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Abstract

Source code summarization is the task of gen-001
erating a high-level natural language descrip-002
tion for a segment of programming language003
code. Current neural models for the task dif-004
fer in their architecture and the aspects of code005
they consider. In this paper, we show that006
three state-of-the-art models for code summa-007
rization work well on largely disjoint subsets008
of a large code base. This complementar-009
ity motivates model combination: We propose010
three meta-models that select the best candi-011
date summary for a given code segment. The012
two neural models improve significantly over013
the performance of the best individual model,014
obtaining an improvement of 2.1 BLEU points015
on a dataset of code segments where at least016
one of the individual models obtains a non-017
zero BLEU.018

1 Introduction019

Source code summarization is the task of generat-020

ing short natural language statements describing021

a segment of code (Haiduc et al., 2010; Sridhara022

et al., 2010). Such summaries serve an integral role023

in software development by aiding code compre-024

hension (Takang et al., 1996; Xia et al., 2018). The025

recent availability of large code bases and advances026

in machine learning have given this task significant027

attention at the interface between NLP and soft-028

ware engineering. Most neural network-based ap-029

proaches build on machine translation (MT) strate-030

gies, framing code summarization as a text-to-text031

generation task (Richardson et al., 2017).032

A first interesting parallel to MT research in NLP033

is that code summarization models also differ sub-034

stantially in their assumptions about the nature of035

the task. Some adopt a sequence-to-sequence map-036

ping approach (Iyer et al., 2016; Eberhart et al.,037

2020), while others take into account code struc-038

ture, e.g., abstract syntax trees (ASTs) (Hu et al.,039

2018a; Wan et al., 2018; LeClair et al., 2019), or040

infer latent structure with graph neural networks 041

(LeClair et al., 2020) or transformers (Ahmad et al., 042

2020). Another active direction, again similar to 043

many NLP tasks, is the inclusion of contextual and 044

background information, through API calls (Hu 045

et al., 2018b), information from other methods or 046

projects (Haque et al., 2020; Bansal et al., 2021), 047

or exploiting the symmetry between code summa- 048

rization and generation (Wei et al., 2019). 049

In this paper, we follow up on the observation 050

by LeClair et al. (2019) that current models per- 051

form well for some examples. An analysis on 052

three state-of-the-art methods (NeuralCodeSum, 053

ast-attendgru, attendgru, cf. Sec. 2.1) on the Fun- 054

com dataset (Sec. 3) shows that the models are 055

indeed largely complementary (cf. Figure 1): Each 056

of the individual models creates the best summary 057

for a substantial number of code segments, with the 058

best model NeuralCodeSum, winning in about 6.4k 059

of 22k cases where any model predicts a summary 060

with non-zero BLEU. Table 1 illustrates this com- 061

plementarity on two short methods: even though 062

all models learn cues from code identifiers (here, 063

method and variable names), in most cases they are 064

only partially successful, and no single model is 065

always best. 066

Based on these observations, we propose to com- 067

bine the strengths of the individual code summa- 068

rization models with meta learning (Naik and Mam- 069

mone, 1992), training a new model that selects the 070

best summary, given the original code segment and 071

candidate summaries. We find a statistically signif- 072

icant improvement over the best individual models. 073

2 Methods 074

Given a sequence T = (t1, ..., tl) of code tokens, 075

code summarization is the task to produce a se- 076

quence S = (w1, ..., wk) of words describing the 077

code. The predictions are evaluated against refer- 078

ence summaries, using BLEU score (Papineni et al., 079

2002) as also customary in MT. 080
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Code Source Summary BLEU

Reference gets the value of the helpful votes property
public BigInteger getHelpfulVotes(){ NeuralCodeSum gets the value of the helpful votes property 1.00
return helpfulVotes; attendgru gets the value of the reason votes property 0.59

} ast-attendgru gets the value of the reason type property 0.54

Reference determines whether to display the last button in the bottom pane
public void displayLastButton(boolean b) { NeuralCodeSum display the last button 0.17
bottomPane.lastButton.setVisible(b); attendgru displays the last button 0.00

} ast-attendgru display the last button in the panel 0.46

Table 1: Summaries predicted by three state-of-the-art code summarization models and BLEU score compared to
a human-written reference.

NeuralCodeSum

ast-attendgru

attendgru

NeuralCodeSum,
ast-attendgru

NeuralCodeSum,
attendgru

Ast-attendgru,
attendgru

All Models

0 2000 4000 6000 8000

Figure 1: Complementarity of code summarization
models: # of FunCom methods for which each model
achieves highest BLEU score (, indicates draw).

2.1 Code Summarization Models081

As sketched above, a number of code summariza-082

tion models have been proposed in the literature.083

We consider three models. All use an encoder-084

decoder structure, and yield state-of-the-art results.085

Text-based The attendgru model uses an LSTM086

as encoder to summarize the token sequence087

into a context vector (LeClair et al., 2019).088

The decoder then uses this vector to generate089

the summary.090

Code structure-based The ast-attendgru model091

is an extension of attendgru (LeClair et al.,092

2019). In addition to the tokens, it also consid-093

ers a flattened abstract syntax tree (AST). It094

encodes both inputs separately and feeds their095

concatenation into a decoder.096

Transformer-based. The NeuralCodeSum097

model (Ahmad et al., 2020) uses a trans-098

former with relative positional encoding and099

copy attention as encoder, and then predicts a100

summary with a decoder.101

2.2 Meta-Learning Model 102

Given the complementarity of these models (cf. 103

Figure 1), it would be very desirable to combine 104

their strengths. There are multiple ways to do so. 105

Straightforward combination of model output, as 106

usual in ensembling (Rokach, 2010), is difficult 107

for highly structured output such as summaries. 108

LeClair et al. (2021) combine multiple source en- 109

coders with a joint decoder, which is effective but 110

requires disassembling models. In this paper, we 111

instead adopt a meta-learning approach (Naik and 112

Mammone, 1992) in which we learn a summary se- 113

lector. We formulate this task as multi-label binary 114

classification tasks, where the meta-model predicts 115

the suitability of each candidate summary, given 116

the summary and the original code segment. We 117

propose three such classifiers. 118

2.2.1 Feature-Based Meta-Model 119

Our first classifier, metafeat, is a logistic regression 120

model (Cox, 1958) whose features are designed 121

to capture properties of code segments which may 122

determine the difficulty of generating code sum- 123

maries, building on ideas from performance predic- 124

tion (Papay et al., 2020) and confidence estimation 125

for summarization (Louis and Nenkova, 2009). We 126

consider the following feature types: 127

Token and word frequencies Based on the fre- 128

quency of each code token and each word 129

across the codebase, we consider the harmonic 130

means freq(T ) and freq(S) of the code and 131

summary, respectively. The hypothesis is that 132

higher frequencies should make for simpler 133

summarization. 134

Length We consider the number |T | of tokens in 135

a code segment and the number |S| of words 136

in a summary, with longer code segments and 137

summaries indicating higher complexity and 138

thus difficulty. 139
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Figure 2: Architecture of our neural meta-models.

Distinctiveness We measure how distinctive a can-140

didate summary I is compared to all sum-141

maries produced by the same model as the142

Kullback–Leibler divergence Diskl(Pi||P ),143

where P is the unigram distribution of all sum-144

maries, and Pi is the unigram distribution of145

candidate summary i. We expect low distinc-146

tiveness to lead to difficult summarization.147

2.2.2 Neural Meta-Models148

As an alternative to specifying the relevant features149

by hand, we define two neural meta-models that150

select a summary based on self-learned distributed151

features. More specifically, as shown in Figure 2,152

we first represent the input sequences (code tokens153

and summaries) in terms of FastText token and154

word embeddings, respectively, The choice of Fast-155

Text is motivated by prior work showing that Fast-156

Text outperforms other pre-trained token embed-157

ding models at accurately representing identifiers158

in source code (Wainakh et al., 2021). We pretrain159

these embeddings on the training dataset used in160

the evaluation (see below). After embedding, the161

model consists of two encoders, one for the code162

token sequence (generating a vector vT ) and one163

for each summary (generating a vector vS).164

The final step is to concatenate, for each sum-165

mary, vT and vS . The concatenation is passed166

through two linear layers, and finally through a167

sigmoid function so that each summary is associ-168

ated with a probability. The two sequence encoders169

and the linear layers are trained jointly.170

Our two neural models differ only in the type171

of sequence encoder they use. The first model,172

called metaLSTM, encodes sequences through a173

bi-directional LSTM. The other model, called174

metaTRN, is based on a transformer. 175

2.2.3 Training and Querying Meta Models 176

As the goal of the meta-model is to maximize 177

the overall BLEU score of the predicted sum- 178

maries w.r.t. reference summaries, we train the 179

meta-models in a supervised manner based on la- 180

bels derived from BLEU scores. We label a sum- 181

mary as suitable if and only if it achieves the best 182

BLEU score among all available candidate sum- 183

maries. If multiple candidate summaries achieve 184

the same, non-zero BLEU score, then all these can- 185

didates are labeled as suitable. Let B be the set 186

of BLEU scores obtained by candidate summaries 187

S1, ..., Sj for a code sequence T , then the training 188

label for T, (S1, ..., Sj) is p1, ..., pj where 189

pi =

{
1, if BLEU (Si, Sref ) = max (B)

0, otherwise
190

At inference time, we choose the candidate sum- 191

mary Si with the highest predicted probability pi. 192

3 Experimental Setup 193

Data. We use the FunCom dataset (LeClair and 194

McMillan, 2019). It contains 2.1 million pairs 195

of Java code segments and summaries, with an 196

average of 51 tokens per segment and 15 words 197

per summary. We use the authors’ tokenization. 198

As shown in Table 2, we divide the dataset into 199

three partitions: for summary generation, for meta- 200

learning, and for testing. The test partition corre- 201

sponds to the one used in previous work (LeClair 202

et al., 2019, 2020; Haque et al., 2020; LeClair et al., 203

2021), whereas the partition to train summariza- 204

tion models is smaller than in prior work, as we 205

keep some data for the meta-model. Because for a 206

substantial percentage of code segments, all sum- 207

marization models fail to produce a summary with 208

non-zero BLEU, we also consider a filtered dataset 209

containing only segments where at least one sum- 210

marization model achieves BLEU > 0. The filtered 211

dataset hence are the cases where the meta-model 212

has a chance to improve over the individual models. 213

Models and Evaluation. We first train the three 214

code summarization models and then our meta- 215

models, as defined in Section 2. We evaluate 216

the summaries by the standard choice of corpus- 217

level aggregated BLEU scores (Papineni et al., 218

2002). We consider three scenarios, which dif- 219

fer on whether the meta-model is trained on the 220
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Partition Split All Filtered

Summarization
train 1.4 million NA
valid 60k NA

Meta
train 440k 101k
valid 70k 5.3k

Test test 101k 22k

Table 2: Statistics of the experiment datasets

Model Train/test of meta model

All/ All/ Filtered/
all filtered filtered

Su
m

m
ar

.

attendgru 16.25 48.29 48.29
ast-attendgru 16.62 49.35 49.35
NeuralCodeSum 18.57 55.66 55.66

M
et

a metafeat 17.93 52.47 55.06
metaLSTM 18.94* 57.22* 57.08*
metaTRN 19.18* 57.74* 56.94*

Table 3: BLEU scores on test set for individual summa-
rization models and meta models. * indicates a statisti-
cally significant improvement over NeuralCodeSum
at α=0.05.

entire meta partition or only the filtered portion,221

and analogously whether it is evaluated on the full222

or the filtered portion of the test partition.223

We make our code and data available. More224

information, along with hyperparameters, can be225

found in Appendix A.226

4 Results227

Table 3 shows our main results. We first consider228

the setup with training and test on the full dataset.229

Among the individual summarization models, the230

transformer-based NeuralCodeSum model works231

best, with a BLEU of 18.6. Both neural meta232

models improve over the individual models; the233

difference to NeuralCodeSum is statistically sig-234

nificant at α=0.05. The transformer-based meta235

model achieves the best result at 19.2 BLEU (+0.6236

BLEU). In contrast, the feature-based meta model237

even underperforms the best individual code sum-238

mary model. This highlights the difficulty of pre-239

dicting the quality of summaries for code segments,240

while the quality of summaries for natural language241

texts has been predicted successfully (Louis and242

Nenkova, 2009).243

If we evaluate the same models only on the fil-244

tered datasets – i.e., where the meta model has a 245

chance of improving over the individual models 246

(middle column) – we observe the same ranking 247

of the models, but the margin between the best in- 248

dividual summarization model (NeuralCodeSum, 249

55.7 BLEU) and the neural meta learning models 250

has increased: We obtain a BLEU of 57.2 for the 251

metaLSTM (+1.5 BLEU) and a BLEU of 57.7 for 252

the metaTRN (+2 BLEU); differences again are 253

significant at α = 0.05. We take these numbers 254

as an indication that the neural meta-learning ap- 255

proach is generally successful for code segments 256

for which “sensible” summary candidates (with 257

BLEU > 0) have been produced by the individual 258

models. 259

Finally, the right-hand column assesses the con- 260

sequences of training the meta-models only on such 261

“sensible” summary candidates exist. Compared 262

to the middle column, the meta-model results are 263

slightly lower.In other words, the apparently unin- 264

formative summary candidates still contribute to 265

the success of the meta model. Taken together 266

with the observation that the results for the BiL- 267

STM changes much less (-0.1 BLEU) than for the 268

transformer (-0.8 BLEU), we propose the follow- 269

ing interpretation: Pairs of code segments and non- 270

sensical summaries may still help the neural model 271

in learning to encode typical code token and word 272

sequences, which is more important for the trans- 273

former, with its higher capacity, than for the BiL- 274

STM. 275

5 Conclusions 276

The present paper exploits the complementary 277

nature of different code summarization models 278

through a meta-learning approach. We find that 279

neural models can predict the best summary from 280

a set of candidates created by three state-of-the-art 281

models, yielding an increase in BLEU of up to 2.1 282

points. We believe our results to be promising, and 283

future improvements of individual summarization 284

models will give our meta-models better predic- 285

tions to choose from. At the same time, our results 286

also highlight directions for future work, includ- 287

ing meta-model introspection (why does the trans- 288

former succeed where the manual features fail?) 289

and a re-evaluation of BLEU as summary evalua- 290

tion metric (Fabbri et al., 2021). 291
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Dataset Model Epoch Training Time

Entire
metaTRN 5 ≈ 30min/epoch
metaLSTM 7 ≈ 15min/epoch
metafeat 5000 ≈ 5min/model

Filtered
metaTRN 4 ≈ 10min/epoch
metaLSTM 5 ≈ 3min/epoch
metafeat 200 ≈ 2min/model

Table 4: Details on number of epochs and training time.

Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019.399
Code generation as a dual task of code summariza-400
tion. In Proceeedings of NeurIPS.401

Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing,402
Ahmed E. Hassan, and Shanping Li. 2018. Mea-403
suring program comprehension: A large-scale field404
study with professionals. IEEE Transactions on405
Software Engineering, 44(10):951–976.406

A Reproduciblity407

Neural Meta Models We set the dimensionality408

for code embedding and summary embeddings as409

100. The model are trained using the mini-batch410

size of 25 with Adam (Kingma and Ba, 2015) opti-411

mizer and learning rate as 1e− 4. Considering the412

average length of code and NL sequences we set413

the input size as 50 and 20 respectively. We com-414

puted training loss using Binary Cross Entropy loss415

method. The metaLSTM comprises of two layer Bi-416

LSTM encoder layers. Similarly the metaTRN has417

two neural attention head and two encoder layers.418

Details on individual layer dimensions are detailed419

in the accompanying code repository.420

Feature Meta Models The metafeat model uti-421

lizes Logistic regression model from Scikit-lean422

(Pedregosa et al., 2011). For training on entire423

dataset we use ’saga’ and on filtered subset ’liblin-424

ear’ as solvers. Due to data imbalance on entire425

dataset we use class weights (False: 1 ,True: 5).426

Code In the accompanying implementation427

set we provide, source code for meta mod-428

els.Additionally, the repository contains separate429

run.sh scripts for executing an end-to-end cy-430

cle for training meta-learning models. Table 4 de-431

tails information on approximate training times432

and number of epochs for individual models and433

dataset. For training summarization models we use434

publicly available implementations of the models.435

Dataset For training summarization models we 436

use the filtered dataset from Funcom repository. In 437

the accompanying dataset we provide pre-trained 438

word embeddings and curated files for training 439

meta models. The dataset can be found at the fol- 440

lowing link. 441
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