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Abstract

Low-resource NLP often suffers because of
insufficient computing resources and data
scarcity. Specifically, low-resource au-
tonomous devices and resource-constrained en-
vironments require a low memory footprint,
optimal accuracy for scarce data resources, and
reproducibility of the results. To address these
issues, we combine contextual and static infor-
mation of a word to form a blended embed-
ding. Blended embedding and CNN/RNN fu-
sion models optimize against energy cost, in-
ference time, and carbon emission, maximizing
the NLP accuracies while avoiding resource-
intensive transformer models such as the BERT
and its low-resource variants. Experimenta-
tion with a few GLUE datasets demonstrates
that the developed models compete with other
low-resource solutions, such as the DistilBERT,
mBERT, TinyBERT, and BERT-mini, with the
advantage of higher accuracy and low energy
cost. In addition, blended embedding exhibits
the potential to achieve better reproducibility
of model performance, measured by a reduc-
tion of the standard deviation of NLP accuracy.
Besides, the cartography analysis done on train-
ing samples shows that blended embedding re-
duces hard-to-learn data. The proposed work
provides a viable solution for NLP applications
in resource-constrained environments, such as
mobile devices and other embedded platforms.

1 Introduction

A trade-off between the energy cost of the
NLP model training and the accuracy is es-
sential in the development of NLP models in
resource-constrained environments (Han et al.,
2015; Strubell et al., 2019; Lin et al., 2020), such
as voice-controlled task completion in home au-
tomation and healthcare. Maximizing the accuracy
of NLP necessitates consideration of memory re-
quirements and energy consumption, which are
both vital factors in this domain. In contrast, with

the advent of transformer models, most State-of-
the-Art (SOTA) NLP models rely on transformer-
based implementation in their original or minia-
ture forms, using the contextual information of
words in contrast to static information. However,
the SOTA models are a few hundred megabytes to
gigabytes (Devlin et al., 2018; Brown et al., 2020)
in size, making the models impertinent for memory
and energy-constrained applications. In addition,
the SOTA models require extensive training data,
which is often infeasible for languages with insuf-
ficient speakers or online resources (Joshi et al.,
2020).

In earlier works, quantization (Lam, 2018) and
other algorithmic adjustments (Ling et al., 2016;
Kim et al., 2020) were pivotal in reducing the
memory footprint of word embedding. For in-
stance, authors in (Shu and Nakayama, 2017; Kim
et al., 2020) minimize the number of parameters
for word representation by representing words as
discrete codes. While these methods focused more
on how optimally the embedding vectors can be
compressed, reduction of the dimensionality of the
available embedding vectors, for instance, GloVe
(Pennington et al., 2014), word2vec (Mikolov et al.,
2013), etc., have not been studied. However, other
works have considered dimensionality reduction
through post-processing (PPA), the publicly avail-
able static word embedding. One such seminal
work (Mu et al., 2017) subtracted the mean em-
bedding vector p of the vocabulary and formed an
isotropic embedding by removing the projections
of the directionality identified using Principal Com-
ponent Analysis (PCA). An immediate extension
of the PPA applies another PCA step, followed
by an additional PPA layer (Raunak et al., 2019).
Implementing a multi-stage PPA process improves
classification accuracy and allows further flexibility
to the dimensionality reduction of the embedding
vector dimension. However, these PPA-PCA ap-
proaches enhance the performance of static embed-



ding only (Pennington et al., 2014; Mikolov et al.,
2013), most SOTA NLP models rely on contextual
word information (Devlin et al., 2018).

These models discussed exhibit substantial en-
vironmental implications and incur additional fi-
nancial expenditures. Namely, energy production
relates to CO9 emission and the resultant heat re-
leased into the environment, leading to a complex
issue (Strubell et al., 2019). The deployment of
SOTA NLP models presents considerable chal-
lenges, requiring the careful navigation of the trade-
off between accuracy and energy expenditure (Cai
et al., 2020). To outwit the problems, this paper
introduces a blended word embedding by combin-
ing post-processed static embedding and spectrally
reduced dimension contextual information. Specif-
ically, the blended embedding harnesses the static
resources such as GloVe and word2vec, following
a series of post-processing steps performed by us-
ing the specific post-processing algorithm (PPA)
(Mu et al., 2017) and its extension (Raunak et al.,
2019). Analogous to frequency variation of contex-
tual information through the Discrete Fourier Trans-
form (DFT), Discrete Cosine Transform (DCT),
and Gaussian High Pass (GHP) filter. We process
contextual information of words and merge it with
the processed static information.

We used spectral analysis, high pass filtering,
sub-word, and modified contextual embedding to
reduce the embedding dimension. Upon spectral
filtering, the contextual information is merged with
static information to obtain a shorter blended em-
bedding yet to achieve classification accuracy com-
parable to more extensive static or contextual word
embedding. Another caveat in deep learning mod-
els is the reproducibility of the results (D’ Amour
et al., 2022; Summers and Dinneen, 2021), even in
identical training performed using the same data.
The proposed blended embedding is potentially
feasible to explore, showing more excellent re-
producibility across different datasets and candi-
date models. To investigate how a blended embed-
ding offers improved reproducibility, we generated
dataset cartography (Swayamdipta et al., 2020) of
the training data, which hints at a reduction of hard-
to-learn data statistics for the blended embedding.
Also, as an alternative to the memory-intensive
SOTA models, we identify a bi-layer CNN/RNN
core following similar models considered earlier
(Maheen et al., 2022) but optimize against accuracy,
energy cost, carbon emission, and inference time.
Because these CNN/RNN models are of reduced

size and are prunable, they may be viable alterna-
tives to eschew the traditional BERT-based imple-
mentation for low-resource environments, such as
the DistilBERT, TinyBERT, mBERT, and BERT-
mini, which often have higher memory footprints
on resource-constrained devices. The specific con-
tributions made in this study are as follows:

* Developed some spectral-based dimensional-
ity reduction methods of contextual informa-
tion and demonstrated potential benefits using
data cartography and reproducibility.

* Identified optimal mathematical functions to
blend static and contextual information.

* Identified a bi-layer deep neural network
(DNN) which, together with the blended em-
bedding, outperforms miniature BERT models
in low-resource NLP.

2 Fusion of Static and Contextual
Embedding

Let us consider that vector v* = {s1, $2,...,s0m}
and v° = {c1,c9,...cn} are the static (S) and
contextual (C') embedding, respectively, for word
w. To fuse v® and v° as inputs requires the same
dimension (M = N), which is achievable through
dimensionality reduction methods such as the PCA,
an Autoencoder (Hinton and Salakhutdinov, 2006),
or spectral analysis. The contextual embedding,
denoted as v“(w) of dimension 768, is extracted
using a Global Max Pooling over all the BERT lay-
ers. Subsequently, we perform a spectral analysis
using the DFT and DCT of the contextual vector
v, and the DFT maximizes accuracy as an average
over different models and GLUE datasets (see Ap-
pendix A.11). The DFT analysis of the real-valued
contextual embedding vector v° represents the fre-
quency component in the vector. The frequency-
selective filtering reduces the DFT (v¢) vector of
size N to a reduced dimension (7°) (Fig. 1b). The
reduced representation (2°) can be decimated fur-
ther using the PCA method. We extract the pro-
cessed contextual information of the given word
w using the indexes obtained in the PCA process
on the reduced DFT representation of a word w,
denoted as ©¢. Finally, a collection of mathemati-
cal functions G(7°, 0°), as in Eq. 4, optimize the
fusion of the merged static and contextual informa-
tion and generate the blended embedding of a word
w.
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Figure 1: a) Proposed Blended embedding model for low-resource NLP: Both static and contextual embeddings are
fused to produce a blended embedding. A bi-layer core with an optional third layer extracts features. b) The blended
embedding treats static (through PPA + PCA) and contextual information (through DFT) to produce modified
embedding 7° and ¢, respectively. With an optional spectral analysis step, a merger function produces the blended
embedding v. c) In low-resource cases, if the contextual embedding of words are not found in the pre-trained model,

the corresponding static or other values fill in.

2.1 Post-processing of the static information

Static embeddings undergo recursive processing
upon extraction from pre-trained contextual models
such as GloVe and word2vec. We consider the PPA
(Mu et al., 2017) and its extension consisting of
PCA and an additional PPA (Raunak et al., 2019) as
the core to design the modified PPA implemented
in Fig. 1b. Here, the recursive calling of PPA+PCA
core and subsequent accuracy comparison selects
the best-performing static embedding vector form
among the competitive options listed as

e PPA as in (Mu et al., 2017), and PCA only
¢ PPA + PCA as in (Raunak et al., 2019)
¢ PPA + PCA + PPA + PCA, termed as recursive

Precisely, among the various data sets (QNLI, QQP,
SST-2, CoLA, SNLI), considered for compari-
son of the structure of the PPA + PCA approach
(Raunak et al., 2019) performs better (see Ap-
pendix A.1). For the static part in the blended em-
bedding, we used GloVe (Pennington et al., 2014).
Only using GloVe will reduce the computational
cost for the subsequent procedures.

2.2 Spectral analysis of contextual
information

The contextual information for each word w; in

a sentence S = {wjy,ws,...,w,} is from pre-

trained BERT layers. After extracting w; from

each BERT layer, a Global Max Pooling produces

the contextual vector UC. of the sentence S of in-
terest. We perform the Discrete Fourier Transform

(DFT) and Discrete Cosine Transform (DCT) on
v¢ ={co,C1,...CN_1} as
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where Vi, = {Vp, V1,...VN_1}. For each entry n
in a word vector v(w) of dimension NV, DFT gener-
ates Vj, the Fourier spectrum at frequency element
k. The magnitude |Vj| of the power spectra rep-
resents the strength of the sinusoidal component
of frequency k. As an initial step, we calculate
the mean level of strength (defined as ) and con-
ditioned on the magnitude of each spectrum |Vj|
to be greater than a threshold «. This is analo-
gous to selective filtering and produces a reduced
embedding vector v°. The final phase of the di-
mensionality reduction steps considers both PCA
and sorting approaches and compares their perfor-
mances over a contextual representation using a
vector of 50, 100, 75, and 150 dimensions (see in
Appendix A.10)

2.3 Energy cost and carbon footprint analysis

In the assessment of carbon emissions and fol-
lowing training times, all the computational re-
sources using the measurement methods outlined
in Strubell et al. (2019). Specifically, we used
the default settings and sampled GPU and CPU



power consumption during the model training (50
trials for each selection of 500 data points). The
model training process uses a single Google Co-
lab GPU (T4) and CPU, with a few exceptions
where a Google Colab P100 GPU is used instead
of the T4 and CPU. We computed the total power
usage in kilowatt-hours (kWh) using the training
times as follows. Let P, represent the mean power
draw throughout the 50 trials. For the power draw
quantity, access to the GPU’s statistics is neces-
sary, and it allows us to monitor the GPU’s power
consumption P, during training. The total power
drawn from memory (RAM) during training has
been used to determine P,. The total power P; us-
age is the sum of the GPU, CPU, and RAM power
consumption and is as follows

P, = 1.58t(P. + P, + P,)/1000  (3)

The CO2 emission calculation from the total power
P, as in follows Eq. 3 the formulation COze =
0.954F; along with the other details and assess-
ments as summarized in Strubell et al. (2019).

3 Experimental Setup
3.1 Optimal CNN/RNN stack model search

We performed an exhaustive screen of alternative
fusion combinations of CNN and RNN modules
of length < 3. The fusion model stacks the CNN
and RNN layers and adds a self-attention layer
(Vaswani et al., 2017), generating 105 different
models to study. The initial screen uses a mean ac-
curacy score of over three (QNLI, QQP, SST-2) of
GLUE benchmark datasets (Wang et al., 2018) and
chooses 19 preliminary models (Appendix A.9).
These models were later explored further, consid-
ering energy requirement, carbon footprint, infer-
ence time, and accuracy to identify the optimal
CNN/RNN models.

3.2 Merging functions for static and
contextual information

The blended embedding includes static and con-
textual information, schematically and specifically
shown in Fig. 1, a mathematical function stitches
them together. A crucial step in blended embedding
is optimally fusing different word representations
while maximizing classification accuracy. We tried
both linear and non-linear strategies and screened
the options for a few selected models and QQP,
QNLI, CoLA, SST2, and SNLI datasets. The exact

merging options are G(°, 0°), considered here are
b

D= \/(1302 + 05 +2-0¢- 0% - cos(h)),
v = Concat(r®, v¢), v = Concat(v°, 0°)
Here, o = 0.3,0.5,0.7;0 = 0,30, 45, 60,90 (4)

Algorithm 1 Spectral analysis of embedding

Require: Contextual Embedding v = {co, c2,...cn—1}
Ensure: ¢; = GlobalMaxPooling(L?,j = 0,1,...12, de-
notes BERT-layers) Calculate Vj, = DFT(v°) as in Eq. 1,

Calculate p = mean(|V%|)

Identify indexes in |Vi|, where |Vi| > 0.1u,Vk €
{1,2,... N — 1}, or Gaussian High pass filter (GHP)
Use these indexes to produce a reduced DFT or DCT spec-
trum, V;;

Take n-point PCA (V}], n)

Extract the n-indexes of the original DFT spectrum using
PCA outcomes

Use these n-indexes to retrieve ¢ from the original 7¢.

Models QQP QNLI SST2 CoLA SNLI
DistilBERT 64.00 53.60 7140 58.60 58.00
RoBERTa 5420 5040 63.00 63.00 50.20
BERT-mini 55.00 5320 69.20 51.40 49.40
mBERT 66.40 56.00 67.60 57.40 38.67
TinyBERT 59.80 5640 71.20 5020 40.67
CNN+LSTM 62.00 64.99 7479 63.00 47.77
LSTM+LSTM  60.00 64.99 73.99 5920 50.66
BiLSTM+LSTM  66.50 63.00 72.19 60.80 49.11

Table 1: This report provides a comparative analysis
of performance metrics, averaging five accuracy values
across various models and datasets. The study utilizes
500 randomly selected data points, with an additional
focus on 1,800 data points from the SNLI dataset. Ac-
curacy values are based on the maximum results of 50
trials on the same data points. For CNN and RNN mod-
els, GloVe static embeddings with a 300-dimensional
representation are employed.

4 Results

4.1 Bi-Layer CNN/RNN cores are pertinent
for low-resource environment

Amongst many, one of the strategies we considered
to deal with deployment problems of NLP mod-
els in resource-constrained environments would
be minimizing the model size while maintain-
ing a competitive accuracy. As we identify here,



Over the models and datasets Average Acc.

Dimensions DFT_PCA DFT_SORT DCT_PCA GHP_PCA Sent. DFT BERT-mini DFT
50D 60.65 58.60 58.51 58.31 58.60 58.89
75D 61.21 58.11 58.93 59.29 60.29 58.47
100D 60.34 59.50 58.85 57.92 59.12 57.68
150D 61.31 59.52 59.12 57.16 58.68 58.77

Over the models and dimensions Average Acc.

Models DFT_PCA DFT_SORT DCT_PCA GHP_PCA Sent. DFT BERT-mini DFT
CNN+LSTM 60.33 58.87 60.42 59.13 59.53 60.18
BiLSTM+LSTM 60.91 59.38 5891 57.94 59.75 58.53
LSTM+LSTM 61.39 58.55 57.22 57.44 58.23 56.65
STDEV 0.78 0.84 1.48 1.26 1.00 1.72

Table 2: Comparing the reduction methods used in the spectral analysis of contextual embeddings from BERT. PCA
represents the selection of the desired dimension (n), as in Algorithm 1, done by taking the principal component
from the Discrete Fourier Transform (DFT), and the SORT stands for the same, has been done by sorting top-n
spectrum from V. Additionally, spectral analysis of contextual embeddings by using the Discrete Cosine Transform
(DCT), Gaussian High-Pass (GHP)-that allows only the high-frequency spectrum, One hot sentence encoding with
DFT (Sent. DFT), and the embedding from BERT-mini following the DFT algorithm are shown. The DFT with
PCA method outperforms all the other approaches.

Contextual " *

Process Models log(X/Y) XY log(X+Y) X+Y log(X*Y) X*Y
CNN+LSTM 60.24 57.54 60.25 61.69 60.66 61.60

DFT BiLSTM+LSTM 59.00 60.84 60.15 61.54 58.26 59.19
LSTM+LSTM 59.34 61.22 60.00 60.99 58.84 59.18

CNN+LSTM 60.64 58.40 59.53 60.68 58.62 58.19

DCT BiLSTM+LSTM 61.84 60.46 59.51 59.62 60.17 56.73
LSTM+LSTM 61.10 58.15 58.66 57.29 61.08 56.44

Table 3: Comparison of the alternative merging approaches of a word’s static and contextual information. Here, x, y
denotes ® (static) and ¢ (contextual) embedding vectors, respectively. Bold fonts are the best-performing mergers,
with an average of SNLI, QNLI, QQP, SST2, and CoL A datasets. Two processes (DFT and DCT for contextual
embedding processing) are selected after observing the models’ performance in all the datasets.

stacking CNN/RNN layers provides leverage over
widely practiced BERT-based miniature models
for several textual classification tasks included in
the GLUE benchmark datasets. Earlier works
provide evidence of the superior performance of
RNN and DNN fusion extending beyond the ear-
lier approaches. Precisely, from the extensive
search of the competing models comprising stack-
ing CNN/RNN layers, a few models emerge that
outperform some low-resource BERT-based mod-
els based on model size and energy cost, as sum-
marized in Appendix A.9. Also, these models have
low energy costs and carbon footprint over the other
alternative models and the BERT-based miniature
versions in Table 1.

4.2 Optimal Method search to combine static
and contextual information

An important question associated with blending
embedding is the mechanism to combine static and
contextual information. Against two objectives- 1)
less power consumption and ii) higher accuracy-
we assess a few mathematical functions as in
Eq. 4 over multiple datasets and models (see Ap-
pendix A.8, A.11). As observed, there is a visible
trade-off between the power consumption and ac-
curacy of the three CNN/RNN models’ alternative
merging functions studied. For instance, if the
considered trade-off points are less than 0.01 kWh
and the accuracy is between 63 to 68 percent for
the CNN + LST M model, we identify blending
functions log(z/y) and x + y in Fig. 4. Consid-
ering the performance in other models, the func-
tions log(x/y), (x + y), and log(x + y) are better-



BILSTM+  LSTM+
Methods CNN+LSTM ‘oo LSTM™
a=0.3 4755 47.99 44.44
a=05 50.22 49.33 47.99
a=0.7 4844 50.00 44.88
cos(0) 47.99 47.77 41.99
cos(30) 46.88 4555 42.88
cos(45) 46.88 4533 39.33
cos(60) 46.44 43.77 39.55
cos(90) 46.44 4422 36.88
DFT 46.22 49.55 4733
DCT 44.44 49.11 47.33
Concat_SC 4422 47.11 48.66
Concat_CS  44.66 4733 47.33

Table 4: This comparison shows the performance across
different blending methods with 75 D over the SNLI
dataset with 1800 training samples. Overall perfor-
mance for the alpha blend for 0.5 is giving better accu-
racy following the formulation from Eq. 4.

. Mean Standard
Models Using Accuracy Deviation
LSTM+ GloYe 59.85 1.71
Fourier 60.53 1.85
LST™M Max Pooling
PCA 59.72 2.48
CONN+ GloYe 61.98 0.87
Fourier 59.89 1.68
LST™M Max Pooling
PCA 61.47 2.03
BiLSTM+ GloYe 59.15 1.76
Fourier 60.78 1.40
LST™™ Max Pooling
PCA 61.05 1.87
RoBERTa 55.94 3.29
BERT-mini 55.64 3.41
DistilBERT 57.39 4.49
TinyBERT 51.09 4.56

Table 5: The models’ reproducibility was evaluated with
and without applying a Fourier transformation to the
embedding file. This evaluation compared GloVe and
various BERT variants, highlighting the differences in
mean accuracy, variance, and standard deviation. The
average of the QQP, QNLI, CoLA, SST2, and SNLI
datasets was taken for Comparison.

performing blending functions. Besides, among the
competing fusion models, the overall performance
of the CNN+LSTM model appears better than the
other two (LSTM+LSTM, BiLSTM+LSTM) mod-
els in power consumption and size. As obtained
here, the improvement achieved by blended embed-
ding depends on the mathematical functions, for
instance function log(z/y) and = + y, outperform
other alternatives functions and strategies studied
(see Table 4).

4.3 Spectral analysis concisely represents
contextual information

Upon extracting the contextual information, the
DFT analysis on v¢ transforms the numeric se-
quence into the spectra of different sinusoidal fre-
quencies. The magnitude of each spectrum pro-
portionately represents the strength of the corre-
sponding frequency. Instead of removing high or
low-frequency components, we emphasized dec-
imating the frequencies of the weakest strength,
mimicking selective filtering of the Fourier spectra.
The spectral analysis keeps widely varying bands
of frequencies. It may relate to contextual infor-
mation variation over different scales, often seen
from sentence to document level in many NLP con-
texts (Tamkin et al., 2020). As observed in Table 6,
the blended embedding of size 75 achieves higher
accuracy frequently over five alternative datasets
and model choices. However, the blended and pure
contextual embedding of the size 75 vector per-
forms inferiorly to GloVe. One plausible explana-
tion could be that SST2 samples chosen randomly
need little or no contextual information during clas-
sification. We found that the DFT-based spectral
analysis increases the cosine similarity distance be-
tween the reference embedding (BERT-mini) and
the embedding extracted by DFT, prohibiting clus-
ter formation of points on the plane of cosine simi-
larity analysis (Fig. 3). One potential contribution
of such dispersed dissimilarity map of DFT-based
reduced contextual embedding is to enhance the re-
producibility of the classification accuracy, which
is pursued further.

4.4 Blended static and contextual information
improves NLP performance

Among the merging functions and their repro-
ducibility explored in Eq. 4, here we use a simple
point-wise addition of the modified static and con-
textual information to improve the classification
accuracy. As shown by the accuracy comparison
of QNLI, QQP, SST2, CoLA, and SNLI in Fig. 1
for the two stacked CNN/RNN models obtained
through model search (shown in Table 3). Also,
the blended embedding improves classification ac-
curacy compared to cases where the models were
trained only using the static embeddings, which
is evident from the data in Appendix A.5, and de-
tail experiment is in Appendix Tables 11, 12, 13
for three datasets. Precisely, the performance of
each model improves by a margin of 1-2% or even



Blended Context GloVe GloVe Context . . ..
Model 75 75 75 300 300 TinyBERT DistilBERT BERT-mini
CNN+LSTM 62.72 61.46 62.14 62.51 59.91 56.05 61.12 55.64
BiLSTM+LSTM 62.51 60.56 61.01 62.32 58.33 56.05 61.12 55.64
LSTM+LSTM 61.19 61.24 61.87 61.77 59.25 56.05 61.12 55.64

Table 6: Comparison of the accuracy between the proposed blended embedding and other off-the-shelf approaches.
Here, the average of the QQP, QNLI, SST2, CoLA, and SNLI are calculated for each model. The blended embedding
achieves a competitive classification score even with a comparatively smaller embedding vector dimension when
compared to GloVe 300. The blended approach demonstrates a comparable match with contextual-only embedding.

more when the blended embedding (of size 75) is
used instead of the static embedding (of size GloVe-
300) only. Such reduction of embedding dimension
without compromising accuracy is advantageous
from the memory footprint and energy cost per-
spective; low-resource NLP is of immense interest.
Compared to miniature BERT models, the fusion
models consistently demonstrate superior perfor-
mance across nearly all instances examined in this
study.

In addition, using spectral analysis in the blended
embedding improves the reproducibility of NLP
models’ accuracy, contributing a way forward for
the non-determinism of the deep learning models.
The comparison done over QQP, QNLI, CoLA,
SNLI, and SST2 datasets for the three identical
CNN/RNN fusion models that blended embedding
reduces the standard deviation (o) of the classi-
fication accuracy calculated for 20 different ran-
domly chosen datasets of size 500 and 1800 for
SNLI dataset only. Here, reducing in o of accu-
racy represents better reproducibility. As, it has
been studied over multiple datasets and models,
the blended embedding produced mainly by the
DFT-PCA approach reproduces a reduced accuracy
compared to approaches devoid of DFT-based spec-
tral analysis. Precisely, the proposed DFT-PCA
embedding achieves a minor standard deviation in
most of the combinations considered and surpasses
models such as DistilBERT, mBERT, BERT-mini,
and TinyBERT by a considerable margin. How
such a reduction in o is achievable and how the
blended embedding appears superior are questions
we investigate further using data cartography as in
Fig. 5 (see Fig. 2, and Appendix A.12, A.16).

How much power an NLP model harnesses has
been crucial for applications with scarce compu-
tational resources. Specifically, applications such
as those that require edge devices often rely on
extensive energy budgeting of the computing de-
vices, thereby requiring NLP models to harness the

least energy during the classification task. The pro-
posed blended embedding may be a viable avenue
to navigate further for such energy-constraint NLP
applications. For instance, a comparison between
GloVe and blended embedding, as in Appendix A.4,
shows that blended embedding mostly outperforms
GloVe accuracy while consuming less energy from
the source. Besides, the model options are all com-
pared against two performing objects focused on
low-resource NLP in Pareto-front-like analysis (see
Fig. 4) to select model options and merger methods
for static and contextual information. Such explo-
ration protocol addresses low-resource NLP, and
along with blended embedding achieving higher
accuracy (see Table 6, and Appendix A.5) make
our work a viable alternative for low-resource NLP.

5 Discussion

Semantic embedding transforms words into real
numbers— one of the subclasses is the static em-
bedding approach that uses the probabilistic appear-
ance of a word in a large corpus as its central dogma
to generate a vector representation of a word. In
contrast, the contextual embedding encapsulates
the underlying context of word usage in a sentence.
While both approaches have pros and cons, con-
textual embedding largely produces state-of-the-art
textual classification accuracy and is widely used.
We combined these approaches with custom mathe-
matical transformations to form the blended embed-
ding, demonstrating enhanced classification in our
preliminary analysis. Besides, devices that lack suf-
ficient memory storage and processing power often
fail to harness SOTA models and may be equipped
with stacked CNN/RNN models identified through
extensive screening of alternative design choices.
Also, the models conform to the energy budget-
ing necessary for resource-constrained devices and
consider a low carbon footprint for the underly-
ing computations. Since the spectral analysis only
performs selective frequency squeezing to post-
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Figure 2: A data mapping comparison among RoBERTa-base, DistilBERT-base, and CNN+LSTM models for the
SNLI dataset. Detailed analyses of data mapping are shown in Fig. 7, and Fig. 8 with o = 0.5. Blended embedding
performs better in low-resource environments with CNN/RNN models.
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Figure 3: This visual representation shows a comparison among the original BERT-base extracted embedding
and the differences after applying the Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT), and
Gaussian High pass filter (GHP). In DFT processing, it reduces most of the weak frequencies and becomes a tightly
clustered embedding, indicating a strong reduction of noise/outlier.

Pareto Front: Accuracy vs Power Consumption
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Figure 4: The blended embedding treats static (through
PPA + PCA ) and contextual information (through DFT
and DCT) to produce modified embedding 7° and v°,
respectively. With an optional spectral analysis step,
a merger function produces the blended embedding v.
Here, the log(x/y) performs well with the DFT.

process the contextual embedding, we hypothesize
that alternative forms of filtering would be worth it,
considering the frequency dependency of contex-
tual information across various NLP tasks.

Limitations

This study provides a newly devised blended em-
bedding that resorts to static and contextual in-
formation to maximize the accuracy of a low-
dimension word representation. The investigation
could be extensively applied to other GLUE bench-
mark datasets and low-end devices for further tun-

SNLI Dataset QQP Dataset

textual
80 = Blended
= ROBERTa

Percentage (%)
3

Easy  Ambig.  Hard
Data Category with Embeddings and Base Models

Figure 5: Performance comparison among static, contex-
tual, and blended embeddings is presented for the SNLI
and QQP datasets. The average of three CNN/RNN
models is taken, and the insight is in blended em-
bedding; the hard-to-learn rate is decreasing, and the
easy-to-learn and ambiguous rates are increasing with
minimum computational resources, almost close to the
RoBERTza and DistilBERT base models.

ing and model size adjustments. Moreover, re-
placing the missing words with static GloVe word
vector gives better performance, as schematically
shown in Fig. 1. The identification of an optimal
strategy to minimize the occurrence of missing
words requires further investigation. Other con-
texts, such as class imbalance and even smaller
datasets, can be tested exhaustively to prove their
applicability. Besides, a more acute sense of uni-
formity of hardware and computing facility while
training and running the NLP models is necessary,
which is occasionally compromised because of de-
vice switching in the Colab environment.
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A Appendix

A.1 Recursive Post Processing with GloVe

100 D 300D

Data PPA PPAy— PCA PPAs— PCAs GloVe
SNLI  48.66 49.03 47.25 49.18
CoLA 65.00 62.00 63.66 61.00
QQP  60.67 60.00 63.33 62.83
SST2  70.33 69.00 71.67 73.66
QNLI 64.99 65.33 65.99 64.33

Table 7: Comparison of the GloVe reduced 100 di-
mensions using PCA, Post Processing, and the Recur-
sive Post Processing Algorithm for SNLI, CoLA, QQP,
SST2, and QNLI. The average is calculated based on
three CNN/RNN models. This experiment implies that
following the PCA, the recursive post-processing Algo-
rithm can improve the accuracy with the reduced 100
dimensions GloVe compared to GloVe with 300 D.
PPA; — PCA: PPA— PCA—- PPA
PPA3;—PCAy;: PPA—PCA-PPA—-PCA—-PPA

A.2 Data Mapping Experiments with Several

Embeddings
Accuracy Easy-to- Hard-to- Ambiguous

Embeds (%) learn (%) learn (%) (%)
GloVe 300 49.18 49.78 32.00 18.22
BERT DET 48.52 52.56 38.56 8.89
300
BERT DCT 48.96 42.44 52.22 5.33
300
BERT GHP 46.00 26.56 71.33 2.11
300
log(x+y) 75 48.51 38.89 50.44 10.67
log(x/y) 75 47.62 50.11 32.22 17.67
One hot
sent. Embed 47.99 53.56 22.78 23.67
DFT 300
BERT-mini
DET 250 43.33 46.00 40.00 14.00

Table 8: Comparison with the accuracy and the data
cartography for different types of embeddings. This ex-
periment used the SNLI dataset with three CNN/RNN
models selected: LSTM+LSTM, CNN+LSTM, and BiL-
STM+LSTM. It shows the average percentage of the
three models where easy-to-learn data samples are in-
creasing with the blended embedding log(x/y), and the
dimension n = 75. Also, the hard-to-learn samples de-
crease with the blended embedding or keep a minimal
difference compared to GloVe, BERT DFT, and BERT
DCT, where dimension n = 300. Moreover, the per-
centage of ambiguity also decreases compared to GloVe
300D.
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A.3 Initial Model Selection Process

The 105 models are classified into three combina-
tions:

¢ CNN + BiLSTM + LSTM (39 models): 27
(3-layer), 9 (2-layer), 3 (1-layer)

¢ CNN + Attention + BiLSTM + LSTM (39
models): Same layer distribution as above,
with an attention layer added in the second
position

* CNN + Attention + BiLSTM + Attention +
LSTM (27 models): Adds a second attention
layer to the previous combination of three-
layer model

A.4 Power Consumption vs Accuracy for
GloVe, Contextual, and Blended

embedding
Power Consumption

Data Accuracy (kWh)

Blend GloVe Context Blend GloVe Context

75 300 300 75 300 300
QQP 6433 6233 64.06 0.0237 0.0453 0.0430
QNLI 67.66 6433 57.99 0.0407 0.0430 0.0356
SST2  66.06 73.66 67.19 0.0367 0.0370 0.0362
CoLA 6493 61.00 62.00 0.0152  0.0099 0.0114
SNLI 47.70 49.18 44.59 0.0202 0.0244 0.0215

Table 9: Power consumption and accuracy comparison
between the blended embedding and GloVe for QQP,
QNLI, SST2, CoLA, and SNLI, where blended 75 D
embedding outperforms GloVe 300 D in accuracy and
power consumption.

A.5 Accuracy comparison among the Blended
embedding (log(x + y), log(x/y)) vs.
Contextual vs. Static embedding

Datasets log(X/Y) log(X+Y) Contextual GloVe
SST2 65.77 66.26 67.17 71.51
QNLI 62.17 64.49 61.94 64.08
QQP 62.54 62.46 64.21 62.54
CoLA 63.86 63.45 62.00 61.43

Table 10: Comparison of accuracy between the Blended
embedding (log(x+y), log(x/y)) (average of dimen-
sion n = 75, 100, 150, and 300) vs. Contextual
vs. Static embedding (GloVe-300) and average of the
three CNN/RNN models. The blended embedding can
achieve a competitive classification score. Here, the
SST2, QNLI, QQP, and CoL A datasets are analyzed to
get a better blended function.



SST2
75 Dimension Log(x/y) Log(x+y) Contextual GloVe

CNN+LSTM 63.19 62.79 66.6 69.59
BiLSTM+LSTM 65.39 66.59 67.39 69.99
LSTM+LSTM 66.6 68.39 68.19 71.59
100 Dimension

CNN+LSTM 65.39 66.99 66.19 71.39
BiLSTM+LSTM 65.39 65.79 64.59 70.19
LSTM+LSTM 65.59 64.59 68.59 70.19

150 Dimension

CNN+LSTM 60.59 66.59 67.39 70.99
BiLSTM+LSTM  69.95 65.59 66.59 71.19
LSTM+LSTM 66.39 67.39 68.99 71.99

300 Dimension

CNN+LSTM 65.39 66.19 67.59 74.79
BiLSTM+LSTM  70.19 65.99 65.59 72.19
LSTM+LSTM 65.19 68.2 68.39 73.99

Table 11: Comparison of accuracy between the Blended embedding (log(x+y), log(x/y)) (size 75, 100, 150, and
300) vs. Contextual vs. Static embedding (GloVe-300) files. The blended embedding can achieve a competitive
classification score even with a comparatively smaller embedding vector dimension. Here, the analysis is done only
for the SST2 dataset.

QNLI

75 Dimension Log(x/y) Log(x+y) Contextual GloVe
CNN+LSTM 69.99 62.99 62.99 66.00
BiLSTM+LSTM 63.99 68.00 62.19 62.99
LSTM+LSTM 62.99 64.99 65.19 64.99
100 Dimension

CNN+LSTM 61.99 62.39 61.59 64.00
BiLSTM+LSTM 59.79 64.99 62.19 62.99
LSTM+LSTM 62.59 62.39 64.79 63.99
150 Dimension

CNN+LSTM 58.59 64.59 63.39 64.99
BiLSTM+LSTM 57.79 63.99 61.99 63.99
LSTM+LSTM 57.79 65.99 64.99 62.00
300 Dimension

CNN+LSTM 61.40 66.60 58.59 64.99
BiLSTM+LSTM 64.39 63.59 58.39 63.00
LSTM+LSTM 64.79 63.39 56.99 64.99

Table 12: Comparison of accuracy between the Blended embedding (log(x+y), log(x/y)) (size 75, 100, 150, and
300) vs. Contextual vs. Static embedding (GloVe-300) files. The blended embedding can achieve a competitive
classification score even with a comparatively smaller embedding vector dimension. Here, the analysis is done only
for the QNLI dataset.
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QQr

75 Dimension Log(x/y) Log(x+y) Contextual GloVe
CNN+LSTM 62.99 64.99 66.59 62.00
BiLSTM+LSTM 62.00 64.99 64.59 62.99
LSTM+LSTM 61.00 62.99 63.79 62.00
100 Dimension

CNN+LSTM 62.99 61.00 64.19 62.00
BiLSTM+LSTM 63.19 61.79 64.99 62.00
LSTM+LSTM 61.79 62.59 60.79 63.99
150 Dimension

CNN+LSTM 63.19 62.39 65.19 62.99
BiLSTM+LSTM 61.59 63.19 64.19 62.99
LSTM+LSTM 59.19 61.79 63.99 61.00
300 Dimension

CNN+LSTM 63.59 60.19 65.19 62.00
BiLSTM+LSTM 66.39 61.00 62.39 66.50
LSTM+LSTM 62.59 62.59 64.59 60.00

Table 13: Comparison of accuracy between the Blended embedding (log(x+y), log(x/y)) (size 75, 100, 150, and
300) vs. Contextual vs. Static embedding (GloVe-300) files. The blended embedding can achieve a competitive
classification score even with a comparatively smaller embedding vector dimension. Here, the analysis is done only
for the QQP datasets.

A.6 Comparison of Missing Words alternative with Contextual, GloVe, sent2vec, and Random

initial Methods
Contextual 300
Data Models zero init. random init with GloVe with sent2vec rar.ldOI.n 1.r11t
with limits
CNN+LSTM 65.19 69.99 70.99 73.00 68.00
QQP BILSTM+LSTM 62.39 69.99 71.00 67.00 70.99
LSTM+LSTM 64.59 68.99 70.99 68.99 68.00
CNN+LSTM 49.11 49.55 49.11 47.99 45.55
SNLI BiLSTM+LSTM 47.33 48.22 48.44 48.44 48.44
LSTM+LSTM 47.55 45.33 49.33 49.33 46.66
CNN+LSTM 48.88 52.44 54.44 0.0254 0.0307
SNLI BiLSTM+LSTM 50.22 50.88 54.00 0.0398 0.0451
LSTM+LSTM 48.22 51.99 55.77 0.0452 0.0521

Table 14: The report compares the outcomes if the missing words from contextual embedding are replaced with the
GloVe, sent2vec static embedding or random initialization with and without max and min elements of the vector
space. The final observation is that missing words replaced by the GloVe generate better outcomes than others, even
though it keeps some missing words as zero-initialized.
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A.7 sent2vec analysis and comparison

Power Consumption
(kWh)
Data Models 75 300 700 75 300 700

CNN+LSTM 62.00 67.00 62.00 0.0118 0.0112 0.0194
QQP BiLSTM+LSTM 58.99 64.99 62.00 0.0146 0.0161 0.0268
LSTM+LSTM 50.99 57.99 54.00 0.0104 0.0101 0.0273

CNN+LSTM 66.00 67.00 56.00 0.0205 0.0257 0.0217
CoLA BiLSTM+LSTM 67.00 62.00 56.99 0.0146 0.0238 0.0126
LSTM+LSTM 57.99 63.99 56.00 0.0105 0.0103 0.0109

CNN+LSTM 48.88 52.44 54.44 0.0254 0.0307 0.0467
SNLI BiLSTM+LSTM 50.22 50.88 54.00 0.0398 0.0451 0.0659
LSTM+LSTM 4822 5199 55.77 0.0452 0.0521 0.0579

Accuracy

Table 15: Comparison of different dimensions with sent2vec static embedding where dimension n = 75, 300, and
700. Overall performance increases for 300 D compared to GloVe static with 300 D. However, with 75 D, the
performance drops significantly.
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A.8 Blending function analysis over dimensions

Alpha Blend a=0.3 a=0.5 a=0.7
Dataset Models 75 300 75 300 75 300

CNN+LSTM 4755 49.55 50.22 49.11 4844 49.11
SNLI  BiLSTM+LSTM 47.99 48.44 4933 47.33 50.00 48.44
LSTM+LSTM 4444 46.88 47.99 46.88 44.88 44.88

Table 16: Comparison between dimensions n = 75 and n = 300 with three different « values for the SNLI dataset.
When a = 0.5 for 75D, this blending function performs better.

Concatenate Blend SC CS
Dataset Models 75 300 75 300

CNN+LSTM 4422 46.88 44.66 47.55
SNLI  BiLSTM+LSTM 47.11 48.22 47.33 49.55
LSTM+LSTM 48.66 49.55 4733 49.55

Table 17: This analysis evaluates two dimensionalities, n = 75 and n = 300, using two concatenation approaches
on the SNLI dataset. The methods combine static embedding vectors (S) with contextual embedding vectors (C)
in two configurations: static followed by contextual and reverse order. The configuration results with contextual
embeddings first (denoted as CS) achieve superior performance with the 300-dimensional embeddings.

Cosine Blend 0=0 6 =30 0 =45 0 = 60 6 =90
Dataset Models 75 300 75 300 75 300 75 300 75 300

CNN + LSTM 4799 46.66 46.88 47.33 46.88 47.11 4644 48.88 46.44 49.55
SNLI BiLSTM + LSTM 47.77 44.66 4555 4488 4533 4444 4377 4422 4422 4355
LSTM + LSTM 4199 4333 42.88 39.33 3933 4222 39.55 4199 36.88 40.66

Table 18: This analysis evaluates two dimensionalities, n = 75 and n = 300, using a cosine formula with different
values for 6 on the SNLI dataset.
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A.9 Model performance experiment over three datasets

Serial Models Mean Accuracy COs kgCO2e Energy (kWh) Inference Time
1 CNN+CNN+CNN 63.33 0.043 0.045 0.45
2 CNN+CNN+BIiLSTM 63.99 0.042 0.0438 1.04
3 CNN+BiLSTM+LSTM 66.99 0.046 0.048 2.92
4 BiLSTM+LSTM+CNN 66.99 0.038 0.04 1.34
5 BiLSTM+BiLSTM+BiLSTM  64.99 0.064 0.067 2.15
6 BiLSTM+LSTM+LSTM 69.99 0.06 0.07 3.01
7 LSTM+LSTM 64.33 0.039 0.04 1.84
8 CNN+LSTM 66.99 0.028 0.03 0.495
9 LSTM+CNN 64.99 0.048 0.051 1.09
10 BiLSTM+LSTM 66.33 0.065 0.068 1.27
11 CNN+A+BIiLSTM+A+CNN 62.33 0.045 0.048 1.66
12 CNN+A+BiLSTM 64.32 0.058 0.06 1.07
13 BiLSTM+A 62.66 0.054 0.0562 1.61
14 CNN+A+LSTM+BiLSTM 66.33 0.069 0.072 1.71
15 BiLSTM+A+CNN+BiLSTM  54.66 0.086 0.09 3.59
16 LSTM+A+LSTM+LSTM 65.33 0.07 0.074 2.31
17 LSTM+A+CNN+CNN 66.67 0.04 0.04 1.08
18 LSTM+A+BIiLSTM+BiLSTM 65 0.11 0.10 4.14
19 LSTM+A+BiLSTM+CNN 64.66 0.08 0.08 2.56

Table 19: Comparison between selected models formed by stacking CNN/RNN layers. Mean accuracy, CO4
emission, energy requirement, and inference time (for 20 samples) are considered for Comparison. These are the
average values of QNLI, QQP, and SST-2 datasets. Since different GPUs have been used, training times for the
models may have changed partially, but the trial counts for the training models have remained consistent. The CoLA
dataset was thoroughly evaluated using only T4 GPU to address potential concerns regarding reproducibility in
Table 5. Following the previous studies to identify a fusion length of three as optimal for a DNN stacked structure,
we expand the search pool by allowing each layer to host CNN, LSTM, or BiLSTM. Including the self-attention
layer (A) between two successive CNN/RNN layers also forms additional model counts, totaling 105 alternative
combinations for the initial phase of the model search process (Shown in Appendix A.3). Each model was trained for
QNLI, SST2, and QQP datasets (Wang et al., 2018) and ranked, considering the mean accuracy of the three datasets.
After the initial screening, a pool of 19 models was studied for subsequent analysis to assess the relationship between
accuracy, training time, FLOPS, energy consumption, and carbon footprint (Joshi et al., 2020; Strubell et al., 2019).
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A.10 Experiment on Discrete Fourier Transform following PCA and SORT in reduced dimensions

50 75 100 150
Datasets Models PCA SORT PCA SORT PCA SORT PCA SORT

CNN+LSTM 63.59 60.79 6299 60.59 6159 6159 6339 6199
QNLI BiLSTM+LSTM 61.99 60.19 62.19 5939 62.19 60.19 61.99 60.99
LSTM+LSTM 65.59 59.59 65.19 56.59 6479 61.00 64.99 60.59

CNN+LSTM 58.99 6239 66.60 64.00 64.19 62.20 65.19 63.60
QQP BiLSTM+LSTM 62.79 62.60 64.59 63.79 6499 64.00 64.19 6239
LSTM+LSTM 61.20 61.80 63.80 62.00 60.80 63.19 6399 62.00

CNN+LSTM 62.79 6579 6479 65.79 6559 66.79 64.19 65.39
SST2 BILSTM+LSTM 63.79 66.59 6599 65.79 6579 6599 67.99 6599
LSTM+LSTM 69.99 68.59 67.39 67.39 6899 66.79 6939 67.60

CNN+LSTM 64.79 5899 63.79 50.00 6399 6339 64.19 62.19
CoLA BILSTM+LSTM 67.80 60.20 61.00 62.00 62.60 61.59 61.80 64.59
LSTM+LSTM 62.00 58.79 63.59 56.79 6439 59.19 6220 58.00

Table 20: Comparing the reduction methods used in the spectral analysis of contextual embeddings. PCA represents
the selection of the desired dimension (n), as in Algorithm 1, done by taking the principal component, and the
SORT stands for the same, has been done by sorting top-n spectrum from V;]. The PCA method outperforms the
SORT approach for n = 50, 75, 100, and 150 across the three stacked CNN/RNN models.
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A.11 Comparison of Static and Contextual Embedding Merging Approaches: DFT, DCT, and

Performance Evaluation

With DFT Blend

Datasets Models log(X/Y) X/Y log(X+Y) X+Y log(X*Y) X*Y
CNN+LSTM 61.19 61.79 64.39 64.39 61.19 62.40

QNLI  BiLSTM+LSTM 59.79 63.99 64.99 66.79 60.39 61.19
LSTM+LSTM 62.59 66.39 62.39 65.19 63.99 63.99
CNN+LSTM 62.99 63.59 61.00 62.80 63.20 65.59

QQP BiLSTM+LSTM 63.19 65.19 61.80 62.20 61.99 62.60
LSTM+LSTM 61.80 64.39 62.59 63.60 59.40 59.19
CNN+LSTM 65.39 61.19 64.59 66.39 66.39 62.99

SST2  BiLSTM+LSTM 65.39 65.19 65.39 65.19 64.39 63.19
LSTM+LSTM 65.99 65.99 66.99 64.19 66.99 65.69
CNN+LSTM 68.99 60.00 66.40 63.99 68.99 68.79

CoLA  BiLSTM+LSTM 63.99 63.39 62.79 66.40 61.20 63.19
LSTM+LSTM 63.00 62.00 63.39 64.19 59.39 60.80
CNN+LSTM 42.66 41.11 44 .88 50.89 43.55 48.22

SNLI  BiLSTM+LSTM 42.66 46.44 45.77 47.11 43.33 45.77
LSTM+LSTM 43.33 47.33 44.66 47.77 44.44 46.22

With DCT Blend

CNN+LSTM 62.99 64.99 62.00 62.99 62.99 56.99

QNLI  BiLSTM+LSTM 67.00 62.99 64.99 62.99 66.00 56.00
LSTM+LSTM 63.99 62.99 62.99 60.00 67.00 60.00
CNN+LSTM 66.00 58.99 63.99 63.99 63.99 67.00

SST2  BiLSTM+LSTM 67.00 63.99 66.00 63.99 62.99 62.00
LSTM+LSTM 66.00 60.00 60.00 62.00 64.99 62.00
CNN+LSTM 67.00 62.00 61.00 62.99 63.99 56.99

QQP BiLSTM+LSTM 66.00 64.99 56.99 60.00 64.99 60.00
LSTM+LSTM 64.99 62.99 60.00 60.00 66.00 56.99
CNN+LSTM 62.99 66.00 66.00 64.99 61.00 63.99

CoLA  BiLSTM+LSTM 61.00 64.99 62.00 62.00 62.00 58.99
LSTM+LSTM 64.99 62.99 62.99 57.99 62.99 58.99
CNN+LSTM 44.22 40.00 44.66 48.44 41.11 46.00

SNLI  BiLSTM+LSTM 48.22 45.33 47.55 49.11 44.88 46.66
LSTM+LSTM 45.55 41.77 47.33 46.44 44 .44 4422

Table 21: Comparison of the alternative merging approaches of a word’s static and contextual (with DFT and DCT
processing) information. Here, x, y denotes 7° (static) and ¢ (contextual) embedding vectors, respectively. Bold

fonts are the best-performing mergers.
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A.12 Data Mapping with embeddings Datasets
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Figure 6: A data mapping comparison among static, contextual, and blended embeddings with three CNN/RNN
models for the QQP dataset. In the Blended alpha embedding, the Hard-to-Learn is reduced, and the Easy-to-Learn,
Ambiguous is increased. Moreover, the correctness rate of samples is also increased.
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SNLI Data Mapping With Embeddings
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Figure 7: A data mapping comparison among static, contextual, and blended embeddings with three CNN/RNN
models for the SNLI dataset. In the Blended alpha embedding, the Hard-to-Learn is reduced, and the Easy-to-Learn,
Ambiguous is increased. Moreover, the correctness rate of samples is also increased.

19



A.13 Data Mapping for Base models

Data Mapping With Base Models
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Figure 8: A data mapping of RoBERTa-base and DistilBERT-base models for the QQP and SNLI dataset. Compared
to it, QQP and SNLI data mapping, respectively, Fig. 6 and Fig. 7 with the o = 0.5 Blended embedding is
performing better in low-resource environments with CNN/RNN models.
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A.14 Data Mapping with embeddings for BILSTM+LSTM

SNLI Data Mapping With Embeddings
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Figure 9: A data mapping of the BILSTM+LSTM model for the SNLI dataset is performing better compared to
other models, static-only and contextual-only, in the aspect of accuracy and correctness. The detailed data mapping
for QQP and SNLI datasets are, respectively, Fig. 6 and Fig. 7. Here, the o = 0.5 Blended embedding is performing
better in low-resource environments with CNN/RNN models.

A.15 Power and Accuracy comparison among the Blended embeddings with their model sizes

a) QQP Dataset b) sST2 Dataset C) QNLI Dataset
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Figure 10: Comparison of Power Consumption and Accuracy with Model Size (MB) and Embedding Files a) for
QQP Dataset, b) for QQP Dataset, and c¢) for QQP Dataset. The smaller the shape size, the smaller the model size
is. There is a visible trade-off between the power consumption and accuracy of the three CNN/RNN models. If
the considered trade-off point is less than 0.03 kWh and the accuracy is between 63 to 65 percent, then the best
embedding file from Figure A, log(x/y), from Figure B, log(x+y), and from Figure C, log(x+y). This trade-off point
is based on these figures’ most common balanced point so that it can be used as a uniform trade-off point for all
three datasets. Though it is visible that the BILSTM+LSTM model is giving higher accuracy than other models, it is
also consuming the highest power. On the contrary, the LSTM+LSTM and the CNN+LSTM have better accuracy
and less power consumption, which is very effective for low-end devices. Finally, the CNN+LSTM model is better
than the other two models in accuracy, power consumption, and model size because its trained model size is less. It
also uses less electricity and offers improved accuracy.
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A.16 Dataset Cartography Formula

The formula calculates the confidence of a model for an instance 7 as the mean probability assigned to the
true label across E epochs.

E

N 1

M = E E Do) (Y7 | Xi) Q)
e=1

The formula calculates the variability of a model for an instance ¢ using the standard deviation of the
model’s probability for the true label across E epochs.

E * N . 2
R \/ et (Potor (i | %) — fis) (6)

0; = I3
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