Performant LLM Agentic Framework for
Conversational Al

Anonymous Author(s)
Anonymous Institution(s)
Emails: anonymous@domain

Abstract—The rise of Agentic applications and automation in
the Voice Al industry has led to an increased reliance on Large
Language Models (LLMs) to navigate graph-based logic workflows
composed of nodes and edges. However, existing methods face
challenges such as alignment errors in complex workflows and
hallucinations caused by excessive context size. To address these
limitations, we introduce the Performant Agentic Framework
(PAF), a novel system that assists LLMs in selecting appropriate
nodes and executing actions in order when traversing complex
graphs. PAF combines LLM-based reasoning with a mathemati-
cally grounded vector scoring mechanism, achieving both higher
accuracy and reduced latency. Our approach dynamically balances
strict adherence to predefined paths with flexible node jumps to
handle various user inputs efficiently. Experiments demonstrate
that PAF significantly outperforms baseline methods, paving the
way for scalable, real-time Conversational Al systems in complex
business environments.

Index Terms—Machine Learning, Agentic Workflow, LLM
Agent, Agentic, Voice AI, LLM Alignment, Agentic Framework

I. INTRODUCTION

Graph-based workflows are central to numerous business
processes across industries such as education, legal, healthcare,
and customer support. These workflows represent decision-
making steps as nodes, and connections between them as
edges. The rise of Conversational Al within these spaces
introduces new challenges. Autonomous agents, powered by
large language models (LLMs), are increasingly being used
to navigate these workflows, enabling the automation of
complex business processes (1). Each node in the workflow
contains specific instructions or prompts that guide the agent’s
speech generation and certain actions to trigger. Nodes can
be classified into several types, including Start Nodes, which
define the root and entry point of a workflow; End Nodes, which
signal the termination of the workflow; and generic Nodes,
which serve as intermediate decision points containing speech
instructions for the LLM to converse with users in predefined
ways. Additionally, Transfer Nodes in Conversational Al
workflows allow for transitioning the conversation to another
autonomous or human agent. Edges between nodes may include
logical conditions that dictate the agent’s transitions, ensuring
workflows are executed accurately.

Figure [T]illustrates how tasks such as determining health care
eligibility can be broken down into nodes, edges, and conditions.
For example, a healthcare provider might use such a workflow
to efficiently filter out patients without the required insurance,
reducing the burden on human agents. However, workflows like
these can rapidly grow in complexity. As shown in Figure [2]

Caller confirms willingness to provide N
additional information

(Node 2

Can you tell me if you have
Medicaid, M

Thank you for calling, have a
nice day!

Fig. 1. Example illustration of an Agentic workflow for a healthcare call center
use case, where the Agent needs to route calls based on different conditions.

adding just a few additional conditions to the conversation
flow can drastically increase the number of nodes and edges,
making the workflow more difficult to manage and execute
effectively.

Although LLMs such as GPT and LLAMA are built on
autoregressive decoder-based transformer architectures opti-
mized for natural language generation, they are not inherently
designed to handle structured, multi-step processes with exten-
sive context (2; 13). Existing approaches have been to add a
planning phase, where the LLM would take time to orchestrate
the action, and then proceed to the generation tasks (4 1))
However, this approach is not optimal to the Conversational Al
use case, as it would increase the overall latency by doubling
the number of queries needed. Tasks such as managing end-to-
end customer service requests with non-standard return policies,
performing outbound sales calls that involve dynamic CRM
updates, or redirecting users to appropriate departments after
a sequence of filtering questions require precision, alignment,
and low-latency responses. These limitations force businesses
to oversimplify workflows, sacrificing accuracy and operational
efficiency—an outcome that is contrary to their objectives.

The challenges inherent in adapting LLMs to graph-based

Fig. 2. Example illustration of an Agentic workflow for an internet service
company helping callers troubleshoot connection issues. This workflow
demonstrates how a more complex use case can have more conditions, nodes,
and edges.

workflows underscore the need for new approaches that can
accurately and efficiently execute workflows while respecting
real-world constraints such as latency. While adding more
reasoning steps could theoretically improve accuracy, such
methods are impractical for Conversational Al applications
where rapid response times are critical.

To address these challenges in the current Conversational
Al space, this paper introduces the Performant Agentic
Framework (PAF), a novel solution for efficient graph
traversal that balances accuracy and latency in real-world
applications. By leveraging both traditional decision-making
logic and mathematical methods for next-node selection, PAF
enables agents to execute workflows with greater precision
and speed. Our experiments demonstrate that PAF significantly
outperforms baseline and traditional methods in both accuracy
and latency, as evidenced by higher alignment scores and
reduced response times.

II. RELATED WORK

The reliance on LLM-based systems to execute graph-based
workflows has seen significant research attention, particularly
in developing frameworks that aim to balance accuracy, latency,
and alignment with predefined workflows. Below, we discuss
prominent related works and their limitations.

Agentic Framework Serving as examples, LangChain (6)
and LangGraph (7) streamline graph-based workflows by
utilizing function calls and prompt chaining. While effective
for simple tasks, their reliance on keyword-based triggers
often results in alignment errors, especially in workflows
with hundreds or thousands of nodes. These frameworks lack
robustness for real-world applications where actions must
be dynamically triggered at various points in conversations.
Furthermore, their reliance on LLM-generated triggers leads
to unreliability in critical workflows, where adherence to
predefined paths is essential for compliance and business logic
(6: 7). Additionally, limitations in LLM context windows further
exacerbate their inefficiency in retaining relevant information
across extended workflows, introducing hallucinations and
context drift during execution (8)).

Conversational AI Conversational Al has been a key focus
for Natural Language Processing. The existing Conversational
Al solutions emphasize the need for multi-modality, guardrails,
and advanced tuning to enhance dialogue quality (9). Prior
approaches to the Voice Al space have been proven to work in
a sandbox conversational setting (10), but lack the consistency
and accuracy required for production use. As suggested,
LLMs miss certain abilities to maintain performance in a
dynamic conversational setting, unable to handle numerous
tasks conditionally while reducing hallucinations and staying
within context (85 95 [11).

MetaGPT and SOP Translation MetaGPT leverages
Standardized Operating Procedures (SOPs) to structure work-
flows, enabling agents to replicate domain-specific expertise.
However, its reliance on iterative planning and validation
increases latency, making it unsuitable for real-time applications.
For example, as noted in (12)), the planning phase requires
additional LLM calls, which adds computational overhead.
While MetaGPT is effective for SOP alignment, it struggles
with unusual user inputs and extended workflows, leading to
significant context drift. Its dependence on domain-specific
fine-tuning also hinders generalizability, limiting its use in
broader applications (125 [13)).

Comparison and Our Contributions Existing frameworks
have made valuable contributions but are hindered by issues
such as context drift, high latency, and alignment errors. PAF
addresses these limitations by replacing LLM planning phases
with a mathematical decision-making approach, combining
vector-based node selection and specialized prompt engineering.
Unlike previous methods, PAF reduces context size while
improving accuracy, making it a scalable and production-ready
solution for navigating graph-based workflows.

ITI. PERFORMANT AGENTIC FRAMEWORK (PAF)

PAF is a framework designed for Agentic workflows,
enabling agents to navigate graph-based structures composed
of nodes and edges to execute predefined workflows. It is
comprised of two components: Basic PAF and Optimized
PAF, each tailored to address specific challenges in workflow
execution.

A. Basic PAF

Problem Formulation PAF enables agents to operate by
following nodes connected by logical edges. During each
generation turn, the agent follows the nodes in the graph
according to the logical conditions specified as outcomes of
the node. If a condition is met, the agent navigates to and
executes the instructions of the next node in the graph.

Our PAF involves leveraging LLM as a Judge for identifying
the Agent’s location in the map dynamically per each generation
as follows:

Algorithm 1 LLM as a Judge for Node Identification
Input: ConversationHistory,
LastestIdentifiedN ode
Output: UpdatedLatestIdentifiedNode
Step 1: Format Input for the LLM

Construct a prompt using ConversationHistory

Add a contextual anchor by traversing from the StartNode
to LastestIdentifiedNode and collect all first layer chil-
dren Nodes in the map, e.g., ”You were previously on Node
{LastestIdentifiedNode} with options to navigate
to in the map {Path} each with instructions being...”

If LastestIdentifiedNode is unavailable, use: This is
the start of the task {task}, proceed to Node 0.”
Step 2: Query the LLM

Send a question to the LLM:

”Based on your latest responses, where are you currently
in the navigation map?”
Step 3: Process the Response

Parse the response to identify the node mentioned by the
LLM.

Validate the identified node against NawvigationM ap.
Step 4: Return the Result

Output the validated

UpdatedLatestIdentified N ode.

NavigationM ap,

node as

This design is particularly effective in production Al systems
as it separates the generation tasks from other downstream
modules, like Text-to-Speech (TTS). This modular approach
optimizes latency, enabling parallel processing by downstream
services such as a TTS service. Compared to implementations
where prompts are added in a single body, Basic PAF achieves
lower error rates by using a step-by-step logic tree, reducing
the need for additional validation iterations through customized
testing schemas (145 [15)).

Algorithm 2 Basic Agentic Framework
Input: ConversationHistory,
LatestIdentified N ode
Output: UpdatedLatestIdentifiedNode
Step 1: Initialize LLM Instructional Message

Construct an instructional prompt for the LLM agent.

Add ConversationHistory to the prompt in a formatted
structure.

Include instructions based on LatestIdentified N ode,
e.g., ”You are currently on Node
{LatestIdentifiedNode}.”

Constructed navigation prompt by traversing the
NavigationMap and collecting all first layer children
nodes’ instructions on the {Path} from StartNode to
LatestIdentified N ode.

Step 2: Query the LLM

Send the query to the LLM:

”Based on the navigation map and your current node,
respond to the user question: {user question}.”

Step 3: Process LLM QOutput in a Streaming Loop
while LLM agent streams output do

(a) Identify Current Node:

Use Algorithm 1] to determine the node the agent
selects.

(b) Update LatestldentifiedNode:

Set LatestIdentifiedNode to the node identified
in Step (a).

(c) Trigger Actions:

Execute any actions related to the newly identified

LatestIdentified N ode.

(d) Update NavigationMap:

Modify NavigationMap as needed based on the
new LatestIdentifiedNode.
end while
Step 4: Return the Updated Node
Output UpdatedLatestIdentified N ode =
LatestIdentified N ode.

NavigationMap,

B. Optimized PAF

While Basic PAF offers significant improvements (shown
later in the experiment section), it faces bottlenecks when
workflows involve numerous nodes (e.g., 50 nodes with 4
conditions each). These bottlenecks arise as the agent struggles
to differentiate between semantically similar prompts on
different paths of the graph. Optimized PAF addresses this
with vector-based scoring to reduce the size of the context
window and improve logical adherence.

The heart of optimized PAF is the Vector Node Search,
which evaluates nodes using embedding models with a confi-
dence threshold as follows:

Optimized PAF leverages vector-based reasoning, incorpo-
rating both semantic direction and magnitude through the dot
product. Notably, when comparing different metrics to use as
a similarity score, we found that the dot product is particularly

Algorithm 3 Vector-Based Node Search

Algorithm 4 Optimized Agentic Framework

Input: NavigationMap, LatestIdentifiedN ode,
Threshold, Latest Agent Response
Output: UpdatedLatestIdentifiedNode
Step 1: Vectorize Instructions and Agent Response
Compute vector representations for:
(a) LatestIdentifiedNode.
(b) LatestIdentifiedNode’s children nodes.
(¢) Latest AgentResponse from the LLM.
Step 2: Compute Similarity Scores
Compare the vector
Latest Agent Response against:
(a) Vector for LatestIdentifiedNode instruction.
(b) Vectors for instructions of child nodes.
Compute similarity scores using a suitable metric (e.g.,
dot product similarity).
Step 3: Identify the Best Matching Node
Select the node with the highest similarity score.
If the score exceeds the T'hreshold, assign the corre-
sponding node as UpdatedLatestIdenti fied N ode.
Step 4: Update and Return
if A node is identified with a score above the Threshold
then

representation of

Update LatestIdentified N ode to
UpdatedLatestIdentified N ode.
Return UpdatedLatestIdentifiedN ode.
else
Return false (Use LLM as a Judge Approach).
end if

effective for Conversational Al applications. This finding aligns
with research by (16), which demonstrates the advantages of
using dot product as a vector score over cosine similarity,
where cosine similarity may produce ambiguous results by
ignoring magnitude. This is particularly relevant when dealing
with over-fitted domain jargon, where it is critical for the
agent to differentiate between subtly distinct expressions that
hold drastically different implications. This approach aligns
well with emerging models like OpenAl’s text-2-vec-3-small
(1'7), which are tuned to reflect confidence alongside semantic
direction.

IV. EXPERIMENT

To evaluate the effectiveness of PAF, we designed experi-
ments to compare the performance of PAF with existing graph
traversal and node selection methodologies. These experiments
are designed to assess the latency, accuracy, and alignment
of the framework across various workflows, particularly in
Conversational Al applications.

A. Experiment Setup

The experiments utilize a simulated dataset generated to
mimic real-world workflows.

Dataset Generation: The experiment utilized a synthetic
dataset generated to simulate real-world workflows. Each
dataset entry contained:

Input: ConversationHistory,
LatestIdentifiedNode, Threshold
Output: UpdatedLatestIdentifiedNode
Step 1: Precompute Vectorized Instructions

Compute and store vectorized representations for instruc-
tions at all nodes in NavigationM ap.
Step 2: Format Input for the LLM

Construct a message including:

(a) Formatted ConversationHistory.

(b) Instructions for LatestIdentifiedN ode.

(c) A constructed navigation prompt by traversing
NavigationMap and collecting all first-layer children
nodes’ instructions on the {Path} from StartNode to
LatestIdentified N ode.

Step 3: Query the LLM Agent
Send the constructed message to the LLM agent.
Step 4: Process LLM Output in a Streaming Loop
while LLM agent streams output do
(a) Perform Vector-Based Node Search (Algorithm .
if a node is successfully identified then
Proceed to Step 5.

NavigationMap,

else
(b) Perform LLM as a Judge (Algorithm [I).
end if
end while
Step 5: Update Current Node
Set LatestIdentifiedNode to the node identified in
Step 4.
Step 6: Trigger Actions and Update the Graph
(a) Execute any actions related to the updated
LatestIdentified N ode.
(b) Modity NavigationMap as needed.
Step 7: Return the Updated Node
Output UpdatedLatestIdentifiedN ode =
LatestIdentifiedN ode.

o SystemPrompt: A node navigation map with Agentic
logic.

o ConversationHistory: Turn-by-turn interactions between
the user and the agent.

o GoldenResponse: A pre-verified response audited through
LLM-As-a-Judge and human evaluation, serving as the
ground truth.

Conversations were executed by two agents (a “user” LLM
and a “response” LLM), with a random turn length (6-10).
Golden responses were derived from the corresponding node’s
instruction and validated by humans.

B. Framework Performance Evaluation

We evaluated three frameworks under the following metrics:

o Semantic Similarity: Alignment between the generated
response and the golden response using OpenAl’s text-2-
vec-3-small embedding model (17)).

o Total Complete Hit Rate: Percentage of responses that
achieved a similarity score above 0.97.

e Mean and Median Similarity Scores: Overall alignment
performance.

Frameworks Tested:

1) Baseline: A naive approach treating the entire conversa-
tion as a single prompt.

2) Basic PAF: A step-by-step logic tree leveraging LLM-
as-Judge (Algorithms [T] and [2).

3) Optimized PAF: A vector-based approach (Algorithms|T]

BB

C. Hypotheses

o H1: Basic PAF achieves higher average similarity than
Baseline.

o H2: Optimized PAF achieves higher average similarity
than Baseline.

o H3: Optimized PAF achieves higher average similarity
than Basic PAF.

A one-sided paired t-test with o« = 0.05 was used for statistical
significance.

D. Experiment Steps

1) Simulate 100 conversations using the predefined work-
flow.

2) Generate responses for each method.

3) Compute similarity scores against the golden responses.

4) Aggregate metrics such as total hit rate, mean, and
median.

5) Perform hypothesis testing.

E. Results
TABLE I
RESULT METRICS ACROSS ALGORITHMS
Method Total Hits Count above 0.8 Mean Median
Baseline 0 0 0.391 0.387
Basic PAF 16 14 0.481 0.400
Optimized PAF 35 22 0.594 0.496

TABLE 11
STATISTICAL COMPARISON RESULTS (ONE-SIDED PAIRED T-TESTS)

Comparison t-statistic p-value
Baseline vs Basic PAF 2.9982 0.0020
Baseline vs Optimized PAF 7.3077 0.0000
Basic PAF vs Optimized PAF 4.2494 0.0000

o HI1: Basic PAF significantly outperforms the Baseline
(p = 0.002).

o H2: Optimized PAF significantly outperforms the Baseline
(p < 0.001).

o H3: Optimized PAF significantly outperforms Basic PAF
(p < 0.001).

Distribution of Similarity Scores (KDE)

33 3 Naive

[Base
= Optimized

Density

0.2 0.4 06 08 10
similarity Score

Fig. 3. Distribution of Similarity Scores for the 3 frameworks (Naive=Baseline,
Base=Basic PAF, Optimized=Optimized PAF).

F. Reproducibility

We provide code and data generation scripts in an
anonymized repositoryﬂ

V. CONCLUSION

Our approach introduces novel mechanisms for leveraging
LLMs to navigate graph-based workflows, replacing the need
for extensive planning phases and minimizing error rates.
PAF achieves faster response times and greater accuracy in
real-world applications by reducing reliance on large context
windows and optimizing computational steps.

In summary, PAF resolves key limitations in existing Agentic
frameworks by:

o Removing extra iterations for validation and planning,
thereby reducing latency.

o Improving alignment through step-by-step logic tree
navigation.

o Reducing context window size by focusing on relevant
graph information.

¢ Introducing vector-based scoring of semantic similarity,
reducing redundant LLM calls.

VI. FUTURE WORK

While Conversational Al serves as a compelling case study,
the PAF framework holds promise for broader applications.
Future research will explore:

o Node Weights and Path Rules: Introducing weights and
flexible rules.

o Integration with Different Models: Experimenting with
in-house or domain-specific LLMs.

o Open-Source Model Improvements: Tuning embeddings
or scoring for domain-specific tasks.

Uhttps://anonymous.4open.science/r/performant-agentic- framework- FSF6/
README.md

https://anonymous.4open.science/r/performant-agentic-framework-F5F6/README.md
https://anonymous.4open.science/r/performant-agentic-framework-F5F6/README.md

IMPACT STATEMENT

This paper presents work whose goal is to advance the field
of Machine Learning and Agentic Workflows. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.

REFERENCES

[1] L. Zhuge, K. Zhang, and M. Wang, “Aflow: Automating
agentic workflow generation,” arXiv preprint, 2023.

[2] Y. Qiu and Y. Jin, “Chatgpt and finetuned bert: A com-
parative study for developing intelligent design support
systems,” Intelligent Systems with Applications, vol. 21,
p- 200308, 2024.

[3] X. Shi, J. Liu, and Y. Song, “Bert and llm-based multivari-
ate hate speech detection on twitter: Comparative analysis
and superior performance,” in International Artificial
Intelligence Conference. Singapore: Springer Nature
Singapore, November 2023, pp. 85-97.

[4] K. Valmeekam, M. Marquez, S. Sreedharan, and S. Kamb-
hampati, “On the planning abilities of large language
models - a critical investigation,” Advances in Neural
Information Processing Systems, vol. 36, pp. 75993—
76005, 2023.

[5] Z. Zhou, J. Song, K. Yao, Z. Shu, and L. Ma, “Isr-llm: It-
erative self-refined large language model for long-horizon
sequential task planning,” in 2024 IEEE International
Conference on Robotics and Automation (ICRA). 1EEE,
May 2024, pp. 2081-2088.

[6] LangChain, “Langchain documentation,” https://www
langchain.com, 2023, accessed: Jan 19 2025.

[7] LangGraph, “Langgraph overview,”
/lwww.langchain.com/langgraph, 2023,
Jan 19 2025.

[8] F. Dong and R. Qian, “Characterizing context influence
and hallucination in summarization,” arXiv preprint, 2024.

[9] X. L. Dong, S. Moon, Y. E. Xu, K. Malik, and Z. Yu,

“Towards next-generation intelligent assistants leveraging

IIm techniques,” in Proceedings of the 29th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining.

ACM, August 2023, pp. 5792-5793.

A. J. James, N. D. Vangapalli, J. Siripurapu, and Y. R.

Chinnamallu, “Integration of voice assistant with chatgpt

and dall-e,” in 2024 International Conference on Emerg-

ing Techniques in Computational Intelligence (ICETCI).
IEEE, August 2024, pp. 95-101.
S. S. Gill and R. Kaur, “Chatgpt: Vision and challenges,”
Internet of Things and Cyber-Physical Systems, vol. 3,
pp- 262-271, 2023.
[12] Z. Gao, Y. Li, and W. Sun, “Metagpt: Sop-driven workflow
generation,” arXiv preprint, 2023.

[13] Q. Wang and B. Liu, “Extending metagpt for complex
workflow tasks,” arXiv preprint, 2024.

[14] F. Li and J. Yuan, “Improving multi-step planning with
workflow-aware llms,” arXiv preprint, 2023.

https!
accessed:

[10]

[11]

[15] S. Reddy and A. Gupta, “Abstractive text summarizer: A
comparative study on dot product attention and cosine
similarity,” IEEE Explore, 2021.

J. Huang and S. Wang, “Dot product vs. cosine similar-
ity in domain-specific retrieval,” IEEE Transactions on
Information Retrieval, 2021.

OpenAl, “Openai embedding model,” https://platform.
openai.com/docs/guides/embeddings/, 2025, accessed: Jan
19 2025.

https://www.langchain.com
https://www.langchain.com
https://www.langchain.com/langgraph
https://www.langchain.com/langgraph
https://platform.openai.com/docs/guides/embeddings/
https://platform.openai.com/docs/guides/embeddings/

	Introduction
	Related Work
	Performant Agentic Framework (PAF)
	Basic PAF
	Optimized PAF

	Experiment
	Experiment Setup
	Framework Performance Evaluation
	Hypotheses
	Experiment Steps
	Results
	Reproducibility

	Conclusion
	Future Work

