Xia et al., 2018). The
recent availability of large code bases and advances
in machine learning have given this task significant
attention at the interface between NLP and soft-
ware engineering. Most neural network-based ap-
proaches build on machine translation (MT) strate-
gies, framing code summarization as a text-to-text
generation task (Richardson et al., 2017).

A first interesting parallel to MT research in NLP
is that code summarization models also differ sub-
stantially in their assumptions about the nature of
the task. Some adopt a sequence-to-sequence map-
ping approach (Iyer et al., 2016; Eberhart et al.,
2020), while others take into account code struc-
ture, e.g., abstract syntax trees (ASTs) (Hu et al.,
2018a; Wan et al., 2018; LeClair et al., 2019), or

infer latent structure with graph neural networks
(LeClair et al., 2020) or transformers (Ahmad et al.,
2020). Another active direction, again similar to
many NLP tasks, is the inclusion of contextual and
background information, through API calls (Hu
et al., 2018b), information from other methods or
projects (Haque et al., 2020; Bansal et al., 2021),
or exploiting the symmetry between code summa-
rization and generation (Wei et al., 2019).

In this paper, we follow up on the observation
by LeClair et al. (2019) that current models per-
form well for some examples. An analysis on
three state-of-the-art methods (NeuralCodeSum,
ast-attendgru, attendgru, cf. Sec. 2.1) on the Fun-
com dataset (Sec. 3) shows that the models are
indeed largely complementary (cf. Figure 1): Each
of the individual models creates the best summary
for a substantial number of code segments, with the
best model NeuralCodeSum, winning in about 6.4k
of 22k cases where any model predicts a summary
with non-zero BLEU. Table 1 illustrates this com-
plementarity on two short methods: even though
all models learn cues from code identifiers (here,
method and variable names), in most cases they are
only partially successful, and no single model is
always best.

Based on these observations, we propose to com-
bine the strengths of the individual code summa-
rization models with meta learning (Naik and Mam-
mone, 1992), training a new model that selects the
best summary, given the original code segment and
candidate summaries. We find a statistically signif-
icant improvement over the best individual models.

2 Methods

Given a sequence T = (t1, ..., ;) of code tokens,
code summarization is the task to produce a se-
quence S = (wy, ..., wy) of words describing the
code. The predictions are evaluated against refer-
ence summaries, using BLEU score (Papineni et al.,
2002) as also customary in MT.



Code Source Summary BLEU
Reference gets the value of the helpful votes property
public BigInteger getHelpfulVotes () { NeuralCodeSum  gets the value of the helpful votes property 1.00
return helpfulVotes; attendgru gets the value of the reason votes property 0.59
} ast-attendgru gets the value of the reason type property 0.54
Reference determines whether to display the last button in the bottom pane
public void displayLastButton (boolean b) { NeuralCodeSum display the last button 0.17
bottomPane.lastButton.setVisible (b); attendgru displays the last button 0.00
) ast-attendgru display the last button in the panel 0.46

Table 1: Summaries predicted by three state-of-the-art code summarization models and BLEU score compared to

a human-written reference.

NeuralCodeSum
ast-attendgru

attendgru

NeuralCodeSum,
ast-attendgru
NeuralCodeSum,
attendgru
Ast-attendgru,
attendgru

All Models

0 2000 4000 6000 8000

Figure 1: Complementarity of code summarization
models: # of FunCom methods for which each model
achieves highest BLEU score (, indicates draw).

2.1 Code Summarization Models

As sketched above, a number of code summariza-
tion models have been proposed in the literature.
We consider three models. All use an encoder-
decoder structure, and yield state-of-the-art results.

Text-based The attendgru model uses an LSTM
as encoder to summarize the token sequence
into a context vector (LeClair et al., 2019).
The decoder then uses this vector to generate
the summary.

Code structure-based The ast-attendgru model
is an extension of attendgru (LeClair et al.,
2019). In addition to the tokens, it also consid-
ers a flattened abstract syntax tree (AST). It
encodes both inputs separately and feeds their
concatenation into a decoder.

Transformer-based. The NeuralCodeSum
model (Ahmad et al., 2020) uses a trans-
former with relative positional encoding and
copy attention as encoder, and then predicts a
summary with a decoder.

2.2 Meta-Learning Model

Given the complementarity of these models (cf.
Figure 1), it would be very desirable to combine
their strengths. There are multiple ways to do so.
Straightforward combination of model output, as
usual in ensembling (Rokach, 2010), is difficult
for highly structured output such as summaries.
LeClair et al. (2021) combine multiple source en-
coders with a joint decoder, which is effective but
requires disassembling models. In this paper, we
instead adopt a meta-learning approach (Naik and
Mammone, 1992) in which we learn a summary se-
lector. We formulate this task as multi-label binary
classification tasks, where the meta-model predicts
the suitability of each candidate summary, given
the summary and the original code segment. We
propose three such classifiers.

2.2.1 Feature-Based Meta-Model

Our first classifier, metagey, is a logistic regression
model (Cox, 1958) whose features are designed
to capture properties of code segments which may
determine the difficulty of generating code sum-
maries, building on ideas from performance predic-
tion (Papay et al., 2020) and confidence estimation
for summarization (Louis and Nenkova, 2009). We
consider the following feature types:

Token and word frequencies Based on the fre-
quency of each code token and each word
across the codebase, we consider the harmonic
means freq(T') and freq(S) of the code and
summary, respectively. The hypothesis is that
higher frequencies should make for simpler
summarization.

Length We consider the number | 7’| of tokens in
a code segment and the number |S| of words
in a summary, with longer code segments and
summaries indicating higher complexity and
thus difficulty.
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Figure 2: Architecture of our neural meta-models.

Distinctiveness We measure how distinctive a can-
didate summary I is compared to all sum-
maries produced by the same model as the
Kullback—Leibler divergence Disy(F;||P),
where P is the unigram distribution of all sum-
maries, and P; is the unigram distribution of
candidate summary ¢. We expect low distinc-
tiveness to lead to difficult summarization.

2.2.2 Neural Meta-Models

As an alternative to specifying the relevant features
by hand, we define two neural meta-models that
select a summary based on self-learned distributed
features. More specifically, as shown in Figure 2,
we first represent the input sequences (code tokens
and summaries) in terms of FastText token and
word embeddings, respectively, The choice of Fast-
Text is motivated by prior work showing that Fast-
Text outperforms other pre-trained token embed-
ding models at accurately representing identifiers
in source code (Wainakh et al., 2021). We pretrain
these embeddings on the training dataset used in
the evaluation (see below). After embedding, the
model consists of two encoders, one for the code
token sequence (generating a vector vr) and one
for each summary (generating a vector vg).

The final step is to concatenate, for each sum-
mary, vr and vg. The concatenation is passed
through two linear layers, and finally through a
sigmoid function so that each summary is associ-
ated with a probability. The two sequence encoders
and the linear layers are trained jointly.

Our two neural models differ only in the type
of sequence encoder they use. The first model,
called metarstm, encodes sequences through a
bi-directional LSTM. The other model, called

metaTtrn, 18 based on a transformer.

2.2.3 Training and Querying Meta Models

As the goal of the meta-model is to maximize
the overall BLEU score of the predicted sum-
maries w.r.t. reference summaries, we train the
meta-models in a supervised manner based on la-
bels derived from BLEU scores. We label a sum-
mary as suitable if and only if it achieves the best
BLEU score among all available candidate sum-
maries. If multiple candidate summaries achieve
the same, non-zero BLEU score, then all these can-
didates are labeled as suitable. Let B be the set
of BLEU scores obtained by candidate summaries
S1, ..., Sj for a code sequence T, then the training
label for T', (S, ..., Sj) is p1, ..., pj Where

pi = 0,

At inference time, we choose the candidate sum-
mary S; with the highest predicted probability p;.

if BLEU(S;, Syef) = maz(B)

otherwise

3 Experimental Setup

Data. We use the FunCom dataset (LeClair and
McMillan, 2019). It contains 2.1 million pairs
of Java code segments and summaries, with an
average of 51 tokens per segment and 15 words
per summary. We use the authors’ tokenization.
As shown in Table 2, we divide the dataset into
three partitions: for summary generation, for meta-
learning, and for testing. The test partition corre-
sponds to the one used in previous work (LeClair
et al., 2019, 2020; Haque et al., 2020; LeClair et al.,
2021), whereas the partition to train summariza-
tion models is smaller than in prior work, as we
keep some data for the meta-model. Because for a
substantial percentage of code segments, all sum-
marization models fail to produce a summary with
non-zero BLEU, we also consider a filtered dataset
containing only segments where at least one sum-
marization model achieves BLEU > 0. The filtered
dataset hence are the cases where the meta-model
has a chance to improve over the individual models.

Models and Evaluation. We first train the three
code summarization models and then our meta-
models, as defined in Section 2. We evaluate
the summaries by the standard choice of corpus-
level aggregated BLEU scores (Papineni et al.,
2002). We consider three scenarios, which dif-
fer on whether the meta-model is trained on the



Partition Split  All Filtered
S ati train 1.4 million NA
ummarization valid 60k NA
Met train 440k 101k
eta valid 70k 5.3k
Test test 101k 22k

Table 2: Statistics of the experiment datasets

Model Train/test of meta model
All/ All/  Filtered/
all filtered filtered
5 attendgru 16.25 48.29 48.29
g ast-attendgru 16.62  49.35 49.35
& NeuralCodeSum 1857 55.66  55.66
< Metdgen 17.93 5247 55.06
§ metay sT™ 18.94* 57.22*  57.08*
MeraTrN 19.18* 57.74* 56.94*

Table 3: BLEU scores on test set for individual summa-
rization models and meta models. * indicates a statisti-
cally significant improvement over NeuralCodeSum
at a=0.05.

entire meta partition or only the filtered portion,
and analogously whether it is evaluated on the full
or the filtered portion of the test partition.

We make our code and data available. More
information, along with hyperparameters, can be
found in Appendix A.

4 Results

Table 3 shows our main results. We first consider
the setup with training and test on the full dataset.
Among the individual summarization models, the
transformer-based NeuralCodeSum model works
best, with a BLEU of 18.6. Both neural meta
models improve over the individual models; the
difference to NeuralCodeSum is statistically sig-
nificant at @=0.05. The transformer-based meta
model achieves the best result at 19.2 BLEU (+0.6
BLEU). In contrast, the feature-based meta model
even underperforms the best individual code sum-
mary model. This highlights the difficulty of pre-
dicting the quality of summaries for code segments,
while the quality of summaries for natural language
texts has been predicted successfully (Louis and
Nenkova, 2009).

If we evaluate the same models only on the fil-

tered datasets — i.e., where the meta model has a
chance of improving over the individual models
(middle column) — we observe the same ranking
of the models, but the margin between the best in-
dividual summarization model (NeuralCodeSum,
55.7 BLEU) and the neural meta learning models
has increased: We obtain a BLEU of 57.2 for the
metarsty (+1.5 BLEU) and a BLEU of 57.7 for
the metaTry (+2 BLEU); differences again are
significant at « = 0.05. We take these numbers
as an indication that the neural meta-learning ap-
proach is generally successful for code segments
for which “sensible” summary candidates (with
BLEU > 0) have been produced by the individual
models.

Finally, the right-hand column assesses the con-
sequences of training the meta-models only on such
“sensible” summary candidates exist. Compared
to the middle column, the meta-model results are
slightly lower.In other words, the apparently unin-
formative summary candidates still contribute to
the success of the meta model. Taken together
with the observation that the results for the Bil-
STM changes much less (-0.1 BLEU) than for the
transformer (-0.8 BLEU), we propose the follow-
ing interpretation: Pairs of code segments and non-
sensical summaries may still help the neural model
in learning to encode typical code token and word
sequences, which is more important for the trans-
former, with its higher capacity, than for the BiL-
STM.

5 Conclusions

The present paper exploits the complementary
nature of different code summarization models
through a meta-learning approach. We find that
neural models can predict the best summary from
a set of candidates created by three state-of-the-art
models, yielding an increase in BLEU of up to 2.1
points. We believe our results to be promising, and
future improvements of individual summarization
models will give our meta-models better predic-
tions to choose from. At the same time, our results
also highlight directions for future work, includ-
ing meta-model introspection (why does the trans-
former succeed where the manual features fail?)
and a re-evaluation of BLEU as summary evalua-
tion metric (Fabbri et al., 2021).
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Dataset Model Epoch Training Time
metatrN 5 ~ 30min/epoch

Entire metarstm = 7 ~ 15min/epoch
metdsey 5000 ~ bmin/model

Filtered metatgy 4 ~ 10min/epoch

~ 3min/epoch
~ 2min/model

metarstm =
metdseat 200

Table 4: Details on number of epochs and training time.
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Code generation as a dual task of code summariza-
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Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing,
Ahmed E. Hassan, and Shanping Li. 2018. Mea-
suring program comprehension: A large-scale field
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A Reproduciblity

Neural Meta Models We set the dimensionality
for code embedding and summary embeddings as
100. The model are trained using the mini-batch
size of 25 with Adam (Kingma and Ba, 2015) opti-
mizer and learning rate as 1le — 4. Considering the
average length of code and NL sequences we set
the input size as 50 and 20 respectively. We com-
puted training loss using Binary Cross Entropy loss
method. The metar stm comprises of two layer Bi-
LSTM encoder layers. Similarly the metarrn has
two neural attention head and two encoder layers.
Details on individual layer dimensions are detailed
in the accompanying code repository.

Feature Meta Models The metas.,; model uti-
lizes Logistic regression model from Scikit-lean
(Pedregosa et al., 2011). For training on entire
dataset we use ’saga’ and on filtered subset ’liblin-
ear’ as solvers. Due to data imbalance on entire
dataset we use class weights (False: 1 ,True: 5).

Code In the accompanying implementation
set we provide, source code for meta mod-
els.Additionally, the repository contains separate
run. sh scripts for executing an end-to-end cy-
cle for training meta-learning models. Table 4 de-
tails information on approximate training times
and number of epochs for individual models and
dataset. For training summarization models we use
publicly available implementations of the models.

Dataset For training summarization models we
use the filtered dataset from Funcom repository. In
the accompanying dataset we provide pre-trained
word embeddings and curated files for training
meta models. The dataset can be found at the fol-
lowing link.
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